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Preface

The analyses in this book began as an afterthought in the development of the 
material theory of induction. My goal with the theory was to resolve once and 
for all how inductive inference works. Its chief concern was the failure of the 
many competing accounts of inductive inference already in the literature to 
do justice to how evidence is actually used in science. The mature develop-
ment of that project is provided in my earlier work, The Material Theory of 
Induction (Norton 2021b).

When the first sketch of the material theory of induction (Norton 2003) 
was in a complete first draft, Jim Bogen pointed out to me that the material 
theory provides an escape from the problem of induction. I added the point 
to the final version in Section 6 of the paper. I repeated it more briefly in 
the conclusion to “A Little Survey of Inductive Inference” (Norton 2005). In 
retrospect, my analysis was too hasty. The basic idea of the escape was sound, 
but the details were not well developed.

That this was so was brought home at a Philosophy of Science Association 
symposium in 2008 organized by Peter Achinstein. Papers by John Worrall 
and Tom Kelly suggested that a version of the problem of induction still 
troubled the material theory. They were right. The escape as described was not 
adequately elaborated. I am grateful to them for pressing me. When I worked 
to clarify the escape from the problem of induction, I saw that it required a 
clarification of the large-scale structure of relations of inductive support. My 
first effort to provide a better account was in “A Material Dissolution of the 
Problem of Induction” (Norton 2014). That paper contains many of the ideas 
developed in this volume, especially including the nonhierarchical nature of 
relations of inductive support and the special role of hypotheses.

Although that account was a great improvement on the earlier versions, 
it contained a weakness. It did not adequately separate the idea of a logic of 
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induction from an epistemology of belief. The problem of induction resides 
within the first, the logic of induction. It has a presence in the epistemology of 
belief only indirectly, when we use a logic of induction to reason from belief 
to belief. In failing to separate them clearly, I conformed to the corresponding 
failure in much of the present literature on epistemology.

Critiques of the material escape from the problem of induction continued. 
Nothing is as assured to attract critical responses as the claim of a solution 
to the problem of induction. Does not everyone know that it cannot be done? 
Some of them appeared in a volume of Studies in History and Philosophy of 
Science dedicated to The Material Theory of Induction. (My replies are in 
Norton 2021a, in which the original papers can be identified.) Many of these 
critiques mislocated the material theory of induction within the epistemology 
of belief and, as a result, conflated issues that should have been kept separate. 
This alerted me to the need to distinguish the two contexts more clearly.

In the present volume, I have done my best to distinguish the two. The 
easy way to distinguish them is to note that the two contexts use different 
relata. The relata of the logic of induction are propositions. Their content 
and relations are independent of human thoughts and beliefs. The relata of 
the epistemology of beliefs are beliefs. They are related by psychological pro-
cesses that might or might not respect a logic. These issues are laid out as 
clearly as I can in Chapter 6, “The Problem of Induction,” and in Chapter 5, 
“Coherentism and the Material Theory of Induction.”

Addressing the problem of induction has been a major stimulus to the 
ideas developed in this volume. However, tracing a pathway from this origin 
to these ideas is a poor way of presenting them. The ideas about the large-scale 
structure of relations of inductive support are more important in their own 
right. They tell us how all the relations of inductive support fit together when 
we look at the entirety of science. They would retain this importance even if 
they had nothing to say about the problem of induction. Once that problem 
is mentioned, however, it seems to mesmerize many philosophers so that they 
are unable to see anything else. For this reason, I avoided all mention of the 
problem of induction in The Material Theory of Induction until the epilogue 
lest it distract readers from the substance laid out in its sixteen chapters. 
Again for this reason I have delayed discussion of the problem of induction 
until well into the present work. My hope is that this tactic will induce read-
ers to consider the account developed here of the large-scale structure of in-
ductive inference in its own right and not conceive it as yet another tiresome 
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attempt to solve the problem of induction. No doubt I will fail in these hopes 
with some readers, but will you, dear reader, not be one of them?

During the writing of this text, I have been helped by colleagues, and I 
have acknowledged their support in the context of the individual chapters. 
That identifies their assistance more clearly than would a long, generic list 
here. However, I do want to thank here the participants in my graduate sem-
inar, HPS 2682 Theories of Confirmation, for their reading of and critical 
reflections on Chapters 1, 2, 3, 4, and 6 in meetings of March 31 and April 7, 
2021, and Youness Ayaita for his reading of Chapters 1 to 6. My thanks also 
to Marc Lange for his careful reading in 2021 of many chapters and for his 
copious and helpful comments.

The material in this volume was collected over several years. Some of 
the chapters were written in their earliest forms when I thought it was pos-
sible to include this discussion in the earlier volume, The Material Theory 
of Induction. Other chapters were written subsequently. Many of them were 
written in the COVID-19 pandemic years of 2020–21. Immersion in writing 
them provided a little of the comfort and support needed during this awful 
time of bad news and isolation.

The greater support was provided by my wife, Eve, whose love and com-
panionship brightened each day and to whom this volume is dedicated.
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Introduction

1. The Project of This Volume
According to the material theory of induction, inductive inferences or rela-
tions of inductive support are not warranted in a way familiar from accounts 
of deductive logic. They are not warranted by conformity with some uni-
versally applicable schema or template. Rather, each is warranted by back-
ground facts peculiar to the domain in which the inference arises. This idea 
was developed in my earlier monograph, The Material Theory of Induction 
(Norton 2021). A key provision of the theory is that the warranting facts 
must be facts: that is, truths of the domain. If we seek to sustain an inductive 
inference by appealing to some warranting proposition in the domain that is 
false, then we commit the inductive analog of a fallacy. The error is compar-
able to the deductive fallacy of affirming the consequent as if it were a valid 
deductive schema.

That warrants must be factual truths places a special burden on us when 
we assess the inductive inferences or relations of inductive support among 
the propositions of some science. To establish support fully, we must also es-
tablish the truth of the warranting propositions used. Since these warranting 
propositions are also contingencies of the domain, establishing their truth 
requires further inductive inferences. Thus, any claim that some particular 
item of evidence inductively supports some other proposition in a theory is 
not self-contained. To be sustained to the fullest extent, the truth of these 
further warranting facts must also be established. Since those facts them-
selves are contingent propositions, we must establish their truth with still 
further inductive inferences or relations of inductive support, and we must 
show that those inductive inferences in turn are warranted by further facts. 
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And so on. All claims of inductive support, in effect, are claims that concern 
a large network of contingent propositions within the science of interest and, 
commonly, extending beyond it.

These considerations define the project of this work. Individual claims 
of inductive support must be made within a larger ecology of relations of 
inductive support. How is this larger ecology configured? What is the large-
scale structure of inductive inference? What are its problems? Can a cogent 
account be supplied for it? My goal in this work is to answer these questions.

Some might find this entanglement of inductive support with a larger 
inductive ecology disquieting and might want to retreat to formal approach-
es to escape it. Formal approaches that use universal schemas might appear 
to have an advantage. They can assess the cogency of an inductive inference 
without engaging a larger ecology. An inductive argument from analogy just 
has to show that it conforms to the relevant schema. A claim of probabilistic 
support might just have to show that the associated probabilities relate by 
Bayes’ theorem.

This advantage is illusory. According to the material theory of induc-
tion, it is dangerous to assume that each formal schema can be applied un-
conditionally everywhere. It exposes users to a significant risk of inductive 
fallacies if the schemas are applied in domains that lack a material warrant. 
The common remedy by formalists is tacitly to limit the application of the 
schemas to where they are thought somehow to be appropriate. The remedy is 
poor since decisions on applicability depend on hunches and intuitions. Here 
material theorists have the advantage. The question of which inference forms 
are applicable where is decided by an explicit analysis of the prevailing facts.

Again one might think that a better way to treat the large-scale structure 
of inductive support is mathematical. We merely need to identify the calcu-
lus that applies at this large scale. Questions about the large-scale structure 
would be answered mathematically by theorems in the calculus. Bayesians in 
the philosophy of science might believe that the probability calculus already 
does just this.

Hopes for some universal calculus of inductive inference fail and prov-
ably so. In recent work (Norton 2019, 2021, Chapter 12), I have shown the 
incompleteness of all calculi of inductive inference that meet some minimal 
conditions. Any such calculus will fail to discern nontrivially the inductive 
import of any body of evidence unless the computation is supplemented by 
inductive content supplied externally. The familiar example is that Bayesian 
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analysis always requires prior probabilities. Their stipulation is antecedent 
to the application of Bayes’ theorem, yet their content exerts a strong influ-
ence on the outcome of the computations. Efforts have failed to supply Bayes’ 
theorem with vacuous priors that exert no such influence. This incomplete-
ness is not limited to the probability calculus. A form of it will arise in any 
calculus meeting minimal conditions.

In its briefest form, the answer supplied by the material theory of in-
duction to the question of the large-scale structure of inductive support is 
this: relations of inductive support within a mature science form a massively 
entangled network without any clear hierarchical structure. Quine (1951, 39–
40), in his celebrated “Two Dogmas of Empiricism,” presented a similar struc-
ture for beliefs. However, his structure was variously a “fabric” and a “field of 
force” and later a “web of belief.” Its key attribute is its elasticity. A conflict 
with experience, according to this picture, can always be accommodated. The 
internal connections, he supposed, are so elastic that there are many ways 
to do this. This supposition has been responsible for much philosophical 
mischief. It has encouraged the idea that evidence, even in great measure, 
is unable to determine the propositions of a science. This indeterminacy is 
incompatible with our routine experiences of mature science and is not estab-
lished by Quine’s analysis. The elasticity results from reliance on a naive and 
inadequately weak hypothetico-deductive approach to inductive inference.1

The account developed in this volume differs sharply from Quine’s 
(1951) supposition of elasticity. The relations of inductive support in a mature 
science are better imagined as strong steel cables, not elastic threads. They 
are connected and interconnected in such a variety of ways that the integ-
rity of the entire structure is threatened if an anomalous experience arises. 
The affirmation that some ordinary machines can be combined to produce 
a perpetual motion machine would overturn mechanics. Or consider the 
discovery of a new mineral not constituted by atoms or not compounded of 
elements found in the periodic table. It would destabilize chemistry and, af-
ter that, the quantum theory that underpins the atomic character of matter 
and the uniqueness of the elements in the periodic table. Evolutionary theory 
would fail to accommodate a new species of living beings that spontaneously 
appears fully formed without any past history of development. The structure 

1	 Or so I argue (Norton 2008).
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of inductive support of mature sciences is not elastic but rigid. A break in one 
place propagates with revolutionary import far into the structure.

In this volume, I explore and examine this structure. The first chapter is 
a brief development of the material theory of induction. It does not replace 
the lengthier elaboration of the theory in The Material Theory of Induction 
(Norton 2021). However, for readers interested in the issues raised in the 
present work, it will serve well enough as a point of first contact.

Subsequent chapters are divided into two parts. The first part presents 
general propositions in the philosophy of science concerning the large-scale 
structure of inductive inference or inductive support. The second part pre-
sents historical case studies that provide detailed illustrations of the main 
claims of the first part and are the source of many of its claims.

2. Part I: General Claims and Arguments
In Chapter 2, I advance four claims, whose support and elaboration occupy 
the remainder of the text.

1.	 Relations of inductive support have a nonhierarchical 
structure.

2.	 Hypotheses, initially without known support, are used to 
erect nonhierarchical structures.

3.	 Locally deductive relations of support can be combined to 
produce an inductive totality.

4.	 There are self-supporting inductive structures.

The first claim renounces the idea that inductive support is hierarchical, 
structured by generality. In this renounced picture, propositions in a science 
are supported inductively just by propositions of lesser generality. We then 
would be able to trace a pathway of inductive support from the lowest levels 
closer to experience, gradually ascending the hierarchy of generality to the 
most general propositions of the science. The actuality is that relations of in-
ductive support in real science fail to respect any such hierarchy. They cross 
over in many complicated ways. The very idea of a hierarchy of generality is 
sustainable only in a crude way, if at all.

The second claim pertains to the practices needed to identify these tan-
gled inductive structures. In the early stages of the development of a new 
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science, inductive inferences commonly can proceed only if we make use 
of warranting assumptions for which we do not yet have inductive support. 
They are introduced as hypotheses, and their use is provisional. Their use 
comes with an obligation to secure their proper inductive support in subse-
quent investigations. Should that obligation not be met, the original claims of 
inductive support fail. This role attributed to hypotheses is not the traditional 
role given to them in accounts of hypothetico-deductive confirmation. In this 
latter case, the hypotheses themselves are confirmed by their success at en-
tailing evidence. Here the hypotheses mediate in establishing inductive sup-
port for other propositions. The hypotheses themselves must accrue support 
by other means in another stage of investigation.

The third claim asserts that it is possible to combine deductive relations 
of support to produce an overall relation of support that is inductive in char-
acter. This is a possibility that, in the abstract, seems to be impossible. Yet, as 
the examples show, it arises commonly in the actual practice of science. If it 
can be achieved, then it is a construction to be prized for its reduction in in-
ductive risk. The more familiar construction involves intersecting relations of 
inductive support that are combined to produce an overall inductive import. 
An inductive risk is taken, first, in accepting each component relation or in-
ductive inference and, second, in accepting their combined import. When the 
component inductive relations of support are replaced by deductive relation, 
that first inductive risk is eliminated.

Finally, the fourth claim is a thesis of completeness. That many inductive 
inferences are warranted materially is undeniable, or at least so I think af-
ter working through the many examples in The Material Theory of Induction 
(Norton 2021). If one is eager to retain general schemas, then it is tempting 
to suppose that these examples display only a part of the full inductive story. 
Materially warranted inductive inferences or relations of support alone, one 
might want to assert, are not enough to sustain all of a science inductively.  
A full accounting must include general schemas or general rules in some 
form. This fourth claim asserts otherwise. It is possible for materially war-
ranted propositions to form structures such that every proposition in the 
structure is inductively supported, without the need for general schemas or 
other devices outside the material theory of induction.

This completeness is already a corollary of the arguments given for the 
material theory in Chapter 2 of The Material Theory of Induction (Norton 
2021) and repeated more briefly in Chapter 1 below. Any general schema must 
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factually expand in some way on the premises supplied to it. This expansion 
can only be sustained in domains hospitable to the means of the expansion. 
Any such expansion can fail if the facts of the domain are such as to oppose 
it. The fact of that hospitality, in the most general terms, is the warranting 
fact of the inductive inference or relation of inductive support. This argument 
defeats every attempt to assert the existence of some universal inductive rule. 
There can be none that escapes it.

A simpler picture does not use universal inductive rules. Each individual 
proposition of a mature science is inductively well supported. If we are willing 
to undertake the task of tracing it, we can display the form that support takes 
and its material character. This is true of each of the propositions of a mature 
science, taken individually. Their totality is the full material account of the 
inductive support of the mature science. Nothing further is needed, for no 
proposition has been left without an account of its inductive support.

These four claims in turn raise further issues that need to be addressed. 
Relations of inductive support cross over one another in a myriad of ways. 
Tracing along the pathways of support, we routinely find circles that bring 
us back to our starting point. Philosophers, brought up in fear of vicious 
circularity, mistakenly find the mere existence of such circles automatically 
disqualifying for any system. In Chapter 3, I argue that this disqualification is 
hasty and mistaken. There are circles throughout our sciences. We routinely 
consider populations in which the rate of growth of the population is propor-
tional to the size of the population. This is a benign circle of self-reference. 
It is merely the most convenient definition of exponential growth. When a 
circularity is uncovered, there can be no default supposition of a systemic 
failure. Instead, we have a positive obligation to demonstrate that a circularity 
is harmful, if we seek to represent it as such. Is the circularity vicious and 
thus leads to a contradiction? Or does it lead to an underdetermination of 
theories? I argue that the circularities in inductive relations of support within 
mature scientific theories do neither. They are benign.

In Chapter 4, I address a related issue. Mature sciences, it has been as-
serted, are inductively self-supporting. The evidence for them is sufficient 
to sustain relations of inductive support such that every proposition in the 
science is supported. That leaves open a troubling possibility. Might it be that 
there are multiple such sciences for a given body of evidence? Then the bear-
ing of evidence would not be univocal, no matter how rich and varied the 
evidence. Might this be the harm that circularities bring? I argue otherwise in 
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the chapter. Mature sciences are uniquely supported by their evidence. There 
is only one periodic table of elements supported by the evidence in chemistry 
and so on for the central claims of mature sciences.

This uniqueness arises from the empirical character of science. Any 
alternative is only a real alternative if it differs in some factual assertion. 
Since all such assertions are open to empirical testing, competition among 
alternatives is transient, if only the evidence that can decide among them is 
pursued. The material character of inductive inference adds a mechanism 
that destabilizes any competition. If one theory in the competition gains a 
small advantage, then the facts thereby secured can serve as warrants for 
further inductive inferences supporting the theory. The effect is that the ad-
vantage of the ascending theory is amplified. When the investigations con-
tinue, this amplification is repeated, at the repeated costs of its competitors. 
If the process continues long enough, then it ends with one theory prevailing 
over all of its competitors. It is this instability that promotes the uniqueness 
of mature sciences.

Circularities are a distinctive feature of coherentist accounts of justifica-
tion. We might hope, as I did originally, that there would be results already 
developed there of use to the material theory. The differences between the 
two systems are so great that, it turns out, these expectations are not met. 
In Chapter 5, I explore these differences. The coherentist account is offered 
as an alternative to fundamentalist accounts of justification. Coherentists 
must eschew the fundamentalist supposition that some beliefs are justified 
primitively by the world. The material theory has no such obligation. It 
takes observations and experiences of the world to be the foundations upon 
which inductive structures are built. For coherentists, beliefs are justified 
by their inclusion in a coherent system. The judgment is essentially global. 
There is something similar in the material theory. Strong inductive support 
for a proposition ultimately does depend on the larger-scale integrity of the 
relations of inductive support. However, that integrity arises from the com-
position of many individual relations of support. Each of the propositions in 
the structure must be well supported inductively, and considerable effort is 
expended in establishing each such individual relation of support. Finally, 
coherentist justifications concern relations among beliefs: that is, within 
cognitive states. The material theory is concerned with mind- and belief-in-
dependent relations of inductive support among propositions that assert 
some factual condition in the world.
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In Chapter 6, I describe how the material theory of induction dissolves 
the classic problem of induction. I provide a short history of the problem and 
show that the problem of induction is specifically a problem for accounts of 
induction based on universal schemas. Its dissolution by the material theory 
involves no exotic legerdemain. The material theory of induction does not 
posit universal schemas. It follows that the problem of induction cannot be 
set up in it. It is dissolved. Although this claim of dissolution has already 
attracted considerable attention, it has come with the mistaken claim that 
the material was devised specifically to solve the problem of induction. As I 
have related on several occasions, that is not the history of it.2 My concern is 
that the claims of the material theory — at both the local scale and the large 
scale — should be evaluated as an attempt to understand inductive inference 
better. That can be done independently of whether the theory dissolves the 
problem of induction. If it does not dissolve that problem, then the failure 
merely puts it in good company with all of the other failed attempts. The 
material theory’s other results still stand.

Although the material theory’s dissolution of the problem of induction is 
straightforward, a common reaction is to treat it like other claimed solutions 
to the problem. Under scrutiny, these other solutions prove to depend on un-
founded, hidden assumptions, comparable in import to those that produced 
the problem originally. This reflexive reaction leads to the supposition that 
the problem must reappear in the material theory in some way in the mutual 
dependencies of inductive support. The unmet challenge of this reflexive re-
action has been to find a way that the problem of induction reappears. Perhaps 
circularities in the structure are harmful; perhaps there is a fatal regress to 
warranting propositions of ever greater generality; perhaps, if our starting 
point is meager, then we have no warranting hypotheses that would allow 
inductive inferences to be initiated. All of these suppositions fail to identify 
a problem for the material theory. There is little need to argue the point in 
great detail since securing the theory against such objections is undertaken in 
earlier chapters. The theory’s circularities are benign, as I argue in Chapter 3.  
A fatal regress to warranting propositions of ever greater generality requires 
the presumption of a hierarchical structure that, as I argue in Chapter 2, is 

2	 My first paper on the material theory (Norton 2003) was already in a complete first 
draft when Jim Bogen pointed out the possibility of a dissolution of the problem of induction.  
I added an imperfect sketch of that dissolution as a later section of the paper.
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not present in the material theory. Finally, there is no difficulty starting the 
inductive project. When warranting premises are missing, they are intro-
duced provisionally as hypotheses.

3. Part II: Historical Case Studies
The second part of this volume presents a set of case studies within the hist-
ory of science. They are detailed and reflect my commitment that an analysis 
of inductive inferences should be responsible to what actually happens in 
science. Here the analysis differs from much of what is found in the philo-
sophical literature on inductive inference. There the analysis suffers from 
adaptation to a few oversimplified examples. We might infer from the obser-
vation that some crows are black the conclusion that all crows are black. But 
such inferences, analyzed in isolation, are oversimplified caricatures of the 
much more sophisticated inductive inferences of real science. An account 
designed just to accommodate such oversimplified examples is destined to 
be woefully oversimplified itself.

Formal accounts of inductive inference in the philosophical literature 
face the same problem. An erudite formal analysis, no matter how technically 
clever, is only as good as the assumptions on which it is based. The induct-
ive practice of real science is complicated and messy. Formal systems, if they 
are to be amenable to mathematical analysis, must be based on a few simple 
axioms. When they are naive or oversimplified, so, inevitably, is the analysis. 
These failures are easily overlooked since, commonly, formal accounts are 
developed without close attention to the actual inductive practices in science. 
When a formally pretty system is proposed, it is easy to be distracted by the 
ingenuity of the technical details and beguiled by the lure of the abstract for-
mal puzzles that they pose.

This work takes seriously the obligation to connect its general claims 
with the actualities of the sciences. It does this by melding general claims 
in the philosophy of science with detailed historical studies of science. This 
practice embodies a conception of what it is to do the history and philosophy 
of science. Theses in the philosophy of science must withstand scrutiny in 
the history of science. That much is widely accepted as an abstract princi-
ple. It is much less widely practiced. The reverse relation is more interesting.  
I have found repeatedly that investigations in the history of science are a fer-
tile means of identifying powerful and interesting theses in the philosophy of 
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science. The scientists often face daunting inductive challenges. Their ingenu-
ity in meeting the challenges far outstrips the imaginings of the philosophers 
of science, concerned only with ruminations on abstract principles and ideas. 
Careful attention to the history can yield ideas that otherwise would not 
emerge from mere armchair reflection.

Chapters 7 to 14 present case studies selected, I must admit, simply be-
cause they are episodes that interest me and, I suspect, will prove to be fertile 
in supplying general theses for the first part. In almost all of the cases, we 
find relations of inductive support crossing over one another in a way that 
violates a hierarchy of generality. That is one of the most important facts 
provided by the studies. The individual studies typically add extra points of 
special interest.

In Chapter 7, I recount Hubble’s arguments in 1929 for his celebrated 
“Hubble’s law.” That law asserts that galaxies recede with a speed proportional 
to their distance from us. If one does not look at the details of his reporting, 
then it is all too easy to represent his analysis as a simple act of generalization. 
Hubble checked that the linear relation held for a sample of galaxies and then 
just generalized. A little attention to his paper of 1929 shows that his analysis 
was neither so simple nor that easy. Hubble had distance measurements only 
for roughly half of the galaxies in his data set. He needed maneuvers of great 
ingenuity to extend his law to all of the galaxies in his data set. They involved 
reasoning that inverted the order of inference that one would expect. In one 
part, they even employed the Hubble law itself as a premise.

In Chapter 8, I recount some of Newton’s arguments for his inverse square 
law of gravity. Newton, we find, was adept at recovering inductive support 
for his claims by combining deductive relations. Such combinations figure in 
central portions of the evidential case that he made for his theory of universal 
gravitation. They arise in his Moon test, which argues for the identification of 
terrestrial gravity and the force that binds the Moon to the Earth; they arise 
again in the details of his analysis of the inverse square law of gravity and its 
relation to the elliptical orbits of the planets.

In Chapter 9, on atomic spectra, I show how the numerical rules gov-
erning the series of lines in the hydrogen emission spectrum are supported 
by multiple relations of inductive support that cross over one another in many 
ways. Under the warranting authority of Ritz’s combination principle, the 
presence of some lines provided support for the presence of other lines, and 
entire infinite series of lines provided support for other entire infinite series of 
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lines. A second crossing over of support occurred at a higher level. Ritz’s com-
bination principle provided general support for the newly emerging quantum 
theory. It was the observable manifestation of the fundamental electronic 
process of Bohr’s quantum theory of the atom: the stepwise descent of an 
excited electron through the allowed orbits of the theory. Soon this relation 
of support was inverted. The more fully developed quantum theory both en-
tailed the Ritz combination principle and could specify the empirically found 
circumstances in which it failed.

In Chapter 10, I provide another illustration of the crossing over of re-
lations of support. It arises among two sets of propositions that date histor-
ical artifacts. In one set, datings are provided by traditional historical and 
archaeological methods. In the other, datings are provided by radiocarbon 
methods. There are uncertainties in both. Historical methods can err when 
they rely on meager or equivocal clues. Carbon dating can err if the historic-
ally varying levels of atmospheric carbon 14 are not accurately known. Then 
the baseline from which the carbon 14 decay started is uncertain. Each set 
can be used to correct and calibrate the other set. The calibration curve for 
historical levels of atmospheric carbon 14 was derived from historical dating 
methods, including, famously, the counting of tree rings in ancient bristle 
cone pines. Once well calibrated, carbon 14 dating can correct historical and 
archaeological datings of artifacts. When the two sets of propositions are in 
agreement, each mutually supports the other set.

In Chapter 11, I look at the history of the determination of the relative 
atomic weights of the elements. The task proved to be recalcitrant and strained 
the resources of chemists for roughly the first half of the nineteenth century. 
The difficulty was that, after Dalton’s introduction of chemical atomism in 
1808, chemists were trapped by an incompleteness in his atomic theory. The 
evidence that 8g of oxygen react with 1g of hydrogen to produce water does 
not tell us how many atoms of hydrogen combine with how many atoms of 
oxygen to form water. Was the ratio 1-1, 2-1, 1-2, and so on? We are left un-
certain about whether the molecular formula for water is HO, H2O, HO2, or 
something else again. To eliminate the uncertainty, we also need to know the 
relative weight of each atom of hydrogen and oxygen. But we cannot know 
those relative weights until we know the correct molecular formulae for water 
and other related substances.

Chemists struggled for roughly half a century to overcome this incom-
pleteness. Matters were settled only with Cannizzaro’s results in 1858 and 
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brought to the notice of chemists through a conference in 1860. Cannizzaro’s 
results depended on a careful selection of fertile hypotheses to break the evi-
dential circle in which Dalton was trapped. The best known is Avogadro’s hy-
pothesis on the numbers of molecules in equal volumes of gases. Applying this 
and other hypotheses to a wide array of elements and compounds, a unique 
set of atomic weights could be recovered. They emerged from a huge tangle 
of intersecting relations of support. There were so many that I can sample 
only a few in the chapter. They extend from intersecting relations of support 
among the molecular formulae of individual substances to mutual relations 
of support at the highest levels of abstract theory. The chemists found support 
for Avogadro’s hypothesis in the new physics of the kinetic theory of gases. 
Conversely, the physicists found support for their new physics in the chem-
ists’ adherence to Avogadro’s hypothesis.

In Chapter 12, I provide another illustration of the importance of hy-
potheses in enabling inductive investigations to proceed. Since antiquity, 
astronomers have sought to determine the distances to the Sun, Moon, and 
planets. Simple methods of geometric triangulation — called “parallax” 
when used astronomically — provided only meager results. The angles to be 
measured were too small for naked eye astronomy to resolve reliably. That 
changed when telescopic observations became possible in the seventeenth 
century. The task remained formidable. Attempts to use parallax for this pur-
pose still called for major scientific expeditions as late as the eighteenth and 
nineteenth centuries.

These observations and simple geometry alone were not enough. 
Hypotheses were required to warrant inferences from the observations to 
the distances sought. Distances thus inferred remained provisional until in-
dependent support was provided for the hypotheses. Early hypotheses used 
in these investigations failed to meet the requirement. Ptolemy derived his 
estimates of the distances to the Sun, Moon, and planets using the hypoth-
esis that space is filled with the spheres of his geocentric cosmology, packed 
together as closely as possible. His distance estimates collapsed when his geo-
centric cosmology failed to find the independent support needed. Reliable 
distance measurements were subsequently recovered only with the mediation 
of the Copernican hypothesis, in turn further supported by Newton’s theory 
of universal gravitation. These hypotheses did accrue the requisite independ-
ent evidence.
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The last two chapters provide examples of theories in competition. They 
are intended to illustrate the claims of the instability of inductive competi-
tions described in Chapter 4. In Chapter 13, I examine the practice of dowsing. 
Miners in the Harz mountains of Germany in the sixteenth century believed 
that minerals underground can be detected by the deflections of a hazel twig. 
Over the centuries, dowsing migrated to the detection of underground water.

The competition recounted was between dowsers and their skeptical crit-
ics and how it turned to favor the skeptics. The case for dowsing was most-
ly secured anecdotally. It lay in repeated accounts of dowsing successes and 
even the mere existence of a profitable profession of dowsers. The critics were 
able eventually to challenge successfully the reliability of these accounts. The 
nineteenth-century identification of ideo-motor effects explained how dows-
ers erroneously might have come to believe that the effect was real. On the 
theoretical side, by the rudimentary standards set by the early theories of 
electric and magnetic attraction, it was plausible that underground minerals 
might exert an influence above ground. Over the centuries, the growth of 
theories of electricity and magnetism left no theoretical space for the mech-
anism of dowsing. The critics’ successes in these two strands of phenomena 
and theory were mutually supporting and came at the cost of proponents of 
dowsing. By the early twentieth century, dowsing had been reduced to the 
status of a pseudoscience.

In Chapter 14, I recount a present-day case of systems of prediction in 
ongoing competition. I recount four systems, all of which are currently ap-
plied to predict the future movement of prices on the stock market. They are 
fundamental analysis, technical analysis (“chartists”), random walk/efficient 
market analysis, and fractal/scale-free analysis. The competition among the 
systems is lively. Proponents of each are aware of the competing systems and 
try to impugn them. I provide a sample of their disagreements. The guiding 
principles of each system are hypotheses in the sense of Chapter 2. They are 
proposed provisionally to enable prediction to proceed. However, none has 
been secured evidentially such that it has found universal acceptance. That 
follows from the persistence of the disagreements among the proponents of 
the individual systems. However, these hypotheses are mutually exclusive: 
at most, one can be true. The evidence that would single it out is available 
in abundance in the past history of trading on the stock market. Were this 
evidence to be pursued and evaluated without prejudice, the disputes would 
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be resolved, and at most one system would prevail. Instead, however, we have 
the curious spectacle of proponents who refuse this task. The disagreement 
continues in full display, and we can continue to watch how each approach 
seeks to gain an evidential advantage over the others.
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1

The Material Theory of Induction, 
Briefly

1. Introduction
In this volume, I describe how relations of inductive support are structured 
on the large scale. I do so in the context of a particular view of inductive infer-
ence, the material theory of induction. I elaborated this account of inductive 
inference extensively earlier in The Material Theory of Induction (2021), to 
which the reader is referred. In this chapter, there is only a brief introduction 
to the material theory. It is preliminary. I present the main claims of this 
volume in the next chapter.

Section 2 gives a motivation for, a summary of, and an argument for the 
material theory of induction. The standard approach to inductive inference 
characterizes inductive inferences or relations of inductive support formal-
ly, by means of schemas or calculi purported to hold universally. They all 
fail to apply universally, or so I argue. Facts peculiar to each domain deter-
mine which are the good inductive inferences or proper relations of inductive 
support. There is no way to combine these disparate warranting facts into a 
single, universally applicable system. This is the central claim of the material 
theory of induction.

The remainder of the chapter illustrates how standard, formal approach-
es to inductive inference fail and that a material approach can capture what 
made the formal approach seem to be viable without succumbing to the dif-
ficulties of the formal approaches. Since there are so many approaches to in-
ductive inference, I can discuss only a few of them. They are sampled from a 
survey of accounts of inductive inference in Norton (2005).
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This survey divides accounts into three families. The first, “inductive 
generalization,” is based on the principle that we may infer from an instance 
to a generalization. It includes enumerative induction, discussed in Section 
3, and analogical reasoning, discussed in Section 4. The second family, intro-
duced in Section 5, is “hypothetical induction.” It is based on the principle 
that the capacity of a hypothesis to entail the evidence is a mark of its truth. 
Section 6 reviews one example in which we are to accept the hypotheses that 
most simply entail the evidence. The third family has accounts in which a 
calculus governs strengths of inductive support. The probability calculus is 
overwhelmingly the most popular candidate. Section 7 uses the example of 
Laplace’s rule of succession to sketch some limits of the account and shows 
how the material approach can escape them.

2. The Material Theory of Induction

2.1. Inductive Inference
Induction and inductive inference are understood here in their broadest 
senses. They apply to any inference that leads to a conclusion deductively 
stronger than the premises from which it proceeds. This conception auto-
matically includes traditional forms of ampliative inference, such as enum-
erative induction. (“This A is B. Therefore, all As are B.”) Ampliation is under-
stood in its broadest sense as referring to any expansion of the conclusion 
beyond the deductive consequences of the premises. The terms “induction” 
and “inductive inference” will also be taken to encompass what is often called 
confirmation theory. It applies to accounts in which one does not proceed in 
the traditional manner of an inference to infer the truth of some conclusion, 
detached from the premises from which it was derived. Rather, one merely 
reports a relation of inductive support of such and such a strength between 
two propositions. The most familiar application is probabilistic analysis. The 
measure P(A|B) is the strength of support that proposition A accrues from 
proposition B.

The account here is restricted to the logical notion of inference. According 
to it, the relation of inductive support obtains between A and B, independ-
ently of human desires, beliefs, and thoughts. It is not the “psychologized” 
notion of inference. There, to report an inference from A to B is merely to 
report a fact of our psychology. If we hold A true, then we will assert B as 
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well. Discussions of people inferring from A to B will appear in the text that 
follows, especially in the historical narratives. However, I treat them through-
out as attempts by the figures in question to conform their thinking to the 
appropriate logic of inductive inference.

2.2. An Unmet Challenge
Any account of inductive inference must do two things. First, it must provide 
a means of distinguishing good inductive inferences from bad ones. Second, 
it must demonstrate that the inferences that it designates as good really are so.

My contention is that all principal accounts of inductive inference so far 
have failed to meet these challenges. Their failure derives from a pervasive 
presupposition: they assume that an account of inductive inference must 
be based on formal rules that can be applied everywhere. In this, they copy 
a standard approach in deductive inference. Here is a deductive argument 
schema:

All As are B.

Therefore, some As are B.

The schema is universally applicable since we can substitute any noun for 
A and any adjective for B and end up with a valid inference. The simplest 
account of inductive inference mimics this approach. Enumerative induction 
just inverts the order of the sentences in the schema:

Some As are B.

Therefore, all As are B.

The account is universal in the sense that this schema can be applied every-
where. It is formal in the sense that the schema specifies only the form of valid 
inferences. It does not constrain the matter in the sense that any nouns and 
adjectives can be substituted for A and B. Probabilistic treatments of induct-
ive support are similarly formal and universal. Sentences derived within the 
probability calculus play the role of universal schema. Consider, for example, 
the sentence

P(not-A|E) = 1 – P(A|E)

in which P is the conditional probability of the propositions indicated. It will 
remain a theorem in the calculus no matter which propositions are substituted 
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for A and E. These two examples reflect the standard practice in the literature. 
It is to seek schemas that are universal and formal.

The difficulty is that all of these schemas eventually fail somewhere, and, 
as I shall argue below, the failure is inevitable. The failure of enumerative 
induction is widely known. Indeed, the schema almost never works. One has 
to choose substitutions for A and B very carefully if one is to recover any ac-
ceptable inductive inference. There are similar problems with the sentence in 
probability theory, although more analysis is required to show them. The sen-
tence is unproblematic if the “P” represents a physical chance. If the chance 
of outcome A happening given background E is small, say P(A|E) = 0.01, then 
the chance of outcome A not happening is large:

P(not-A|E) = 1 – P(A|E) = 1 – 0.01 = 0.99

But now let “P” measure the inductive strength of support for the proposition 
A from the evidence E, where E is the totality of all evidence available. This 
last relation precludes the total evidence E from being neutral in its inductive 
support of A. That would mean that it supplies no support for either A or its 
negation not-A. We would want that lack of support to be represented by a 
small or even zero magnitude for both A and not-A. However, if we set P(A|E) 
to some number close to zero or to zero itself, then the statement in the prob-
ability calculus forces us to set P(not-A|E) close to one or to one itself.1

2.3. The Material Solution in Three Slogans
The material theory of induction addresses these problems at their roots: they 
derive from the presumption that good inductive inferences or relations of 
support can be identified by a single set of rules or formal schemas applicable 
universally. That presumption is denied:

There are no universal rules of inductive inference.

Instead, the core claim is this:

All inductive inferences are warranted by facts.

That is, what distinguishes a good inductive inference is its conformity not 
with some general schema but with background facts of the pertinent domain.

1	 Experts will recognize that this consideration is the starting point of a decades-long 
debate over the representation of the neutrality of support. My view is that it cannot be done 
satisfactorily using probabilities (see Norton 2008, 2010).
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The idea that an inference can be warranted by a fact is familiar from 
deductive inference. The factual proposition “If A, then B” is both a mundane 
fact and a warrant for a deductive inference from A to B. The warrant derives 
fully from the meaning of the hypothetical “if . . . then. . . .” To assert “If A, 
then B” is also to assert that we can infer from the truth of the antecedent A 
to that of the consequent B. In the case of the material theory of induction, a 
corresponding background fact might be “generally, A.” Such a proposition 
authorizes us to conclude A. The import of the “generally” is that the infer-
ence is inductive. It conveys that there is a small possibility that the conclu-
sion A might fail to be true.

Finally, there are no background warranting facts with universal scope. 
The warranting facts of each domain, in general, will warrant inductive infer-
ences peculiar to that domain. This is expressed in the third slogan:

All inductive inference is local.

There might be similarities in the inductive inferences from different do-
mains. However, these similarities will prove to be superficial and support 
no general rule. We must always seek the warrant for an inductive inference 
within the background facts of its domain.

To continue with the oversimplified example of “generally, A,” it might 
seem that this fact is somehow to be applied across all domains. However, the 
meaning of “generally” will vary from domain to domain, so any similarity 
is superficial. In a probabilistic domain, we would assert “generally, ten suc-
cessive coin tosses will not all be heads.” The “generally” encodes an objective 
probability of the possibility of failure such that we expect failure on average 
at a rate of 1/210 = 1/1,024 in many cases of ten successive coin tosses.  In par-
ticle physics, we might assert “generally, the laws of particle interactions are 
time reversible.” In chemistry, we might assert “generally, metallic elements 
are solids at room temperature.” In these last two cases, we have no possibil-
ity of repetition. The laws of particle interactions of the standard model of 
particle physics are fixed, as is the set of metallic elements. Setting aside dubi-
ous contrivances, the “generally” does not lead to a meaningful notion of an 
expected rate of failure. Once we have scoured the periodic table for metallic 
elements, there is no other periodic table with different elements in which we 
can repeat the search anew.

Left open is the extent of the domains in which each specific sort of in-
ductive inference is warranted. A narrowly specific warranting fact might 
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only warrant a few inductive inferences in some narrow domain. A broad-
er warranting fact might warrant a mathematical calculus, which would be 
applicable across a large range of cases but still be in some limited domain.

In sum, the two challenges for inductive inferences are met as follows. 
In any domain, the licit inductive inferences are those warranted by the facts 
of the domain. That they are properly warranted follows from the truth of 
those facts and is recovered from the meaning of the terms expressing the 
warranting facts.

2.4. The Background Facts Decide, Not Our Beliefs about Them
Inductive warrants work in the same way as the formal schema of deductive 
inference. They pick out which are the licit inductive inferences or relations 
of inductive support, independently of our beliefs. If we reason deductively 
in accord with the schema modus ponens, then we reason validly, even if 
we know nothing of deductive logic and its schemas. If we reason in accord 
with the fallacy of affirming the consequent, then we commit a deductive 
fallacy, even if we mistakenly believe that affirming the consequent is a licit 
deductive schema.

Correspondingly, we infer well inductively if our inference is warranted 
by a fact of the domain, independently of whether we know it. We infer poorly 
inductively if there is no fact of the domain that warrants the inference, even 
if we believe erroneously that there is such a fact.

In practice, conceived materially, our inductive inferences are guided by 
our best judgments of which are the prevailing facts in any domain. They 
are defeasible. Those judgments might prove to be incorrect, and we might 
be inferring poorly. If we differ in our judgments and arrive at incompatible 
inductive inferences, then at most one of us is correct. Which of us inferred 
well is decided by which truly are the facts of the domain.

2.5. The Case for the Material Theory
There are two components of the material theory to be established: first, that 
facts provide the warrant for inductive inferences; second, that each domain 
has its own set of warranting facts (“locality”).

First, that facts warrant inductive inferences follows from the inevitable 
failure of accounts of inductive inference that aspire to apply universally. They 
must fail because of the defining feature of inductive inferences: they are am-
pliative. That is, they authorize us to infer more than can be deduced from the 
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premises. Thus, there will always be domains, inhospitable to each schema, in 
which the schema will fail systematically. Characterized most generally, the 
factual warrant for each inductive inference amounts to the factual contin-
gency that the inference is conducted within a domain hospitable to it.

Standard connective-based deductive inferences are not prone to this 
mode of failure. Their warrant lies fully within the premises in the meaning 
of the connectives and is present whatever the domain of the inference.

Domains inhospitable to each formal account can arise in many ways. 
Philosophy’s fabled deceiving demon is a simple if contrived way to see 
that inhospitable domains are unavoidable in principle. The demon secret-
ly intervenes to frustrate our inferences. The applicability of each account 
depends on a factual matter: that we are not in the grip of such a demon. 
Although deceiving demons are fantasies, something close to them is not. 
Experimentalists must assume that their lab assistants are not disgruntled 
employees maliciously selecting and suppressing data such as to deceive them 
into false conclusions. Or they must assume that they are not in the grip of 
a mechanical equivalent: a loose connection in their cables that introduces 
enough noise in the results to obscure a regularity or create a spurious one.2

These are contrived examples but with the mitigating virtue that they 
can be expressed tersely. They display the key point. Any account of inductive 
inference can succeed only if the conditions in the domain are hospitable. 
That they are so is a factual matter.

Second, the locality of inductive inference follows from there being no 
universally applicable warranting fact. An old hope, now long abandoned, 
was that the regularities of the world might be simple enough that they could 
be expressed in some sort of universal fact that would then underwrite all in-
ductive inference. This was Mill’s principle of the uniformity of nature (Mill 
1882, Book III, Chapter III, 223): “The universe, so far as known to us, is so 
constituted that whatever is true in any one case is true in all cases of a certain 
description; the only difficulty is . . . to find what description.” In the abstract, 
this principle has momentary appeal. Mill himself had already identified the 
fatal difficulty. For the principle to be something more than idle posturing, 
there must be a description of it that picks out when we can advance from 
one case to all cases. Finding it is an intractable problem. Any description 

2	 In September 2011, the OPERA collaborative reported faster-than-light neutrinos. As 
Reich (2012) reported, they were misled in part by a loose cable connection.
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precise enough to be applied is rife with counterexamples. A description im-
mune to counterexamples can only be so by adopting vagueness to the point 
of vacuity.3

2.6. An Illustration
An example illustrates this general argument. Consider this deductive 
inference:

Winters past have been snowy, AND winters future will be snowy.

Therefore, winters past have been snowy.

The warrant for this deductive inference resides entirely within the premises. 
It comes from the meaning of the connective “and.” It can be used only when 
the truth of the conjunction derives from the truth of each of the conjuncts 
individually. Hence, we are warranted to infer to each of them individually. 
Since the entire burden is carried by the connective “and,” we can write a 
general schema for deductive inference, applicable in any domain:

A and B.

Therefore, A.

Now consider a related inductive inference:

Winters past have been snowy.

Therefore, winters past have been snowy, AND winters future will 
be snowy.

The conclusion amplifies the premise. Thus, there will be domains hospitable 
to the inference, and there will be inhospitable domains in which it fails. An 
inhospitable domain is one in which there is considerable climate change, 
including significant warming. A hospitable domain is one in which climate 
is unchanging. If ours is one of these hospitable domains, then that fact would 
warrant the inference.

More generally, this fact licenses a schema for inductive inference re-
stricted to a specific domain:

In domains with unchanging climates,

If climatic fact A has always held in the past,

3	 For more of this critique, see Salmon (1953).
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Then climatic fact A will continue to hold.

We can substitute A with facts applicable to domains with unchanging cli-
mates to recover a licit inductive inference:

In domains with unchanging climates,

If summers past have always been hot and dry,

Then summers past and future will be hot and dry.

This example also illustrates the inherently inductive character of the in-
ference. We can make the warranting fact explicit and even add it to the 
premises displayed. However, we have not converted the argument into a 
deductive argument. Climatic conditions concern long-term regularities. An 
unchanging climate does not preclude a rare anomaly, such as an unusually 
warm winter among winters that most commonly are snowy. We risk such an 
anomaly when we employ an inductive inference warranted by the fact of an 
unchanging climate.

The following sections illustrate at greater length the failure of the uni-
versal applicability of some formal accounts of inductive inference. We shall 
also see how identifying the warranting material facts in some domain helps 
us to delimit the domains of applicability of each inductive inference.

3. Enumerative Induction
Enumerative inductions — the familiar inferences from “some . . . to all . . . ”  
— are pervasive in science. Just as pervasive in the philosophical literature 
is a denunciation of the argument form. Francis Bacon’s ([1620] 1952, First 
Book, Section 105) riposte is just the best known of many from antiquity to 
later times:

The induction which proceeds by simple enumeration is pu-
erile, leads to uncertain conclusions, and is exposed to danger 
from one contradictory instance, deciding generally from too 
small a number of facts, and those only the most obvious.

This poses a puzzle. How is it that these “some-all” inferences are used perva-
sively in science yet denounced pervasively by philosophers?

The puzzle is readily solved if the some-all inferences are approached ma-
terially. The whole problem derives from the mistaken assumption that all of 
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these some-all inferences are warranted by a single formal schema. There is 
no formal schema that can serve to warrant them all. Efforts to formulate one 
that works universally collapse. It is that difficulty to which the philosophic-
al literature responds. Rather, insofar as the some-all inference is warranted 
at all, that warrant derives from facts peculiar to the domain in which each 
some-all inference is executed. The unity of form of the many some-all infer-
ences in science is superficial. It is not reflected in a unity of the warrants for 
the inferences.

3.1. Curie’s Enumerative Induction
This material solution to the puzzle is illustrated in an enumerative induc-
tion of striking scope in Marie Curie’s doctoral dissertation, presented to the 
Faculté des sciences de Paris in June 1903.4 There Curie reported on years of 
work with her husband, Pierre Curie. It included the laborious separation of 
tiny quantities of radium chloride from several tons of uranium ore residue. 
Mentioned only briefly were the crystalline properties of radium chloride: 
“The crystals, which form in very acid solution, are elongated needles, those 
of barium chloride having exactly the same appearance as those of radium 
chloride” (Curie, 1904, 26). This remark on the crystallographic properties of 
radium chloride became standard in the new literature that quickly sprang 
up around the excitement generated by Curie’s discovery of radium.

Since the remark is unlimited in scope, it results from an enumerative 
induction. Indeed, it is one of rather extraordinary scope. Curie initially had 
prepared just a few tenths of a gram of radium chloride. Subsequent prepara-
tions would not have produced large quantities. Yet a general statement on the 
crystallographic properties of radium chloride was widely accepted without 
hesitation. Rutherford surveyed what was known of radioactive substances in 
1913 and noted without qualification that “radium salts crystallise in exactly 
the same form as the corresponding salts of barium” (470).

3.2. Failure of Formal Analysis
What can support an induction of such strength from these very few samples 
of radium chloride? We can see quickly that the universal schema proposed 
for enumerative induction above falls far short of what is needed:

4	 For further details on this example, see Norton (2021, Chapter 1).
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Some As are B.

Therefore, all As are B.

There are simply too many substitutions possible for A and B that lead to 
failed inductions:

Some samples of radium chloride were prepared by Marie Curie.

Some samples of radium chloride are in Paris.

Some samples of radium chloride are at 25oC.

Some samples of radium chloride are less than 0.5g.

Some radioactive substances crystallize like barium chloride.

Some substances in Curie’s laboratory crystallize like barium 
chloride.

None of these leads to a credible inference. One might be tempted to propose 
restrictions on what can be substituted for A and B. Might we insist that no 
nouns or adjectives with essentially spatiotemporal character be substituted? 
That would block the substitution “substances in Curie’s lab” for A and “in 
Paris” for B. However, it would also block what otherwise would be credible 
enumerative inductions.

All known kangaroos are indigenous to Australia.

Therefore, all kangaroos are indigenous to Australia.
And

All known moons and planets in our solar system orbit in the same 
direction as Earth.

Therefore, all moons and planets in our solar system orbit in the 
same direction as Earth.

The pattern here is evident. For each restriction that we might contemplate on 
substitutions for A and B, it takes only a little imagination to find otherwise 
credible inferences arbitrarily blocked. We must abandon hope for an embel-
lished version of the schema that can serve universally.

3.3. Material Analysis
This failure should not make us pessimistic about the prospects of inductive 
inferences such as Curie’s. It is a vanity of inductive logicians to imagine that 
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Curie and Rutherford relied on the pronouncements of logicians in forming 
their inferences. Rather, Curie and Rutherford knew precisely which crystal-
lographic properties of radium chloride could enter into some-all inferences 
through a century of research in mineralogy on crystals.

Crystals grow in such a bewildering array of shapes that initially it was 
hard to see that any regularities could be found. If some crystalline sample of 
a mineral adopted a particular shape, then it would be extraordinary to find 
another sample with exactly that shape. The problem is reminiscent of the 
old saw that no two snowflakes are alike. The problems are similar. Which 
regularities can be found among snowflakes when they all differ?

 
Figure 1.1. Snowflakes; from Wilson A. Bentley, “Studies among the Snow 
Crystals during the Winter of 1901–2, with Additional Data Collected during 
Previous Winters,” Monthly Weather Review 30, no. 13 (1902): 607–16, Plate XIII

The answer is widely known and easily seen in Figure 1.1. Snowflakes all re-
flect the same regular hexagonal shape. More abstractly, they exhibit a dis-
crete rotational symmetry. The shapes map back into themselves if we rotate 
them by 60o.

Essentially, this is the regularity discovered during the nineteenth-century 
investigation of crystalline forms but promoted from the two-dimensional 
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forms of snowflakes to the three-dimensional forms of most other crystals. 
Snowflakes are built around one shape, the regular hexagon. The more gener-
al three-dimensional theory, however, calls for six5 crystallographic systems, 
each with its own fundamental form and symmetries. The most familiar 
system is the “cubic” system to which sodium chloride, common table salt, 
belongs. This membership does not mean that all of the crystals of common 
table salt are just little cubes. Rather, it means that all of them are derived 
by geometric operations from the basic cubical form, just as all snowflakes 
derive from the regular hexagon.

By Curie’s time, it was a standard result that each crystalline substance 
generally belongs to a unique crystallographic system. The complication 
that underwrites the “generally” is that some crystalline substances mani-
fest dimorphism or polymorphism. They might crystallize under different 
conditions into two (“di-”) or more (“poly-”) systems. This generally regu-
lar association of crystalline substances with one of the six systems is the 
material fact that warranted Curie’s inference. If Curie could identify the 
crystallographic system to which one sample of radium chloride belongs, 
then she could infer the crystallographic system of all samples of radium 
chloride. I distinguish this warranting fact (Norton 2021, 43) as a princi-
ple named after René Juste Haüy, an early-nineteenth-century founder of 
crystallography: “(Weakened Haüy’s Principle) Generally, each crystalline 
substance has a single characteristic crystallographic form.” The “generally” 
that weakens the principle ensures that Curie’s inference is inductive. Curie 
took the inductive risk of assuming no polymorphism for radium chloride.

She did not mention by name the monoclinic system to which radium 
chloride belongs. Rather, she used an indirect locution: radium chloride crys-
tallizes as does barium chloride. That is, the system to which radium chlor-
ide belongs is the same as that to which barium chloride belongs. That they 
should belong to the same system is plausible since the two salts are very 
similar in their chemical properties, and such similarities often manifest in 
crystallographic similarities.

What initially appeared as a simple enumerative induction by Curie can 
now be seen as something richer. The specific generalization that she made on 
the crystalline form of radium chloride was informed by and warranted by 

5	 So was the count in Curie’s time as provided by Miers (1902, 38).
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facts uncovered in a century of research in mineralogy. That research solved 
the difficult and delicate problem of just which properties of crystals can be 
generalized in a some-all inference. The warranting fact of the Weakened 
Haüy’s Principle rested in turn on a considerable amount of science. It ex-
ploited the atomic theory of matter in picturing crystals as atoms arranged 
in regular lattices and the mathematics of group theory in discerning how 
spatial symmetries led specifically to the different crystallographic families. 
Curie’s inference was grounded not in any abstract logical schema but in a 
considerable range of scientific facts.

4. Analogy
Reasoning by analogy, like enumerative induction, is a long-recognized form 
of inductive generalization. It, too, was recounted by Aristotle. It asserts in 
its simplest form that, when some system with property P also has property 
Q, this particular fact can be taken as an instance of the generalization that 
other systems with a similar property P will also have a similar property Q. 
The difficulties that analogical reasoning faces are similar to those faced by 
enumerative induction. Simple schemas for analogical reasoning are not ser-
viceable. A bare schema is too permissive in part through its simplicity and in 
part through the vagueness of essential terms such as “similar.” The obvious 
repair is to strengthen the schema by careful elaborations, tuned to canon-
ical examples of analogical inference. The results, however, are schemas of 
increasing complexity that still turn out to be prone to the same troubles. That 
this should happen is predicted by the material approach. According to it, 
the best that we can have are different schemas that succeed only in different, 
factually delimited domains. There is no way to synthesize them into a single 
coherent schema that applies universally.6

There is a curious difference in how philosophers approach analogy and 
how scientists do. Philosophers treat analogy as a form of inductive infer-
ence, and they seek the general rules governing it. Scientists treat analogies 
as facts that lead to useful results. For them, an analogy itself is an empirical 
matter subject to normal scientific investigation. If one thinks formally about 
inductive inference, then this difference is puzzling. It makes perfect sense, 

6	 Here I discount the trivializing device of simply taking a huge, and likely infinite, 
disjunction of all the distinct locally applicable schemas and offering it as a single schema.
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however, if one approaches inductive inference materially, for the scientists’ 
factual analogy is the material fact that warrants the analogical inference.

4.1. The Bare Formal Schema
In his logical treatise, Joyce (1936, 260) gives a standard schema for analogical 
inference in its bare form:

S1 is P.

S2 resembles S1 in being M.

[Therefore,] S2 is P.

This schema fits many inferences in science. In the eighteenth century, it was 
noted that electricity resembled gravity in manifesting as a force between 
bodies that diminishes with distance. The analogy supported the conclusion 
that electrical forces like gravitational forces diminish with the inverse square 
of distance. This conclusion was experimentally affirmed by Coulomb.

As with the simple schema for enumerative induction, this bare analogic-
al schema returns good results only when one makes careful substitutions. 
With little effort, one finds many examples of failed analogical inference. 
Heat flows like a conserved fluid from hot to cold; however, contrary to the 
eighteenth-century supposition of the caloric fluid, it is not conserved and 
not a fluid substance. Perhaps the most famous analogical failure concerns 
whales. They resemble fish in swimming in the oceans. However, since they 
are mammals, they neither breathe with gills nor lay eggs, as do fish.

As with enumerative induction, there is a long-standing tradition of 
deprecation of analogical inference, complete with sage warnings of the dan-
gers of false analogies. Here is one example:

Even the most successful analogies in the history of science 
break down at some point. Analogies are a valuable guide as to 
what facts we may expect, but are never final evidence as to what 
we shall discover. A guide whose reliability is certain to give out 
at some point must obviously be accepted with caution. We can 
never feel certain of a conclusion which rests only on analogy, 
and we must always look for more direct proof. Also we must 
examine all our methods of thought carefully, because thinking 
by analogy is much more extensive than many of us are inclined 
to suppose. (Thouless 1953, Chapter 12, 91)
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4.2. The Two-Dimensional Model
If one thinks formally about analogical inference, then the remedy is to em-
bellish the bare schema in a way that will exclude the plethora of trouble-
some counterexamples. The dominant approach in the literature develops a 
two-dimensional account, so named by me because it lends itself to display 
in a two-dimensional array. It draws from Keynes’ (1921, Chapter 19) notion 
of “positive analogy” and “negative analogy” and was developed by Hesse 
(1966). The account uses these notions to support inferences about a target 
system through its analogical relations with a suitable source system. It can 
be represented in a general tabular schema, provided by Bartha (2010, 15):

Source Target

P P* (positive analogy)

A
~B

~A*
B* (negative analogy)

Q

Q* (plausibly)

The goal is to infer some as yet unaffirmed property Q* of the target that 
corresponds with some property Q of the source. Whether we can do this is 
decided by the relative strengths of the positive and negative analogies. The 
positive analogy lies in properties P and P* of source and target agreeing. 
The negative analogy lies in the source exhibiting property A but the target 
lacking the analogous property A* and conversely with properties B and B*.

Properties P and Q of the source stand in some relation, which might be 
causal, explanatory, or something else. If the strength of the positive analogy 
outweighs the strength of the negative analogy, then that relation can be car-
ried over to the analogous properties P* and Q* of the target. We can then 
affirm that the target system does indeed carry the property Q*.

Although the bare schema has been enriched considerably, this tabu-
lar schema still falls well short of what is needed in a formal account that 
mechanically can separate the good from the bad analogical reasoning, the 
true from the false analogy. Rather, it still relies throughout on users of the 
schema just knowing intuitively when certain relations obtain. They are not 
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given formal specifications that can be applied unambiguously. In the case 
of the relations laid out vertically in the table, just what is it to be a causal or 
explanatory relation between P and Q? And which other relations are admis-
sible? The horizontal relations between P and P*, between A and A*, and so 
on, are relations of similarity. In formal terms, when are two properties simi-
lar? Finally, and most troublesome, how are we to assess the relative strengths 
of the positive and negative analogies? That balance decides whether we have 
a true or false analogy overall. These incompletenesses leave sufficient room 
for us to continue concocting dubious inferences that nonetheless conform to 
the explicit conditions of the schema.

Joyce’s (1936) bare schema for analogical reasoning contained just one 
term — “resembles” — in need of external, formal specification. In an effort to 
resolve the bare schema’s problems, the two-dimensional account has intro-
duced many more terms and notions. Each in turn is in need of further formal 
specification. One might, as did Bartha, take this as a challenge to be resolved 
by still further elaboration. In this vein, Bartha’s (2010, Chapter 4) “articula-
tion model” adds considerably more structure to the two-dimensional model. 
The pattern already established continues. Each elaboration brings new con-
ceptions with it, and each such conception in turn requires a further formal 
specification.

There is considerably more detail in both Hesse’s (1966) two-dimensional 
model and Bartha’s (2010) articulation model than can be presented here. My 
best effort to provide a richer account of both is in Norton (2021, Chapter 
4). However, the overall trend is evident. Each effort to conform the schema 
better to good and bad examples requires an elaboration that employs new 
conceptions and artifices that in turn are in need of formal specification. 
Each effort to repair an inadequate schema does not solve the problems but 
multiplies it.

4.3. The Material Approach to Analogy
According to the material approach, this mode of failure is inevitable. Each 
analogical inference is warranted by particular facts peculiar to the domain 
of the inference. Resemblances among analogical inferences from different 
domains will be superficial. Efforts to modify a schema to cover more exam-
ples of analogical inferences will degenerate into a growing multiplicity of 
clauses, each responding to particulars of the new examples added. There will 
be no end to this growth since there will always be new examples.
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A material approach accommodates examples of analogical inference on 
a case-by-case basis. Whether the inference is good is determined by whether 
there is a background fact in the domain to warrant it. Such facts have an 
analogical character since they express similarities among systems. They are 
aptly named the “facts of analogy.” There is no requirement for an essential 
resemblance among different examples of analogical inferences that could be 
captured in a generally applicable formal schema. The different examples bear 
superficial resemblances only.

Failed analogical inferences arise when there is no suitable fact of an-
alogy. Relativity theory showed us that we should abandon the absoluteness 
of motion in favor of the relativity of inertial motion. By analogy, should we 
abandon the absoluteness of truth and of moral rectitude in favor of their 
relativity? The analogical argument fails since there is no fact of analogy 
connecting motion with truth and moral rectitude. The analogical inference 
attempted depends on a verbal coincidence in the repeated presence of the 
word absolute.

4.4. The Mountains on the Moon
Galileo’s ([1610] 1957) Siderius nuncius — the Starry Messenger — reports 
an extraordinary finding among his telescopic investigations of the heavens: 
there are mountains and seas on the Moon. The mountains become manifest 
when one tracks how the division between light and dark on the Moon grows 
in a waxing Moon. As the bright edge advances, bright points of light appear 
ahead of it, grow, and merge with the advancing edge. This is just how moun-
tains on the Earth are illuminated by a rising Sun. Similar observations and 
analogies support the presence of depressions or “seas” on the Moon.

Galileo’s analysis draws from an analogy between the Moon and the 
Earth. His inference fits the bare schema of analogical inference:

The Earth (S1) has mountains and seas (P).

The Moon (S1) resembles the Earth (S2) in that both show the same 
patterns of surface illumination (M).

Therefore, the Moon (S2) has mountains and seas (P).

The inadequacy of the schema as a warrant is easy to see. Nothing in the 
schema prevents us from replacing

P = “has mountains and seas”
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with

P = “has mountains with alpine ski resorts and water-filled  
seas with submarines.”

It is hard to imagine anyone endorsing the resulting inference to ski resorts 
and submarines on the Moon. The obvious objection is that the presence of 
ski resorts on earthly mountains plays no role in the formation of patterns of 
light and dark on the Earth. The analogical inference succeeds only insofar 
as it uses the right sort of connection between the “M” and the “P” of the 
schema. With that remark, we have introduced the fact of analogy that war-
rants the inference:

The process that produces the patterns of light and dark on the Moon 
is the same as the process that produces them on the Earth.

The similarity to the process on the Earth is inessential to the power of the 
fact to warrant the inference. What matters is that

The patterns of light and dark on the Moon are produced  
as shadows in rectilinearly propagating light by opaque bodies.

That is how the patterns on the Earth are produced. In principle, Galileo 
could proceed entirely by using this reduced form of the fact of analogy. He 
could demonstrate by some simple geometric constructions that lunar moun-
tains would illuminate in just the patterns that he observed. The Earth need 
never be mentioned. However, there was a shortcut. Galileo did not need to 
develop these constructions afresh for his readers. They were already familiar 
to earthbound observers who experienced a sunrise. It was a rapid expository 
convenience to recall that experience.

This development oversimplifies Galileo’s analysis in that this last war-
ranting fact in conjunction with his observations enables a deductive infer-
ence to the presence of mountains on the Moon. The inductive character of 
his investigation resides in an uncertainty over whether this warranting fact 
is true. We restore the inductive character of the analysis by inserting the 
word likely into the fact so that it merely asserts “are likely produced.” This 
reflects Galileo’s efforts to show that other possible accounts of the origin of 
the patterns of light and dark are unlikely.7

7	 For further discussion, see Norton (2021, Chapter 4, Section 8).
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5. Hypothetical Induction

5.1. Saving the Appearances
Enumerative induction and analogical reasoning are forms of inductive gen-
eralization: we infer from an instance to the generalization. The weakness of 
this form of inductive inference is that the generalizations are most naturally 
expressed in the same vocabulary as the instances. That makes it difficult to 
infer from evidence to hypotheses formulated with a different vocabulary.8

Another form of inductive inference that I have called “hypothetical 
induction” is free from this limitation. According to it, the fact that some 
hypothesis with suitable adjuncts entails true evidence is a mark of the truth 
of the hypothesis itself. This form of inductive inference has long been used 
in science. In ancient Greek astronomy, “saving of the appearances” meant 
having hypotheses about the motions of celestial bodies whose observable 
consequences match and correctly predict what is seen in celestial motions. 
The Copernican planetary system used the astonishing hypothesis of the 
motion of the Earth to save the appearances of the motions of the planets. 
This, according to the Copernicans, indicated its truth. Critics of this conclu-
sion, such as Osiander, writing in a preface to Copernicus’ work, urged that it 
merely shows the pragmatic utility of the hypothesis, not its truth.

As scientific theories became more remote from the evidence that  
supports them, the need for something stronger than mere inductive gen-
eralization grew. It was inescapable by the time of Einstein’s general theory 
of relativity. The planetary motions that provide evidence for the theory 
are expressed in the vocabulary of observational astronomers. It is remote 
from the vocabulary used to express the core statements of Einstein’s theory: 
metrical and stress-energy tensors, Christoffel symbols, and Riemann’s four 
index symbols (now the curvature tensor). In November 1915, a jubilant 
Einstein reported the success of his theory with the long-standing astro-
nomical anomaly in the perihelion motion of Mercury. That anomalous 
motion could be deduced within his theory. It was, to use his term in 1915, 
“explained.” 9 There was no generalization from an instance. Einstein’s new 

8	 It is difficult, but not impossible, as a survey shows (Norton 2005).
9	 The title of Einstein’s (1915) paper translates to “Explanation of the Perihelion Motion 

of Mercury by the General Theory of Relativity.”
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theory saved the appearances, and that was enough to make it one of the 
revered evidential coups of the twentieth century.

5.2. Limitations of Hypothetical Induction
The strength of hypothetical induction is that it can lead to the confirmation 
of hypotheses remote from the evidence. That is also its weakness. It can lead 
to the confirmation of too much. We can keep adding as many epicycles and 
other devices as we wish to Ptolemy’s geocentric system. Do it cleverly enough 
and we create a suitably adjusted version that can also save the appearances 
of planetary motion just as well as Copernicus’ heliocentric system. Indeed, 
so too can a Ptolemaic geocentric cosmology, larded with fanciful crystalline 
spheres, each powered in its rotation by angels. Does that fanciful hypothesis 
also earn a mark of truth? If saving the appearances is all that matters, then 
we must answer yes.

The near-universal response is that merely saving the appearances is too 
permissive. They must be saved in the right way. Selecting this “right way” 
becomes almost the full substance of the rescued account. Otherwise, the ap-
pearances A are saved by every proposition of the form A&X, in which X can 
be anything at all. The “right way” is what selects, among this overwhelm-
ing infinity of possibilities, just which is best favored by the evidence of the 
appearance.

A leading candidate is the requirement that the hypothesis must not 
merely entail the appearances but must also explain them. This notion is the 
basis of abduction or “inference to the best explanation.”10 It was, according 
to this account, what distinguished Einstein’s treatment of the anomalous 
motion of Mercury from mere saving the appearances. His theory explained 
them. As my survey (Norton 2005) recounts, there are other candidates for 
this “right way” promoted in different sectors of the literature. I will pur-
sue just one here. It is that the favored hypothesis is the one that saves the 
appearances in a simple and harmonious way.

10	 Providing a material explication of inference to best explanation is difficult. There 
are many notions of explanation, so the approach is not univocal. My best efforts are given in 
Norton (2021, Chapters 8–9). Successful inferences to the best explanations do not draw from any 
special inductive power of explanation. Rather, their success comes from deprecating alternatives 
to the favored hypothesis, either as inconsistent with the evidence or as taking on undischarged 
evidential debts.
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One of Copernicus’ arguments for his system was based on considera-
tions of simplicity mixed with esthetics. In his preface to On the Revolutions 
of the Heavenly Spheres, Copernicus censured the Ptolemaic geocentric cos-
mology as monstrous:

[The geocentric astronomers’] experience was just like some 
one taking from various places hands, feet, a head, and other 
pieces, very well depicted, it may be, but not for the representa-
tion of a single person; since these fragments would not belong 
to one another at all, a monster rather than a man would be 
put together from them. ([1543] 1992, 4)

A little later Copernicus exulted in the harmony of his heliocentric system:

In this arrangement, therefore, we discover a marvelous sym-
metry of the universe, and an established harmonious linkage 
between the motion of the spheres and their size, such as can 
be found in no other way. (9)

His foremost proponent and expositor, Galileo, pointed directly to simplicity 
as the guide to probability in his Dialogue Concerning the Two Chief World 
Systems ([1632] 1967). Having reviewed the virtues of the Copernican system, 
Salviati reached a triumphant conclusion:

See also what great simplicity is to be found in this rough 
sketch, yielding the reasons for so many weighty phenomena 
in the heavenly bodies. (327)

Sagredo immediately summarized Salviati’s logic:

I see this very well indeed. But just as you deduce from this 
simplicity a large probability of truth in this system, others may 
on the contrary make the opposite deduction from it. (327; my 
emphasis).

Needless to say, Salviati proceeded to offer a devastating criticism bordering 
on cruelty of those who resisted his deductions.
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6. Simplicity 11

6.1. Principles of Parsimony
Invocations of simplicity are so common that we might barely be aware of 
how frequently they smooth the passage of our inductive inferences. We ask 
how a variable T is related to a variable t. We collect measurements and find 
that the measured T values increase linearly with the t values, near enough. 
We infer without apology to a linear relationship between T and t. The move 
is rarely challenged. If it is, then who could resist an impatient retort: “It’s the 
simplest. What else could it be?” This instinctive retreat to simplicity falls 
short of what is needed if we seek explicit principles that separate the licit 
from the illicit inductive inferences. Merely being told to choose the simplest 
is empty without some specification of which is the simpler. And it has no 
inductive force unless some basis is provided for why that choice does lead to 
licit inferences.

When explicit statements of a governing principle of parsimony are re-
quired, perhaps the most commonly invoked is “Ockham’s razor.” It is usual-
ly reported as

Entia non sunt multiplicanda praeter necessitatem. 
Entities must not be multiplied beyond necessity.12

Edifying as William of Ockham’s sentiment is, we might worry that it was 
merely the abstract speculation of a scholar who himself did not use it in 
any major scientific discovery. We can have no similar hesitation about a for-
mulation by Isaac Newton, surely one of the most accomplished scientists of 
all eras. In composing his magisterial Principia, he declared a principle of 
parsimony that would then be used in the development of his “System of the 
World.” Book III of this work introduces “Rules for Reasoning in Philosophy.” 
The first is a principle of parsimony:

Rule I

We are to admit no more causes of natural things than such as 
are both true and sufficient to explain their appearances.

11	 The analysis in this section is developed in greater detail in Norton (2021, Chapter 6).
12	 William of Ockham’s original wording differed but conveyed essentially the same 

sentiment.
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To this purpose the philosophers say that Nature does nothing 
in vain, and more is in vain when less will serve; for Nature is 
pleased with simplicity, and affects not the pomp of superflu-
ous causes. (Newton [1726] 1962, 398)

What are we to make of principles such as these? We cannot find much 
fault in them as pieces of homely advice. We might lighten the work of our 
inferential quests if we check the easy options first. However, that practicality 
falls short of what is needed if the principle is to be a guide to the truth. The 
facts of the world feel no obligation to conform themselves to what is prag-
matically convenient for us. To serve as this guide, the principle must express 
some fundamental fact about the world: the simpler is more likely true since 
nature is simple. And it must do it in an unambiguous manner so that it can 
be applied unambiguously.

These principles fail to meet both requirements. First, as a factual matter, 
often nature is not pleased with simplicity and can employ a multiplicity of 
entities or causes. For millennia, traditional matter theories favored less to 
their detriment. The ancient Greeks presumed four elements: earth, air, fire, 
and water. The later alchemists presumed fewer still: mercury, sulphur, and 
salt. As long as the element count was this small, there was little possibility of 
a serviceable chemistry. Matters were rectified only when Antoine Lavoisier 
proposed thirty-three elements in his Elements of Chemistry ([1789] 1965, 
175–76, “Table of Simple Substances”). That set us toward the modern count 
that exceeds ninety elements. Even with this count secured, there are fur-
ther multiplicities. All instances of each element are alike chemically. Thus, 
parsimony would tell us that carbon is made of entities all of the same type. 
However, not all carbon is the same. It manifests in physically distinct but 
chemically identical isotopes: 12C, 13C, and 14C.

Second, these proclamations are too ambiguous to be serviceable since 
they provide no definite means of counting causes and entities. Is the gravi-
tational force of the Sun one cause because it is the force exerted by one large 
object? Or are there many causes, one for each gravitational force exerted 
by each atom of the Sun? Is the designer god, against whom Darwin railed, 
one cause of the many adaptations of living things? Or do we count each 
individual design decision as a separate cause? Do we understand the electric 
force of attraction between bodies as an action at a distance effect? Or is it an 
interaction mediated by an electric field? In one way of counting, the action 
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at a distance theory posits fewer entities. It posits electric charges only. The 
field view posits these charges and adds the mediating field. In another way 
of counting, the numbers reverse. If we consider the electric force on some 
particular body, then the field view attributes it to one thing, the surrounding 
electric field. The action at a distance account, however, presents the force as 
the sum of all forces exerted by all of the many charges in the universe.

There is a further ambiguity. We should not multiply entities “beyond 
necessity.” We should admit no more causes than “are both true and suffi-
cient to explain the . . . appearances [of natural things].” Although we might 
have some intuitive notions of the key terms “necessity” and “explain,” the 
principles are not objective rules until these terms are given unambiguous 
meanings. Until then, one person’s necessity might be another’s superfluity.

6.2. Simplicity as a Surrogate
We face a familiar problem. Common inductive practice routinely employs 
appeals to simplicity. Yet we cannot articulate an explicit principle on which 
this practice can rely. From the perspective of the material theory of induc-
tion, this failure is inevitable. It asserts that there can be no such universally 
applicable principle of inductive inference.

Understood materially, inductively efficacious appeals to simplicity are 
always indirect appeals to further inductive inferences. Sometimes these fur-
ther inductive inferences are sufficiently convoluted that a proclamation of 
simplicity is a convenient way of avoiding a convoluted narrative or of sum-
marizing one just given. We shall see below that this is the real basis of the 
Copernicans’ appeal to simplicity. In the most straightforward cases, appeals 
to simplicity are merely veiled appeals to specific background facts that pro-
vide the warrants for the inductive inferences at issue. We shall also see below 
that this is the basis of appeals to simplicity in curve fitting.

Simplicity is a surrogate for further inductive inferences. Appeals to sim-
plicity are otherwise so varied in their details that material analysis cannot 
supply a more specific characterization.

The material approach resolves some of the ambiguity in Ockham’s 
razor. His “necessity” makes sense as a veiled reference to something in-
ductive: we should not infer to more entities than those to which we are 
authorized inductively by the evidence. Similarly, Newton’s rule limits caus-
es to those sufficient to explain the appearances. If we understand explana-
tion in the abductive tradition, the minimal causes sufficient to explain the 
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appearances are just those to which we should infer inductively as the best 
explanation. In both cases, the principles of parsimony amount to a simple 
assertion: infer only to what the evidence permits. Do not go beyond it. This 
assertion is merely a truism of inductive inference. It is a good practice to 
follow. The truism replaces and can contradict an independent principle of 
parsimony. The evidence might well require us to adopt something far from 
simple. Our best model of particle physics, the standard model, has nineteen 
independent constants.

6.3. Curves, Tides, and Comets
The most straightforward and most familiar appeal to simplicity arises in 
curve fitting. We plot measured data points for two variables x and y and then 
seek the curve that fits them best. Routinely, the curves explored are given by 
polynomial functions y of x:

linear, quadratic, cubic, quartic, . . . ,

where the functions become less simple as we proceed up the list, in the sense 
that their definitions require more independent parameters.

The familiar difficulty is that we can always secure a better fit to the data 
by employing functions further up this list. At some point, inevitably, our 
curve fit is merely accommodating noise in the data. We are overfitting. The 
familiar solution is that we forgo some accuracy of fit by choosing a function 
earlier in the list, usually guided by some explicit statistical criterion. This 
decision is conceived as balancing accuracy against simplicity.

This description of a familiar inductive practice makes no explicit refer-
ence to any particular case. It appears to implement some sort of universal 
inductive rule grounded in simplicity. This appearance is an illusion, how-
ever. Without a context, the above prescription gives incoherent results. We 
can represent the same data by transformed variables such that the results 
of the analysis of the transformed problem contradict those of the original 
problem. For example,13 we can replace x in the data set with another variable, 
z = sin–1(x), and then proceed as before. If we found in the first problem that 
the simple linear function y = x is the curve of best fit, then that function in 
the second problem is y = sin(z). It is not to be found anywhere among the 

13	 I give a quantitative illustration of this example in Norton (2021, Chapter 6).
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finite order polynomial functions y of z since it corresponds to an infinite 
order polynomial:

y = sin(z) = z – (1/3!)z3 + (1/5!)z5 – (1/7!)z7 + . . .

The standard procedures will never find this infinite order polynomial, for 
inevitably a procedure will halt at some finite polynomial.

The material theory of induction offers a straightforward escape. The de-
cision on which is the right variable — x or z — is determined by the particu-
lar facts of the case at hand. Indeed, the entirety of the analysis is governed 
by these facts, and they make the determination without resorting to an in-
dependent principle of parsimony. These facts control even the most basic 
supposition of whether it makes sense to seek a curve of best fit at all. Take the 
example of the variables T and t mentioned above. Suppose that T is the air 
temperature taken at times t that happen to coincide with midday over a week 
or two in the spring. This T might increase linearly with t. A curve of best fit 
would interpolate linearly between the successive temperature measurements 
and give us incorrect results for times t corresponding to the intervening 
midnights.

Along with the choice of variables, these facts must specify the list of 
functions to be used in the curve-fitting procedure. The family chosen must 
be such that we should expect the true curve to lie earlier in the list. These 
curve-fitting procedures also depend on a statistical model of the errors con-
founding the data. A common model assumes independent, normally dis-
tributed errors. Any such model is applicable only insofar as it reflects the 
conditions prevailing factually in the case at hand.

Comet hunting, at least as practiced in the nineteenth century, gives a 
simple example of how the background facts provide the list of functions to 
be used in curve fitting.14 Newtonian mechanics tells us that the trajectory of a 
comet is a conic section: an ellipse, a hyperbola, or the intermediate parabola. 
Since the background facts tell us that comets tend to have highly eccentric 
trajectories, it is hard to distinguish whether they are ellipses or hyperbolas. 
So the first curve fitted is the intermediate parabola. Then, if the fit is poor, 
the next curve fitted is an ellipse. It is chosen since an ellipse is the trajectory 
of comets gravitationally bound to our Sun. Such comets return regularly and 

14	 I develop in greater detail this example and the example of tidal prediction in Norton 
(2021, Chapter 6).
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are more likely to be encountered by us. Should the ellipse not fit, the comet 
hunter finally reverts to a hyperbola, the trajectory of a comet that will visit 
us just once.

Although polynomials are familiar in curve fitting, they are inappropriate 
for systems with periodic behaviors, such as tides at various coastal locations. 
Since these tides are periodic, one might expect that the appropriate func-
tions of time t are just sin(t) and cos(t) and their harmonics, sin(2t), sin(3t), . . 
. , cos(2t), cos(3t), . . . We know from the theory of Fourier analysis that linear 
combinations of these harmonics will return even the most complicated of the 
possible periodic tidal motions. This expectation underestimates how strong-
ly background facts control the choice of functions fitted to tidal data in the 
actual practice of tide prediction. The functions routinely fitted to tidal data 
consist of a sum of harmonics, each with an identifiable physical basis in the 
background facts. The most important harmonic constituent is the “principal 
lunar semidiurnal M2” that arises from the tidal bulge raised by the Moon. 
The next most important is the “principal solar semidiurnal S2” that arises 
from the lesser tidal bulge raised by the Sun. These two harmonic constitu-
ents are just the first of many. In the nineteenth century, William Thomson, 
who initiated this form of analysis, employed twenty-three constituents, each 
with a physical basis. For tidal predictions in US coastal regions, the United 
States National Oceanic and Atmospheric Administration expanded this set 
to a standard set of thirty-seven constituents. Difficult locations might re-
quire over a hundred constituents.

6.4. Ptolemy and Copernicus Understood Materially
The Copernican heliocentric system is favored inductively over the Ptolemaic 
geocentric system. That favoring is not secured, however, by a factual simpli-
city of the world. Whatever the simple merits of the geometry of Copernican 
astronomy, they must be balanced against something far from simple. It re-
quires a sixteenth-century natural philosopher to accept that, contrary to all 
appearances, the Earth spins on its axis and careens through space around 
the Sun. Making sense of that — dare I say — is no simple matter.

Providing a proper foundation for the invisibility of this compound mo-
tion required the creation of a new science of dynamics in over a century 
of work by Galileo, Newton, and others. Until this dynamical problem was 
solved, Tycho Brahe’s astronomical system was momentarily a credible com-
promise. In it, the planets orbit the Sun, and the Sun orbits the Earth, carrying 
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the planets with it. This compromise keeps all of the geometric advantages of 
the Copernican system while avoiding its dynamical drawbacks. Although 
in some informal sense Brahe traded simplicity and complexity, there was no 
formal scheme balancing them, and there was no appeal to a fact of simplicity 
of the world whose import was unambiguous. Other natural philosophers 
such as Galileo found a different balance. Brahe was merely seeking an ac-
count that fit best with his background facts: the appearance of the motions 
and the appearance of a resting Earth.

Nonetheless, the Copernicans indicated correctly an evidential superior-
ity of the Copernican heliocentric system over the Ptolemaic geocentric 
system as far as purely astronomical considerations were concerned. If we 
view the comparison materially, then we find that the individual elements 
of the Copernican system were better supported evidentially than those of 
the Ptolemaic system. The background assumption that warrants inferences 
in the Ptolemaic system is that, qualitatively, the retrograde motion of the 
planets is explained in each case by an epicycle-deferent construction. The 
corresponding inferences in the Copernican system are warranted by the as-
sumption that the planets maintain roughly circular obits but that the retro-
grade motion of the planets arises from an imposition of the motion of the 
Earth on them.

In the Copernican system, the appearances of planetary motions then 
fix many of the details. Corresponding details must be set by independent 
stipulation in the Ptolemaic system. The relative sizes of the planetary orbits 
are fixed in the Copernican system, but these sizes must be set by independ-
ent stipulation in the Ptolemaic system.15 In the Copernican system, there are 
only two possibilities for planets: either their mean positions align with the 
Sun and their retrograde motions carry them to and fro across the Sun, or 
they exhibit retrograde motions only when in opposition to the Sun. This con-
forms to the appearances. The Ptolemaic system can make no corresponding 
assurance. This conformity must be built in by independent supposition for 
each planet. These and more differences give the Copernican system a strong 
evidential advantage.

These last remarks are merely a sketch of a lengthy and complicated 
collection of inferences demonstrating the evidential superiority of the 

15	 For an extended account, see Chapter 12 of this volume, “The Use of Hypotheses in 
Determining Distances in Our Planetary System.”
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Copernican system. Laying it out in detail is challenging, especially if one is 
engaged in polemics. There the rhetoric calls for a compelling synopsis. How 
better to convey the Copernican advantage than by pointing to its simplicity 
and harmony compared with the Ptolemaic system? Yet it is simpler only in 
requiring fewer independent posits and more harmonious in that the deter-
mination of some features necessitates others. There is no manifestation of a 
deeper principle of parsimony in nature.

7. Bayes

7.1. The Problem
The forms of inductive inference examined so far have been qualitative. If the 
Copernican system is better supported by the astronomical evidence than the 
Ptolemaic system because it requires fewer independent assumptions, then 
just how much better is that support? Merely “much better” might be all that 
we can say. To many, that will fall short of what is wanted. Can we not meas-
ure support quantitatively? And, if we can, then might questions of strength 
of support be reduced to objective computations?

This is the promise of Bayesian analysis. The founding tenet of objective 
Bayesianism is that degrees of inductive support are measured by conditional 
probabilities. A typical analysis begins with some prior probability distri-
bution, which represents the support accrued by some hypothesis prior to 
inclusion of the evidence at issue. The import of the evidence on the induct-
ive support of the hypothesis is found by conditionalizing on the evidence, 
usually through Bayes’ theorem, to form the posterior probability. There is no 
need, I hope, to elaborate since, of all schemes in the modern literature, this 
one is now best known.

The difficulty with the Bayesian system is that it is too precise and ir-
remediably so. There will be cases in which degrees of support can be repre-
sented responsibly by probabilities. They arise in narrowly prescribed prob-
lems. For example, since we can recover population frequencies for vari-
ous genes, we can ask what is the probability that this sample of DNA was 
drawn from some donor randomly selected from the population? However, 
evidential questions of a more foundational character are rarely given to 
us in a context rich in probabilities. Insisting on a Bayesian analysis can be 
satisfying, then, in the sense that we replace vague notions of strength of 
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support with precise, numerical probabilities. However, the impression of 
progress is an illusion. The prized numerical precision has been introduced 
by our own assumptions that do not reflect a corresponding precision in the 
system investigated. We risk mistaking our manufactured precision for that 
of the world.

The standard view of a Bayesian account is that probabilities are supplied 
by default and in abundance. The material approach reverses this. According 
to it, we are not authorized to supply any probabilities by default. Probabilities 
can be introduced only when the background facts warrant them, and a thor-
ough analysis displays the pertinent warrants. Adopting that new default 
protects us from the spurious precision that troubles so much of Bayesian 
analysis. We can introduce precise probabilities only if the precision of the 
facts of the context allows them. To do otherwise is to risk asserting results 
that are merely artifacts of applying an inductive logic ill suited to the prob-
lem at hand.16

7.2. Sunrises and Laplace’s Rule of Succession
The problem of spurious precision has been with Bayesian analysis from the 
outset. It can already be seen in one of the earliest Bayesian analyses. Laplace 
asked about the probability that the Sun will rise tomorrow morning given 
the past history of sunrises. This was already an established question. Before 
him, Hume had urged that our past history of sunrises gives no assurance of 
future sunrises. Richard Price, the author of an appendix to Bayes’ posthu-
mously published paper, used Bayes’ inverse method to compute the odds of 
a future sunrise.17 Laplace would now give his application of the probability 
calculus to the problem. His analysis in 1814 (1902, 19) is a celebrated appli-
cation of his “rule of succession.” To put some formulae on his nonsymbolic 
narrative, the analysis depended on several assumptions. We assign a prob-
ability q to the rising of the Sun.

			              P(rising) = q                                                     (1)

16	 In Norton (2021, Chapter 10, Section 4), I give examples of such spurious results in the 
form of the inductive disjunctive fallacy (“Why is there something rather than nothing?”) and the 
lamentable doomsday argument.

17	 For more on Hume and Price, see Chapter 6 of this volume; also see Zabell (1989) for 
more on the history of the rule of succession.
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Antecedent to all evidence of any sunrises, we allow that q can have any value 
from 0 to 1. We represent that latitude by assigning a uniform probability 
density p to the interval. That is,18

			   p(q) = 1     for 0 ≤ q ≤ 1                                             (2)

Next Laplace assumed that the individual occurrences or otherwise of a sun-
rise are probabilistically independent events. These assumptions were suffi-
cient to enable him to compute the probability of a sunrise on the (n+1)th 
occasion given a history of s risings on n past occasions:19

P((n + 1)th rising | s risings on n past occasions) = (s + 1)/(n + 2)          (3)

If the Sun rose on all past n occasions, then the rule of succession gives us

P((n + 1)th rising | n risings on n past occasions) = (n + 1)/(n + 2)         (4)

The more sunrises we see, the better supported evidentially is the next sun-
rise. Its probability approaches one arbitrarily closely with enough risings. 
Laplace immediately translated this probability into a wager: “Placing the 
most ancient epoch of history at five thousand years ago, or at 182623 days, 
and the Sun having risen constantly in the interval at each revolution of 
twenty-four hours, it is a bet of 1826214 to one that it will rise again to-mor-
row” (1902, 19).20

7.3. What Is Wrong with Laplace’s Analysis?
This precise quantitative result and its operationalization in a bet are mo-
mentarily satisfying and perhaps even thrilling, if numerical precision is the 
goal. Yet another moment of reflection reveals that the precision attained is 
fabricated and fanciful. There are two problems (which I will address in the 
next two sections).

•	 First, the impression of recovery of a result of some generality 
is illusory.

18	 Lest it pass unnoticed, the probability P and probability density p are distinct and 
should not be conflated.

19	 See the appendix to this chapter for a summary of the computation.
20	 The computation of the number of days in 5,000 years as 182,623 is an obvious error, 

too low by a factor of ten, for 5,000 x 365 = 1,825,000 days or 5,000 x 365.2422 = 1,826,211 days, 
depending on how one counts days in the year. The odds reported by Laplace of 1,826,214 to 1 
indicate that his real estimate of the number of days in 5,000 years is 1,826,213. The erroneous 
number 182,623 results from dropping the tens digit one.
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•	 Second, a probabilistic analysis is the wrong analysis for the 
problem as actually posed by Laplace.

I have chosen his analysis for scrutiny here since its simplicity enables us to see 
both problems quickly. We might imagine the development of the Bayesian 
approach after Laplace has addressed and resolved these problems. To some 
extent, this has happened. Where these problems persist most notably, how-
ever, is in Bayesian analyses in the philosophy of science. There these meth-
ods are routinely applied to problems with vague specifications. The goal is 
to supplant their vagueness with mathematical precision. This laudable goal, 
however, can be achieved only by imposing assumptions whose precision is 
unwarranted by the problems posed. As with Laplace’s sunrises, the precision 
of the ensuing analysis is an illusion of our own manufacture.

7.4. The Failure of Generality
Laplace’s “rule of succession” is presented with a suggestion of some sort of 
general applicability. Perhaps it is a general demonstration that probabilistic 
analysis defeats Hume’s skeptical challenge to inductive inference. Although 
the application to sunrises specifically is far-fetched, perhaps it shows that 
probabilistic analysis can solve the sort of inductive problems that Hume 
identified as insoluble. Or perhaps more modestly it is, at least in simple cases, 
a convenient starting point for how we are to think of projecting a record of 
successes and failures inductively into the future.

From the perspective of the material theory of induction, it does none of 
these. It is a theorem in probability theory, untroubling merely as a piece of 
mathematics. However, as an instance of inductive inference, it is untethered 
from real problems in the world. Any inductive rule, such as the rule of suc-
cession, can be applied to some particular problem only if the background 
facts of the domain warrant it. Without that tethering, it is just a piece of 
mathematics.

To which inductive problems can the rule be tethered? That is, which 
problems are such that their background facts warrant the rule? We find that 
there are very few, and they are artificial.21

21	 We might compare this rule with the ideal gas law in the thermodynamics of gases. It is 
derived from highly idealized assumptions. Unlike the rule of succession, the ideal gas law applies 
to a wide range of ordinary gases in ordinary circumstances.
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It is no surprise that the rule of succession fails for the real problem of 
sunrise prediction. The pertinent background facts are rich. Sunrises come 
about from the rotation of the Earth on its axis, and this rotation can be dis-
rupted only by the most cataclysmic of cosmic events. Absent such a cataclysm, 
successive sunrises are perfectly correlated; after such a cataclysm, successive 
failures of the Sun to rise are perfectly correlated. Laplace’s assumption of the 
probabilistic independence of each sunrise fails. If we are serious about pre-
dicting such a cataclysm from, say, an errant galactic body, then our analysis 
must ask about the distribution of such bodies in our neighborhood. What 
results has to be rich enough to provide a factual basis for any probabilities 
that might be assigned in predictions of cataclysmic collisions with the Earth.

Laplace had no illusion that his analysis was close to one that accommo-
dated what we know factually of sunrises. He continued the report on the bet 
quoted above by saying that “this number is incomparably greater for him 
who, recognizing in the totality of phenomena the principal regulator of days 
and seasons, sees that nothing at the present moment can arrest the course 
of it” (1902, 19). This does not appear to be a retraction of his analysis and 
merely might be a statement that it gives an excessively modest lower bound 
to the probability appropriate to our real epistemic situation.

If not sunrises, then might Laplace’s analysis apply to the expectation 
of live human awakening? Then biological facts as summarized in mortality 
tables provide the background facts needed to assess the probability of a hu-
man awakening tomorrow given some past history of awakenings. A twenty-
year-old male has a twenty-year history of successful awakenings. Mortality 
tables22 tell us that a male has a probability of 0.998827 of surviving the next 
year. Taking the approximation that the probability of a successful awakening 
each morning in the year is the same, the probability of success the next mor-
ning is 0.9988271/365 = 0.999996784. The same computation for a 100-year-
old female gives us a smaller probability of awakening the next morning as 
0.698451/365 = 0.99901722. These results differ from what an application of the 
rule of succession supplies. The rule gives an increase in the probability of 
awakening with age, not the decrease recovered from mortality tables.

These examples can be multiplied. Laplace’s analysis is almost never war-
ranted by background facts. Where does it apply? His own text shows us a 

22	 Provided by the US Social Security Administration at https://www.ssa.gov/oact/STATS/
table4c6.html.
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way. The problem of sunrises comes at the end of Chapter 3. Virtually all of 
the other examples in that chapter are of familiar games of chance and associ-
ated randomizers: the tossing of coins, the throwing of dice, and the drawing 
of black or white balls randomly from an urn. Consider this problem, which 
Laplace does not pose but is sufficiently rich in factual assumptions to war-
rant his rule:

An urn contains a very large number of coins, which are bi-
ased in all possible ways. The biases are uniformly distributed 
over all possible values: coins with a chance of heads q appear 
in the urn with the same frequency for all q in the entire range 
from 0 to 1. We select a coin at random from the urn.23 We toss 
it 1,826,213 times and find heads on every toss. What is the 
probability that the next toss is a heads?

It requires only a little reflection to see that all of the conditions for Laplace’s 
rule of succession are satisfied. The background facts warrant the application of 
the rule. It assures us that the odds of a head on the next toss are 1,826,214 to 1.

Laplace’s analysis illustrates a common problem with Bayesian analysis. 
It has a small repertoire of tractable templates. They include sampling prob-
lems, such as drawings from urns, and problems in games of chance, based on 
physical randomizers, such as thrown dice, shuffled cards, and tossed coins. 
The supposition is that these templates can be applied to problems that bear 
only superficial resemblance to the original problems of sampling or games 
of chance. This supposition mostly fails. Inductive problems in the real world 
— especially the more interesting ones — rarely are structurally like simple 
problems of sampling or games of chance.

7.5. Probabilities Are Inapplicable
Laplace’s mention of his analysis as applying to sunrises can and, indeed, 
should be taken only as a colorful embellishment intended to make an arid 
technical problem appear less dry, for the problem is posed by assumption 
in a factually barren landscape. The problem’s formulation fails to provide 

23	 I follow Laplace in overlooking the practical and principled difficulties of selecting 
randomly from an urn with an infinity (here uncountable) of balls or coins. A safer system spins a 
pointer on a dial to select a number randomly between 0 and 1. We then construct a coin with that 
number as its bias.
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the background facts required to warrant an inductive inference. To de-
scribe the problem as inferring from the evidence of 182,623 sunrises is 
misleading if taken seriously. Calling them “sunrises” triggers the sorts of 
background knowledge mentioned above that we are supposed to discount. 
Successive sunrises are strongly correlated, yet Laplace’s analysis makes 
them probabilistically independent. A better description might be a vaguer 
evidence statement:

We have 1,826,213 successes. Will the next occasion be a success?

The only answer is that we cannot say. The evidence is given in a vacuity of 
background facts. It supports no inductive inference. We need background 
facts on the nature of the occurrences to warrant an inductive inference. 
When they are supplied, we can determine just which inductive inferences 
are warranted. Which they are will vary from circumstance to circumstance. 
Laplace’s analysis will almost never apply.

If we persist in applying a Bayesian analysis and recover results of any 
strength, where none is warranted, then all we can conclude is that these re-
sults are artifacts of a misapplied inductive logic. Once we are alerted to the 
danger, it is easy to see how Bayesian analysis introduces factual presump-
tions under the guise of benign analytical machinery. The idea that the un-
specified occurrence can be represented by a probability distribution at all is 
an example. It commits us to factual restrictions that go beyond the factual 
barrenness presumed. To assign a middling value to the probability, P(rising) 
= q = 0.5, is not to be neutral. It is to say that, loosely speaking, in situations 
similar to that of the analysis, we should expect an occurrence in roughly half 
of them.

Then there is the attempt to represent the complete openness in which the 
value of q applies. Laplace did his best here by assuming a uniform probabil-
ity distribution (2) over q. This uniform distribution once again goes beyond 
the factual barrenness presumed, for that distribution makes many strong 
claims. It says that a value of q in the interval (0, 0.1) is as probable as a value 
of q in the interval (0.5, 0.6) but only half as probable as a value of q in the 
interval (0.5, 0.7). The interval (0, 0.99) is highly probable and its complement 
(0.99, 1.0) highly improbable. These are strong statements. The absence of 
background facts means that none of them is authorized.

The difficulty of representing evidential neutrality in a probabilistic an-
alysis is well known. Various techniques known as “imprecise probability” 
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can be used to ameliorate the failure of a uniform probability density to rep-
resent adequately a complete indifference over the values of the parameter 
q.24 In one approach, we replace the single prior probability density (2) over q 
by the set of all25 probability densities over the interval [0, 1]. When we apply 
the rule of succession, instead of recovering a single probability for the next 
occurrence, we recover a set of probabilities. In general, there is one for each 
of the probability densities in the set. That we admit all probability densities 
gives the appearance of the requisite independence from background facts. 
That appearance is illusory since we are still assuming that the probability 
calculus applies at all, even in weakened form. The introduction of this im-
precision is fatal, however, to the recovery of a nontrivial result. As we see in 
the appendix to this chapter, the set of all prior densities includes ones that 
lead to all possible probabilities from 0 to 1 for the next sunrise. We start as-
suming that this probability can lie anywhere between 0 and 1 and must end 
without any restriction on this range. We will have learned nothing from the 
evidence, no matter how extensive our history of sunrises.

7.6. Bayesian Analysis within the Material Theory of Induction
What are the prospects for Bayesian analysis from the perspective of the 
material theory of induction? Bayesian analyses can be applied profitably to 
many specific inductive problems. Given what we know about errant galac-
tic bodies, what should our expectations be for a cataclysmic collision with 
the Earth that will disrupt our sunrises? Given patients with such and such 
prognoses, what is their life expectancy? These and many more similar prob-
lems are all welcomed by the material theory of induction. In each case, there 
are identifiable background facts that warrant the application of a probabil-
istic analysis.

24	 Might we escape these problems by adopting subjective Bayesianism? Then the prior 
probability distribution is merely uninformed opinion and can be chosen freely as long as it 
preserves compatibility with the probability calculus. This popular approach has had a malign 
effect if one’s interest is inductive support and bearing of evidence. Once one allows opinion free 
admission into one’s system, it becomes very difficult to remove its taint from one’s judgments 
of inductive support. The limit theorems supposed to purge the subjectivity apply in limited, 
contrived circumstances that do not match the real practice of science.

25	 The scope of “all” is vague, but that vagueness is immaterial to the points made here.  
As a first pass, it designates all integrable functions with a unit norm.
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Where Bayesian analysis fails is that it cannot provide an all-embracing 
framework with formal rules applicable to all problems of inductive infer-
ence. It works well on specific problems where the background facts warrant 
it. But any claim of general applicability, such as is sought in the philosophy of 
science literature, requires that the framework must be applicable to induct-
ive problems whose background facts fail to authorize a probabilistic analysis. 
In these cases, persisting in applying a probabilistic analysis risks producing 
spurious results, artifacts of an inapplicable inductive logic.

8. Conclusion
In this chapter’s review of the material theory of induction, only particular 
instances of inductive inference have been discussed. In each case, the war-
rant for the inference is found in background facts. For the inference to be 
licit, these background facts must be truths. Since these facts make claims 
that commonly extend well beyond direct experience, we must ask what sup-
ports the truths of these background facts. The material theory of induction is 
uncompromising in its answer. The only way that these facts can be supported 
is by further inductive inferences, which in turn will require warrants in still 
further inductive inferences. How do all of these inferences fit together? That 
is the subject of this volume, and I take it up in the next chapter.

Appendix: Laplace’s Rule of Succession
Consider n + 1 probabilistically independent trials, each with a probability 
of success q, where q itself is uniformly distributed over the interval [0, 1] 
according to (2). If there are s successes only among the first n trials, then the 
probability of success on the (n + 1)th trial is given by

P = P(success on (n + 1)th trial | s successes in first n trials) 
=  P(success on (n + 1)th trial AND s successes in first n trials) /  
P(s successes in first n trials)

Since the number of successes s is binomially distributed, we have
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The integrals can be evaluated using the integral identity

								               (A1)

for whole numbers A and B. We recover

                  (2)

It is the rule of succession (2) of the text.
To show that alternatives to the prior probability distribution (1) can lead 

to P = r for any r between 0 and 1, consider the family of prior probability 
distributions:26

for A and B whole numbers. Repeating the above calculation for P, we find

Rewriting P as

it follows that P  r in the limit of A, B  ∞ such that A/(A + B)  r. That 
is, we can bring P arbitrarily close to any nominated 0 ≤ r ≤ 1, merely by 
selecting A and B large enough in this limiting process. The prior probability 
p(q) masses all the probability arbitrarily closely to A/(A + B) in the process of 

26	 Identity (A1) assures normalization to unity.



The Large-Scale Structure of Inductive Inference54

taking the limit. The limit itself is no longer a function but a distribution, the 
Dirac delta “function.” That is

Selection of this distribution as a prior would force P to the value of r exactly, 
since all intervals of values not containing r would be assigned a zero prior 
probability.

R E F E R E N C E S

Bacon, Francis. (1620) 1952. Advancement of Learning: Novum Organum: New Atlantis. 
Vol. 30 of Great Books of the Western World. Chicago: University of Chicago 
Press.

Bartha, Paul. 2010. By Parallel Reasoning: The Construction and Evaluation of 
Analogical Arguments. Oxford: Oxford University Press.

Copernicus, Nicholas. (1543) 1992. On the Revolutions of the Heavenly Spheres. 
Translated by Edward Rosen. Baltimore: Johns Hopkins University Press.

Curie, Marie. 1904. Radio-Active Substances. 2nd ed. London: Chemical News Office.
Einstein, Albert. 1915. “Erklärung der Perihelbewegung des Merkur aus der 

allgemeinen Relativitätstheorie.” Königlich Preussische Akademie der 
Wissenschaften (Berlin): 831–39.

Galilei, Galileo. (1610) 1957. “The Starry Messenger.” In Discoveries and Opinions of 
Galileo, translated by Stillman Drake, 27–58. Garden City, NY: Doubleday 
Anchor.

———. (1632) 1967. Dialogue Concerning the Two Chief World Systems. Translated by 
Stillman Drake. Berkeley: University of California Press.

Hesse, Mary B. 1966. Models and Analogies in Science. Notre Dame, IN: University of 
Notre Dame Press.

Joyce, George Hayward. 1936. Principles of Logic. 3rd ed. London: Longmans, Green.
Keynes, John M. 1921. A Treatise on Probability. London: Macmillan.
Laplace, Pierre Simon. 1902. A Philosophical Essay on Probabilities. 6th ed. Translated 

by Frederick Wilson Truscott and Frederick Lincoln Emory. New York: Wiley.
Lavoisier, Antoine. (1789) 1965. Elements of Chemistry, in a New Systematic Order, 

Containing All the Modern Discoveries. Translated by Robert Kerr. New York: 
Dover.

Miers, Henry A. 1902. Mineralogy: An Introduction to the Scientific Study of Minerals. 
London: Macmillan.



551 | The Material Theory of Induction, Briefly 

Mill, John Stuart.1882. A System of Logic: Ratiocinative and Inductive. 8th ed. New 
York: Harper and Brothers.

Newton, Isaac. (1726) 1962. Mathematical Principles of Natural Philosophy. 3rd ed. 
Translated by Andrew Motte. Revised by Florian Cajori. Berkeley: University of 
California Press.

Norton, John D. 2005. “A Little Survey of Induction.” In Scientific Evidence: 
Philosophical Theories and Applications, edited by Peter Achinstein, 9–34. 
Baltimore: Johns Hopkins University Press.

———. 2008. “Ignorance and Indifference.” Philosophy of Science 75: 45–68.
———. 2010. “Cosmic Confusions: Not Supporting versus Supporting Not-.” Philosophy 

of Science 77: 501–23.
———. 2021. The Material Theory of Induction. BSPS Open Series. Calgary: University 

of Calgary Press.
Reich, Eugenie S. 2012. “Flaws Found in Faster-than-Light Neutrino Measurement.” 

Nature, February 22. https://doi.org/10.1038/nature.2012.1009.
Rutherford, Ernest. 1913. Radioactive Substances and Their Radiations. Cambridge, 

UK: Cambridge University Press.
Salmon, Wesley C. 1953, “The Uniformity of Nature.” Philosophy and 

Phenomenological Research 14: 39–48.
Thouless, Robert H. 1953. Straight and Crooked Thinking. London: Pan.
Zabell, Sandy. 1989. “The Rule of Succession.” Erkenntnis 31: 283–321.





PART I
General Claims and Arguments





59

2

Large-Scale Structure: Four Claims

1. Introduction
In the previous chapter, I recounted how the material theory of induction 
treats relations of inductive support individually. That is, to what extent does 
this specific item of evidence support that proposition? If we think of induct-
ive inference formally, this purely local examination might be sufficient. All 
that we need for a valid inference, according to a formal theory, is that the 
evidence and the supported proposition fit appropriately into the empty slots 
of some licit schema. This local appraisal is incomplete, however, when in-
ductive inference is understood materially. In this approach, there is no fixed 
repertoire of warranted schemas applicable in all domains. In their place, 
(true) background facts in each domain warrant the inductive inferences 
supported in that domain. It follows that the affirmation that some inductive 
inference is licit requires a further affirmation of the truth of the background 
fact or facts that warrant the inference. These last facts themselves are con-
tingent and, in the fullest account, must also be secured inductively with 
appropriate evidence.

Thus, when understood materially, the cogency of inductive inferences 
and relations of inductive support cannot be appraised fully in isolation. 
They must be appraised within the context of a larger ecology of relations 
of inductive support. In this book, I investigate how that larger ecology is 
configured. In this chapter, I lay the foundation of the material analysis of 
this large-scale structure. It consists of the following four claims, which I will 
introduce and defend in this chapter.

1.	 Relations of inductive support have a nonhierarchical 
structure.
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2.	 Hypotheses, initially without known support, are used to 
erect nonhierarchical structures.

3.	 Locally deductive relations of support can be combined to 
produce an inductive totality.

4.	 There are self-supporting inductive structures.

In my defense of these four claims, I will employ extended examples drawn 
from the history of science. Providing a sufficiently detailed account of these 
examples within the confines of this chapter is impractical. My approach is to 
give these accounts in later chapters in Part II, with chapters devoted to each 
of the case studies. I will recall their results in this chapter briefly only insofar 
as they are needed.

In Section 2 of this chapter, I argue for the first and most important of the 
foundational claims listed above, the nonhierarchical structure of relations 
of inductive support. I address a supposition that relations of inductive sup-
port in science or in individual sciences are unidirectional, always proceed-
ing from the less general to the more general. Under this supposition, these 
relations of support are akin to the relations of support among the successive 
courses of stones in a tower. Each course is supported only by those beneath 
it. In its place is a conception of greatly tangled relations of support that cross 
over one another, failing to respect any orderly hierarchy. They are akin to the 
relations of support in an arch or vaulted ceiling. Each stone is supported by 
those beneath it and many others above it and elsewhere distributed over the 
whole structure. That relations of inductive support form such a massively 
entangled system is the most prominent feature of the large-scale structure of 
relations of inductive support according to the material theory. Many further 
features will depend on it.

In Section 3, I ask how these entangled structures can be discovered.  
A central result of the material theory is that we first need to know something 
before we can infer inductively. Otherwise, we have no secure warranting 
facts for inductive inferences. If initially we know nothing in some domain, 
then how can we ever learn inductively generalities of infinite scope in the 
domain? An examination of episodes of scientific discovery gives the answer 
of the second claim: we proceed by hypothesis. That is, we introduce as hy-
potheses the facts that would be needed to warrant suitable inductive infer-
ences, and then we make the inferences. In proceeding this way, however, 
we take on the obligation eventually to return to the hypotheses and provide 
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independent support for them. Only then are our inductive inferences prop-
erly secured. The arches or vaulted ceilings of the analogy cannot be con-
structed simply by piling one stone upon another. To build them, we prop up 
some stones provisionally by scaffolding and complete the construction. Only 
then can the scaffolding be removed. The result is a structure each of whose 
stones, examined individually, is properly supported by masonry. This use of 
hypotheses is distinct from their use in hypothetico-deductive confirmation. 
There they are introduced in order to be confirmed themselves. Here they are 
introduced to mediate in the confirmation of other propositions.

In Section 4, I analyze the intriguing possibility asserted in the third 
claim found repeatedly realized in cases of inductive support in science. In 
many cases, the component relations among propositions are individually 
deductive, even though their combined import is inductive. In this section, I 
will recall some examples that show how combinations of deductive relations 
among propositions can, overall, have inductive import.

As a prelude to discussion of the fourth claim, in Section 5 I characterize 
a mature science as inductively rigid. That means that each proposition of the 
mature science enjoys strong inductive support from the evidence and that 
the evidence admits no alternatives. Such a system is intolerant of challenges 
and generally repels them. If they are successful, then they have a destructive, 
revolutionary effect. A cascade of strong relations of evidential support 
propagating through the science will have to be undone.

In Section 6, I develop the fourth claim of the possibility of a self- 
supporting inductive structure. It is a closed structure in which each prop-
osition is well supported inductively by evidence in the structure through 
warranting propositions also in the structure. A mature science forms such 
a structure if we expand its compass to include all of the propositions war-
ranting its inductive inferences, and the evidence and warrants for them, 
and so on to closure. To see the self-supporting inductive structure, pick any 
proposition in the science. All of the evidence and warranting propositions 
needed for its inductive support will be in the structure. That is just the con-
dition that it is inductively self-supporting.

In Section 7, I consider the possibility of nonempirical conditions that 
might be a necessary supplement to a complete account of the large-scale 
structure of inductive inference. One might look to a priori principles such as 
a principle of causality or to the remarkable success of mathematics in formu-
lating physical theories. Such added components, it is argued, fail insofar as 
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they have no empirical foundation; if they do have an empirical foundation, 
then they lie within the material theory.

In Section 8, I provide a brief preview of what is to come.

2. Nonhierarchical Relations of Inductive Support
Relations of inductive support have a nonhierarchical structure.

2.1. The Hierarchical Conception: The Tower
The original and simplest notion of inductive inference is the notion of gen-
eralization from instances. It is codified in the schema of enumerative induc-
tion and employed in embellished form by time-honored procedures such as 
Bacon’s tables and Mill’s methods. It promotes an oversimplified image of 
science as an accumulation of generalizations of successively broader scope.

Here is how it looks. In biology, we might start with the particular ob-
servations of the flora and fauna of Europe and form generalizations from 
them. We might then expand our inductive base with particular observations 
of the flora and fauna of the Middle East, Africa, and Asia. Generalizations 
concerning them are combined with the earlier generalizations concerning 
European flora and fauna. We then expand our inductive base even further 
by introducing knowledge of biological species in the Americas and then the 
Antipodes. New generalizations concerning them are combined with those 
achieved earlier to yield generalizations of still greater scope.

We can find similar structures in other sciences. In physical astronomy, 
we note with Newton that all bodies on Earth gravitate and that all celestial 
bodies gravitate. We combine the two generalizations to arrive at the great-
er generalization that all matter gravitates. We note that our Moon and the 
moons visible to us are nearly spherical, so we infer that all moons are nearly 
spherical. We infer the same for planets and then eventually for suns and stars.

The result is a stratification of the propositions of a science according to 
their generality. At the bottom are the least general, the particular facts, com-
monly conceived as facts of experience or possible experience. As we ascend 
the hierarchy, we pass to generalizations from them, and then generalizations 
from them, and so on. The generalizations of the higher layers are supported 
inductively by those of the lower layers. We descend in the hierarchy by 
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making deductive inferences. They take us from generalizations higher in the 
hierarchy to those lower in it.

This hierarchy is analogous to the structural support relations among 
stones in a tower, shown in Figure 2.1. The first course of stones sits on firm 
ground. It supports the next course of stones, which supports the one above it, 
and so on to the top of the tower. The firm ground is analogous to experience. 
It supports the simplest propositions of experience, commonly conceived as 
propositions about particulars. Each course of stones structurally supports 
those above it, just as generalizations lower in the hierarchy inductively sup-
port those higher up in it.

Figure 2.1. A tower

Although a hierarchical structure of this sort sometimes appears in sci-
ence, overall it is a poor representation of the organization of propositions 
in science and the inductive relations among them. It fails for at least two 
reasons. First (to be developed in Section 2.2), contrary to the tacit suppos-
ition, relations of inductive support do not respect the hierarchy of general-
ity. Second (to be developed in Section 2.3), the propositions of science are 
sufficiently varied in content that their strict partitioning and ordering by 
generality are unsustainable.
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2.2. Relations of Inductive Support Do not Respect the 
Hierarchy
The hierarchical presumption is that relations of inductive support are uni-
directional: they proceed from the less general to the more general. A closer 
examination of the relations of inductive support within a science shows that 
this unidirectionality is not respected. Relations of support typically cross 
over one another. Speaking now only loosely of comparisons of greater and 
lesser generality, propositions at one level of generality can be supported by 
a combination of propositions of lesser, equal, or greater generality. The rela-
tions commonly are so tangled that no simple ordering of their direction by 
generality among the propositions of a science is possible.

We shall see more examples below of this lack of respect. It is worth paus-
ing here to visit an especially striking example. It is provided in Chapter 7, 
“The Recession of the Nebulae.” In 1929, Edwin Hubble announced the result 
that would become the observational foundation of modern cosmological 
models. Nebulae1 recede from us with velocities linearly proportional to their 
distances. Superficially, his analysis looks like the simplest of generalizations. 
Hubble reported as data the velocities of recession of individual nebulae, as 
inferred from red shifts in their light, and the distances to these nebulae. This 
is the level of lesser generality in the hierarchy. He then formed a generaliz-
ation about all nebulae: their velocities of recession vary linearly with their 
distances. This generalization resides at a higher level of greater generality in 
the hierarchy.

Hubble’s generalization, it seems, proceeded as we might naively expect, 
unidirectionally up the hierarchy. As the later chapter shows, his actual infer-
ences were far more complicated and quite unconstrained by this hierarchy. 
Most troublesome of several problems was that Hubble lacked almost half 
of the requisite independent distance measurements. His data set reported 
velocities for forty-six nebulae but included independently derived distance 
estimates for only twenty-four of them. Hubble was determined, however, to 
include all forty-six nebulae in his analysis and employed inductive strata-
gems of some ingenuity and complexity to proceed. In one prominent case, 
he assumed the generality of a linear relationship between the velocities and 
distances and used it to infer the unknown distances. This inference mixed 

1	 Hubble’s “extragalactic nebulae” or just “nebulae” are, of course, now called “galaxies.”
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elements from the less general and more general levels to infer propositions 
in the less general level. Hubble could then test that the inference was suc-
cessful by using the inferred distances to recover the absolute magnitudes of 
the nebulae concerned. He checked that these inferred absolute magnitudes 
conformed to other nebulae of independently known absolute magnitudes.

2.3. The Hierarchy of Generalizations Is Unsustainable
The second false presumption in the hierarchical conception is that it is pos-
sible everywhere to partition and order the propositions of a science by gener-
ality. Although something like this might be possible in simpler contexts, the 
presumed partitioning and ordering become impossible to maintain as the 
propositions of science become more abstract and remote from the specific 
propositions of observation and experiment. No simple sequence of succes-
sive generalizations takes us from the chemical reactions observed in a lab-
oratory to the bonding theory of the complex molecules of organic chemistry, 
or from the observed emission spectra of gases to the quantum mechanics of 
the electrons of atoms, or from the motions of the planets to the curved space-
time geometry of general relativity. The inductive pathways from simpler ob-
servations and experimental results to the completed theories are sufficiently 
convoluted that there is no evident basis for comparisons of generality among 
the intermediate propositions.

For example, ordinary Newtonian mechanics in its various parts treats 
the distribution of stresses in bodies, the motions of terrestrial projectiles, the 
flows of fluids, the motions of planets, and much more. How do we rank their 
many propositions according to their generalities? Is the theory of the distri-
bution of the many stress forces in a complicated architectural structure more 
general than the analysis of the few gravitational forces acting in a simple 
problem in orbital mechanics? Or is the latter more general since it treats not 
just forces but also the motions that they produce? In chemistry, the energy 
states of a single hydrogen atom are treated by quantum mechanics. Prior to 
its quantum treatment, the chemistry of hydrogen is treated by a simple phe-
nomenological theory telling us that gaseous hydrogen consists of molecules 
in which two hydrogen atoms bond. Is the phenomenological theory of the 
hydrogen molecule more general because it treats bonded hydrogen, whereas 
the quantum theory of individual atoms does not? Or is the quantum treat-
ment of the hydrogen atom more general since it is part of the more advanced 
quantum treatment of chemical bonding in which the energy levels of the 
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hydrogen atom play a central role? These questions, and many more like them 
across the sciences, admit no well-founded answers.

2.4. The Arch
There is no overall partitioning and ordering of the propositions of science 
by generality. Even when such local orderings appear, relations of inductive 
support do not respect them. Instead, relations of inductive support are dis-
tributed over the propositions of science in a massively entangled network. 
The simplest instances of this entangled network arise in a crossing over of 
relations of support whenever we have highly correlated properties. Then a 
proposition concerning one property can provide support for others at what 
we might loosely judge to be a comparable level of generality, and those others 
can provide support in reverse for the original proposition. These relations of 
support are warranted in turn by the more general proposition of the correla-
tion itself.

For example, stars can vary in many properties, including their effect-
ive temperatures, masses, sizes, and elements. A class O star in the Harvard 
spectral classification system is rare, characterized by a very high effective 
temperature of the order of 30,000K or greater. Many other properties of stars 
are strongly correlated with this temperature. A class O star will also have a 
huge mass and a tremendous luminosity.

Exactly because all of these properties are highly correlated and other-
wise unusual, finding one of them in some new star is strong evidence for 
each of the others. For example, finding that a newly observed star has a very 
high effective temperature greater than 30,000K is strong evidence that the 
star is massive. The converse also holds: finding that the star is massive is 
strong evidence that it has a very high effective temperature. This crossing 
over of evidential support can be continued for other pairings of properties 
of class O stars.

There is an architectural analogy to this pair of propositions, each of 
which provides an inductive warrant for the other. It replaces the analogy to 
the tower. It is an arch, shown in Figure 2.2. Each side of the arch rests on the 
firm ground of experience. However, none of the stones higher in the arch is 
merely supported by the stones beneath it. The stones are also supported by 
those still higher in the arch and ultimately by those of the other side. One 
side of the arch, if built without the other, would simple fall down. The two 
sides mutually support one another.
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Figure 2.2. An arch

2.5. Arches Illustrated
In later chapters, I provide more examples of this arch-like crossing over 
of relations of inductive support. In Chapter 8, “Newton on Universal 
Gravitation,” I describe two cases of pairs of propositions that mutually sup-
port each other. The first arises in his “Moon test,” in which he argues for the 
identity of the force of gravity and the celestial force that holds the Moon in 
its orbit around the Earth. The evidence is the observed accelerations of the 
Moon toward the Earth and falling bodies at the surface of the Earth. Newton 
computes the acceleration that the celestial force would yield if it acted at the 
Earth’s surface while strengthening according to an inverse square law. He 
finds that acceleration to match the observed acceleration of bodies falling at 
the Earth’s surface.

Consider the proposition that the celestial force on the Moon strengthens 
according to an inverse square law with distance. In this first inference, it is 
used as an inferential warrant in arriving at the identity of the celestial and 
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terrestrial forces. This usage can be reversed. The proposition of the identity 
of the celestial and terrestrial forces can also be used as a warrant. Then one 
can infer from the observed motions that the celestial-gravitational force act-
ing on the Moon strengthens with distance according to an inverse square 
law. That is, the proposition of the identity of celestial and gravitational force 
and the proposition of the inverse square law mutually support one another.

In a second example in his account, Newton fits elliptical orbits to the 
observed positions of the planets. The inference from these positions to their 
specific elliptical orbits is warranted by the proposition that the planets are 
acted on by an inverse square law of gravity. Excluding perturbations, that 
law entails that planets move in conic sections: ellipses, hyperbolas, or para-
bolas. However, a second argument reverses the proposition that warrants 
the proposition supported. The key warranting fact is that the elliptical orbits 
are reentrant. Each planetary year a planet follows the same elliptical orbit. 
This reentrance, Newton shows, can arise only with an inverse square law 
of gravity. Taking them together, we find that the specific elliptical orbits of 
the planets support the inverse square law and that the inverse square law 
supports the specific elliptical orbits of the planets.

Radiocarbon dating of artifacts provides another illustration of this 
crossing over of relations of support. It is described in Chapter 10, “Mutually 
Supporting Evidence in Radiocarbon Dating.” In the simplest description, 
there are two sorts of propositions concerning the dating of artifacts. The H 
propositions date them by the traditional methods of historical analysis and 
archaeology. The R propositions date them by estimating how long it took 
for their content of the radioactively unstable isotope of 14C to decay to the 
measured levels. The R propositions depend on an accurate knowledge of the 
original content of 14C captured in artifacts at their formation in different 
epochs. This knowledge is provided by H propositions: the dating of artifacts 
by traditional methods. Here H propositions provide evidential support for R 
propositions. However, the reverse can also happen. Are we sure that no error 
has crept into the historical methods used to arrive at a traditionally estab-
lished dating? Then radiocarbon dating can reassure us or correct us. Now R 
propositions are providing evidential support for H propositions.

I provide more examples of mutually supporting pairs of hypotheses in 
other chapters. In Chapter 11, “The Determination of Atomic Weights,” we 
see how Avogadro’s hypothesis and the law of Dulong and Petit supported 
each other in chemical investigations of the early nineteenth century. The 
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same relation of mutual support later arose among the chemists’ version of 
Avogadro’s hypothesis and the physicists’ version of the hypothesis within 
the kinetic theory of gases. In Chapter 9, “Mutually Supporting Evidence in 
Atomic Spectra,” we find the Ritz combination principle providing support 
for the quantum theory. Then later the quantum theory provides support for 
a corrected version of the Ritz combination principle.

2.6. The Vaulted Ceiling
The examples above of pairs of mutually supporting propositions are excep-
tional for their simplicity. It is far more common for these relations of mutual 
support to be embedded within a much larger network of inductive relations 
of support in a science. The Newtonian example is not of an isolated structure 
since the various hypotheses in it figure in relations of support for other prop-
ositions in science.2 In general, relations of support cross over one another in 
many different ways and at many different levels. One then finds that even a 
small part of science can be part of a prodigious array of relations of support 
connecting it with neighboring sciences and then beyond them to the farthest 
reaches of science.

The analogy to a single arch does not capture this richness. An analogy 
to a dome is a little better. Stones in each part of the dome depend for their 
support on stones in many other parts. A still better analogy is to a massively 
complicated vaulted ceiling, as shown in Figure 2.3. It consists of many inter-
connected domes and arches. The integrity of the entire structure depends on 
the mutual support of all of its parts.

2	 For example, an inverse square law is presumed in the computations associated with 
Cavendish-type experiments that determine the magnitude of the gravitational constant G. 
The law is also used to infer that spherical planets act gravitationally, as if their masses were 
concentrated at their centers; to infer that certain comets move on hyperbolas; and to compute the 
behavior of terrestrial tides.
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Figure 2.3. A vaulted ceiling in the Commons Room, Cathedral of  
Learning, University of Pittsburgh; image by John D. Norton

	
This interconnectedness of relations of inductive support provides mature 
science with its monolithic structure. One cannot reverse one part without 
destabilizing the remainder of the structure. A vivid example of an effort 
to reverse one part comes with the persistent creationist efforts to remove 
evolutionary theory from biology. The problem that creationists face is that 
evolutionary theory is inductively entangled with the other sciences. In their 
challenge to that theory, creationists find that they need to impugn the great 
age of the Earth in favor of a much younger Earth, whose age is determined 
from biblical scholarship. Hence, they must impugn modern uniformitarian 
geology. It is based on an old Earth whose major geological features were 
formed slowly over eons. They must impugn the radiological methods used to 
date both organic artifacts and rocks, which ultimately will lead to conflicts 
with radiochemistry. They must also dispute standard cosmology since it also 
calls for an ancient Earth. This forces them, then, to question observational 
and theoretical astronomy and the physics on which it depends.

The size of the network of support relations in mature sciences leads to 
a combinatorial explosion in the number of support relations that directly 
or indirectly bear on the propositions of the component sciences. This effect 
gives depth to the inductive security of each part. A fully worked-out example 
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would help us to see this security more clearly. Unfortunately, displaying the 
complexity of such a network in all of its detail is a task too large for this 
chapter or this book. However, we can get a good sense of the density and 
richness of these structures by visiting just small pieces of them in the exam-
ples developed in the chapters that follow.

2.7. Vaulted Ceilings Illustrated
In Chapter 11, “The Determination of Atomic Weights,” I recount the im-
mense difficulties faced by chemists in the early nineteenth century in deter-
mining relative weights of atoms. The problem arose in Dalton’s New System 
of Chemical Philosophy of 1808 and 1810. Dalton knew, for example, that 8g 
of oxygen combines with 1g of hydrogen to make water. To infer from this 
that the molecular formula of water is H2O, he needed to know that an oxy-
gen atom is sixteen times as massive as a hydrogen atom. He had no table of 
atomic weights to consult and no way to determine them, so he just assumed 
that the ratio was 8-1. The result was that he arrived, famously, at the molecu-
lar formula for water of HO. Dalton was trapped in a circularity: to know 
the correct molecular formulae, he needed to know the relative weights of 
atoms, but he could learn the relative weights of atoms only from the molecu-
lar formulae.

One might imagine that this circularity was easily broken. It was not. The 
task required the efforts of chemists over roughly half a century. Chapter 11 
recounts Cannizzaro’s celebrated solution circulated at the Karlsruhe con-
ference of chemists in 1860. Cannizzaro relied on Avogadro’s hypothesis, the 
law of Dulong and Petit, and an extensive set of measurements of the physical 
properties of a wide range of substances to determine their molecular formu-
lae. The determinations were complicated, and I have done my best to present 
them in Chapter 11. For my purposes here, the key fact is that the molecular 
formulae were not just determined but also overdetermined. That means that 
some subset of them could be used to provide inductive support from some 
other part and vice versa.

For example, once Cannizzaro had determined that hydrogen and oxy-
gen gases are diatomic, H2 and O2, his gas density data enabled him to fix the 
molecular formula for water as H2O. Or he could start with this molecular 
formula for water and find that oxygen and hydrogen are diatomic. This is just 
a glimpse of a massive tangle of relations of inductive support in Cannizzaro’s 
analysis. For example, that hydrogen gas is diatomic entered into similar 
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overdetermined relations of support concerning compounds of the halogens: 
chlorine, bromine, and iodine.

In Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” I pro-
vide another illustration of this sort of tangle of relations of inductive sup-
port. Energetically excited hydrogen gas emits light. It emits only specific 
frequencies of light whose measurement became an important project for 
spectroscopists in the late nineteenth century and early twentieth century. 
Those frequencies divided into well-structured sets of lines, found in differ-
ent parts of the electromagnetic spectrum: the infrared, the visible, and the 
ultraviolet. These sets or “series” were named after the spectroscopists who 
measured them: the Lyman, Balmer, Paschen, Brackett, and Pfund series.

The series were connected by a simple arithmetic relationship first noted 
by Rydberg but exploited by Ritz in 1908 as his “principle of combination.” 
The key fact was that the lines of all of the series could be generated by tak-
ing the arithmetic differences of a set of terms. For Ritz, this fact provided a 
useful heuristic. He could apply his combination principle to the lines of a 
known series and predict a new, hitherto unobserved, series. The approach 
proved to be successful, and immediately Ritz could report a new line con-
forming with his prediction.

For my purposes, what is important is that the full set of lines in all of 
these series is overdetermined once one adopts Ritz’s principle. That means 
that one can take the lines of one series and infer from them to the exist-
ence of another series. What results is a tangle of relations of inductive sup-
port. This structure, fortunately, is much easier to comprehend, as Chapter 9 
shows, since it is recoverable by simple arithmetic additions and subtractions.

2.8. The Firm Ground of Experience
In the arch and vaulted ceiling analogies, the ground that supports the ma-
sonry corresponds to the empirical basis of the science. This basis does not 
depend on any simple-minded or strict distinction between observational 
and theoretical propositions, for I follow the now common view that a clear 
distinction between them cannot be made. Rather, I mean by it what is com-
monly taken in a present science as its supporting empirical facts. They can 
be far removed from direct human observations.

For example, one of the most stable and most important observational 
facts supporting modern cosmology is that space is filled with a 2.7K back-
ground of thermal radiation. This simple-sounding fact was secured over 
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decades only after extraordinary efforts, some of which are recounted in 
Chapter 9, “Inference to the Best Explanation: Examples,” of The Material 
Theory of Induction (Norton 2021). Among the difficulties faced, to establish 
a thermal character in a radiation field, one must have measurements made at 
many different frequencies. Only then can the energy distribution character-
istic of thermal radiation be established.

A related observational fact of modern cosmology is that galaxies are ob-
served to recede from us with a velocity that increases linearly with distance. 
Although the observation is now routinely reported without much hesita-
tion in modern treatments, it was subject to a searching critique in the later 
twentieth century by Halton Arp. He argued that the red shift in light from 
the galaxies could not be interpreted as resulting from a velocity of recession 
since objects with very different red shifts appeared to be connected spatial-
ly. An extensive debate was needed to refute his hesitations (for details, see 
Norton 2023).

The analysis of just what might be meant by the empirical facts of a sci-
ence is a project that goes beyond my concerns here. My view is that Nora 
Boyd’s (2018a, 2018b) analysis provides the best modern treatment. Boyd al-
lows that all such empirical facts are entangled with theory. However, she 
argues, these facts can still be used to decide among competing theories 
through a process of winding back to the provenance of the facts. When we 
seek to use some empirical fact to decide between two theories, we wind back 
through the various stages of the formation of the fact. If sufficient data have 
been preserved, then eventually we come to a point at which enough of the 
theoretical encumbrance has been removed for the fact to provide a neutral 
basis of comparison for the two theories.

3. The Role of Hypotheses in the Discovery of 
Inductive Relations of Support

Hypotheses, initially without known support, are used to erect  
nonhierarchical structures.

3.1. The Discovery Problem
The discussion in the previous section concerns relations of inductive sup-
port, independent of human knowledge of them. A further question of great 
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importance is how we can learn these relations. Only then do they assist us 
in our inductive exploration of the world. If the totality of facts connected by 
relations of inductive support were delivered to us as a completed whole, then 
it would be a straightforward matter to check that all of the requisite relations 
of inductive support obtain. This is a science fiction scenario. It is what would 
happen were we to stumble onto a copy of the fictional Encyclopedia Galactica 
of some advanced alien civilization. In it, entire sciences hitherto unknown 
to us would be delivered to us in their totality.

In real life, our explorations proceed more haltingly. The guiding rule of 
the material theory of induction is that “you must already know something to 
be able to infer inductively.” We cannot know that some inductive inference 
is licit unless we are assured of the truth of the warranting fact. Yet, if we 
are in the early stages of investigation in some new field, then commonly we 
know rather little, and it is likely too little to proceed with assured inductive 
inferences of any great reach.

This is a problem faced by all new sciences. The strategy used almost uni-
versally is to proceed provisionally. We might not know which are the general 
facts of some domain, but sometimes we can determine which propositions 
are plausible candidates for the facts that would warrant the inductive infer-
ences sought. To use a familiar term, these plausible propositions are “hy-
potheses.” We can then proceed provisionally under the supposition that our 
hypothesis is a fact and infer to the propositions that it would warrant were 
it a fact. The key element is that the supposition is provisional. Conclusions 
drawn or inductively supported using the hypothesis themselves have only 
provisional status. They remain so until we find inductive support for the 
warranting hypothesis. We have incurred an inductive debt in proceeding to 
the conclusions, and they are properly secured only when that inductive debt 
is discharged by finding support for the warranting hypothesis.

Hypotheses have a natural analogue in the procedures for building arch-
es, domes, and vaulted ceilings. A masonry arch, dome, or vaulted ceiling 
cannot be built simply by piling stones one upon another. As soon as a few 
stones have been placed, the highest ones would be without adequate sup-
port and would fall. The standard procedure is to use scaffolding, known 
technically as “centering.” As shown in Figure 2.4, traditionally it consists 
of a wooden framework. The stones are set on top of the framework. Prior 
to the completion of an arch, these stones are not properly supported by its 
other stones. Their support is only provisional since the wooden centering 
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will be removed eventually. Here they are analogous to hypotheses whose 
support is also only provisional. When all of the stones of the arch have been 
placed, the centering can be removed. Now the remaining stones of the arch 
fully support each other. This final stage of construction is analogous to dis-
charging the evidential debt taken by introducing the hypothesis. As the full 
investigation is completed, further inductive support, anchored eventually in 
experience, is provided for it.

Figure 2.4. Wooden centering used in the construction of the Waterloo Bridge

3.2. Hypotheses Illustrated
The chapters that follow provide illustrations of this use of hypotheses. In sev-
eral of them, the use of hypotheses is invited by a specific problem. Scientists 
find themselves trapped in an evidential circle. Commonly, there are two re-
lated quantities to be determined. To find the first, the scientists need to know 
the second, but initially it seems that they cannot know the second unless 
they already know the first. They are trapped. A suitably chosen hypothesis is 
used routinely to break the circle.

Chapter 12, “The Use of Hypotheses in Determining Distances in Our 
Planetary System,” is an extended study of this use of hypotheses. Consider 
the earliest efforts to determine distances to celestial bodies. The Moon 



The Large-Scale Structure of Inductive Inference76

subtends an angle of about half a degree in our visual field. If we knew the 
diameter of the Moon, then simple geometry would let us compute the dis-
tance to the Moon. However, we do not know its diameter precisely because 
we do not know how far it is from us. Determining its distance and diameter 
forms the troublesome evidential circle. The Sun also subtends an angle of 
about half a degree in our visual field. Determining its distance from us is 
blocked by the same evidential circle. Determining distances to the planets is 
even harder since naked eye astronomy cannot resolve their disks. They are 
just points of light in the sky.

Chapter 12 recounts how ancient and later astronomers sought to break 
out of this evidential circle by ingenious geometrical triangulations or, as 
it is known in the astronomical context, measuring parallax. These efforts 
met with limited success. Ancient astronomers were unable to measure 
the tiny parallactic angles accurately enough. In the seventeenth century, 
using telescopic aids, a fairly good parallactic measurement of the distance 
to Mars was achieved. However, even with telescopic aids, direct parallactic 
measurements of the key Earth-Sun distance were not achieved as late as the 
nineteenth century.

From the outset, to fill the gaps, hypotheses were called into service. 
They were not used to fix the distances directly, only to provide hypothetical 
estimates of the ratios of the distances. Then all that was needed was a single 
distance determination, such as the distance to the Moon or to Mars, and the 
remaining distances could be computed from the ratios. What makes this 
case study revealing is that, in addition to a success story, it recounts fail-
ures. They arose when independent evidential support could not be secured 
for the hypotheses, and eventually they were rejected. The chapter recounts 
three attempts.

The earliest were Pythagorean/Platonic proposals that recovered the ratios 
from musical harmonies and simple arithmetic relations. A later proposal 
was incorporated into Ptolemy’s geocentric cosmology. Ptolemy proposed a 
plausible distance ordering for the celestial bodies. He recovered the ratios 
of their distances from the further hypothesis that their orbits are packed 
together as closely as the geometry of the compounded circles of his system 
allowed if intersections of the circles are precluded. Neither Pythagorean nor 
Ptolemaic proposals were able to secure independent evidence. Their induct-
ive debt was not discharged, and they were abandoned.
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They were replaced by Copernicus’ , heliocentric hypothesis. Through it, 
the ratios of the planetary orbital distances were readily recoverable from ter-
restrial measurements. Unlike the earlier systems, the Copernican hypoth-
eses gained evidential support from both within and without. Most import-
ant was its conformity with Newton’s mechanics. Newton had used the more 
fully developed heliocentric astronomy of his time as an essential premise of 
his argument for universal gravitation. In another example of the crossing 
over of relations of inductive support, the direction of inductive support was 
reversed. Newton’s mechanics soon became strong evidence for the details of 
Copernican astronomy.3

The dependence of solar system distance measurements on the helio-
centric theory persisted. The most accurate estimates of the key Earth-Sun 
distance in the eighteenth and nineteenth centuries came from careful meas-
urements of the transits of Venus across the face of the Sun. The Earth-Sun 
distance could then be recovered from them by geometric triangulations. 
These calculations still relied on the heliocentric theory’s determination of 
the ratios of the orbits of the Earth and Venus.

Further illustrations of the use of hypotheses to break evidential impasses 
have already appeared earlier in this chapter. We saw how Dalton was trapped 
in an evidential circle concerning atomic weights and molecular formulae. 
He sought to break the circularity by hypothesizing that the correct molecu-
lar formulae used the simplest ratios available. The hypothesis failed to secure 
independent support and was abandoned. The circularity was broken later 
through two hypotheses: Avogadro’s hypothesis and the law of Dulong and 
Petit. The evidential debt incurred in supposing them was discharged even-
tually through the mutual support of these two hypotheses and the support 
provided for them from the emergence of the statistical mechanical treatment 
of gases in physics.

We also saw that Hubble was stymied in his efforts to use the data from 
all forty-six nebulae for which he had measurements by a lack of independent 
distance measurements for twenty-two of them. Chapter 7, “The Recession of 

3	 The inversion in this relationship is seen most clearly in the ability of the Newtonian 
system to provide corrections to the heliocentric astronomy of Newton’s time. The planets orbit 
not in ellipses but in precessing ellipses. What came to be known as Kepler’s third harmonic 
law was corrected to accommodate the finite mass of the Sun. The importance of successive 
approximations in Newton’s and later work has been explored by Smith (2002, 2014).
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the Nebulae,” recounts how Hubble was still able to incorporate these twenty-
two nebulae into his analysis by means of hypotheses that gave him indirect 
indications of their distances. At various stages of his analysis, he hypoth-
esized that the linear relationship among the other twenty-four nebulae also 
held for these twenty-two, that the absolute magnitude of the brightest star 
in each nebula is the same, and that the absolute magnitudes of nebulae in a 
cluster are confined to a small range common to all nebulae.

In the early-twentieth-century analysis of atomic spectra, we saw how 
the discovery of new series was advanced by the Ritz combination principle. 
It was introduced as a hypothesis. It gained the requisite independent eviden-
tial support with the emergence of modern quantum theory, in which it was 
recovered as a consequence of Bohr’s atomic theory.

These last illustrations have been mostly of successes secured at least 
eventually. This happy outcome is not assured. A prominent example of a 
failure is provided by the steady state cosmology of the mid-twentieth cen-
tury. It was based on the hypothesis of the “perfect cosmological principle,” 
first advanced by Bondi and Gold (1948). According to it, the universe is 
homogeneous on the large scale, not just spatially but also over time. The 
way in which we see the universe now, on the large scale, is the way in which 
it has always been and will always be. A definite cosmology now follows. Its 
most striking feature is the continuous creation of matter. Unless matter is 
continually created throughout space, expansion of the galaxies would lead 
to a dilution of its average matter density and violate the perfect cosmological 
principle. The steady state cosmologists took on a massive evidential debt 
in hypothesizing the perfect cosmological principle. They were never able 
to establish independent evidence for the hypothesis, and they were never 
able to repay the debt. Most notable was the failure of the steady state theor-
ists to accommodate Penzias and Wilson’s discovery in 1965 of the cosmic 
background radiation, and the competing “big bang” or “primeval fireball” 
hypothesis eventually proved to accommodate it handily.4

3.3. This is not Hypothetico-Deductive Confirmation
This use of hypotheses might appear to be similar to the hypothetico- 
deductive approach to confirmation. These are accounts of confirmation 
based on the principle that a hypothesis is inductively supported when it 

4	 For a brief account of this last competition, see Norton (2021, Chapter 9).
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successfully entails true evidence deductively.5 The essential difference lies 
in the goal of introducing the hypotheses in an evidential analysis. In hypo-
thetico-deductive confirmation, hypotheses are introduced so that the evi-
dence can confirm them according to the hypothetico-deductive principle. 
In the applications within the material theory, hypotheses are introduced to 
mediate in the confirmation of other propositions. The confirmation of the 
hypothesis is a task reserved for later investigations. The hypothesis is ex-
pected to be confirmed not hypothetico-deductively but by other inductive 
inferences with their own material warranting facts.

4. Deductive Inferences in Inductive Structures
Locally deductive relations of support can be combined to  

produce an inductive totality.

4.1. Inferences that Are or Are Nearly Deductive
There is a striking feature of many of the inferences in this text and in my 
earlier text, The Material Theory of Induction (Norton 2021). Although the 
inferences contribute to relations of inductive support, many of them are 
close to being deductive inferences or might actually be deductive inferences. 
That is, when combined with the warranting fact, the inference from the evi-
dence to the conclusion to be supported is often deductive. The direction of 
the inference here is important. It is not merely the deductive inferences of 
hypothetico-deductive support. In the latter, the deduction passes from the 
hypothesis or theory to the evidence. That direction has now been reversed.

Here are some examples. Chapter 1 of The Material Theory of Induction 
(Norton 2021) recalled Curie’s inference from the crystallographic properties 
of the few samples of radium chloride at her disposal. Curie inferred to the 
generality of these crystallographic properties. I identified the warrant for her 
inference as 

(Weakened Haüy’s Principle) Generally, each crystalline substance 
has a single characteristic crystallographic form.

5	 For an elaboration of this principle and the extensive problems associated with it, see 
Norton (2005).
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When this weakened principle is used to warrant Curie’s inference, it is the 
qualification “generally” that makes the inference inductive. It accommo-
dates the possibility of polymorphism, that one crystalline substance might 
manifest in more than one crystallographic form. The inductive risk taken 
by Curie is small, especially if we assume that her generalization was tacitly 
limited to crystals of radium chloride prepared under conditions comparable 
to those in her laboratory.6 If we drop this qualification and revert to Haüy’s 
original conception, the warranting fact would be

(Haüy’s Principle) Each crystalline substance has a single character-
istic crystallographic form.

Under this warrant, Curie’s inference would be a deduction.
Chapter 2 of The Material Theory of Induction (Norton 2021) recounted 

Galileo’s inference concerning his law of falling bodies. Galileo had found 
that, in equal time intervals, a body in free fall successively covers distan-
ces in the ratios of 1-3 to 5-7. He generalized this sequence of ratios to the 
sequence of odd numbers. In this inference, I argued that Galileo had used 
the warranting fact that the ratios of 1-3 to 5-7 were present no matter the 
time interval used in the measurement. It then followed, deductively, that  
the only possible general law was of the sequence of odd numbers. Indeed, the 
deductive inference needs as a premise only the ratio of 1-3 and its invariance 
under a change of the unit of time.

There are, it turns out, other well-recognized, historically important ex-
amples in which the inference from evidence to our theories is deductive. 
These cases have been codified as “demonstrative inductions.” Their infer-
ences are demonstrative in the sense that they are deductions. However, they 
are called “inductions” to reflect an older usage of the term as referring to in-
ferences from particularities to generalities. My contribution to this literature 
in Norton (1993) was to trace how quantum discontinuity was established in 
the early decades of the twentieth century. The essential datum was Planck’s 
formula in 1900 for the distribution of energy over the different frequencies 
of black body radiation. In the early analysis, it was shown that assuming dis-
continuities in energies enabled one to deduce the Planck formula. Poincaré 
and Ehrenfest soon showed that the direction of deduction could be reversed. 

6	 I thank Pat Corvini for emphasizing this point to me.
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With suitable background facts, it was possible to deduce quantum discon-
tinuity from the evidence of the Planck formula.

4.2. Support that Is Locally Deductive but Globally Inductive
In deductive inferences, the conclusions are at best logically equivalent de-
ductively to the premises or logically weaker than them. So it appears that 
deductive or near-deductive inferences to our conclusions cannot give what 
we seek from inductive investigations. We seek an expansion of our know-
ledge. These deductive inferences are merely rearranging and returning to us 
all or part of what we have already supposed.

This pessimistic expectation is not realized, however, once we recall that 
relations of support within inductive structures are not hierarchical but mas-
sively entangled. That enables the entangled relations of deductive support to 
combine to provide inductive support in the overall structure. This circum-
stance arises when we have sets of propositions that mutually support each 
other deductively. Nonetheless, to accept the totality is to accept propositions 
logically stronger than the evidence.

Striking examples of this combination of deductions arise in Newton’s 
arguments for universal gravitation and his inverse square law of gravity.  
I have already sketched them above and provide a more detailed exposition 
in Chapter 8, “Newton on Universal Gravitation.” To recall, the first example 
arises in his “Moon test.” In it, he showed that terrestrial gravity is the same 
force as the celestial force holding the Moon in its orbit around the Earth. To 
show it, Newton reckoned that, if the force acting on the Moon strengthens 
with the inverse square of distance as the Earth is approached, then it would 
accelerate terrestrial bodies with just the accelerations actually found at the 
Earth’s surface. The logic of the Moon test involves two hypotheses:

Hinv. square: The celestial force acting on the Moon is strengthened by    
                 an inverse square law with distance at the Earth’s surface.

Hidentity: Terrestrial gravitation and the lunar celestial force are the  
              same.

In the context of Newton’s Moon test, drawing from the evidence of the accel-
erations of the Moon and terrestrial bodies in free fall toward the Earth, each 
of these hypotheses can be deduced from the other. That is, each hypothesis 
provides a warrant for a deductive inference from the evidence to the other 
hypothesis. The two hypotheses combined are the result of the Moon test 



The Large-Scale Structure of Inductive Inference82

analysis. Their conjunction is inductively supported by the evidence of lunar 
and terrestrial accelerations.

The second example has a similar structure. The most basic results of 
Newton’s celestial mechanics reside in two hypotheses:

Hellipses: The planets move in their specific elliptical orbits.

Hinv. square: The planets are attracted to the Sun by a force that varies  
                 with the inverse square of distance.

Against the background of the observed positions of the planets and the laws 
of Newton’s mechanics, each hypothesis could be deduced from the other. 
Indeed, Newton employed a subtle variant of the usual way of inferring be-
tween these two hypotheses. In the case of the near-circular orbits of the 
planets, he needed only the datum that the planetary orbits are reentrant. 
That is, in a planetary year, each planet returns to its starting point. He could 
then show that this reentrance was a sensitive test for deviations from the 
inverse square law. The observed exactness of the reentrance entailed the 
exactness of the inverse square law. Once again the overall inductive import 
of the analysis was that the evidence of the observed positions of the planets 
supported inductively the conjunction of the two hypotheses.

Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” provides 
another example with a similar structure. I noted above that the Ritz combin-
ation principle enables inferences of support among the different series of the 
hydrogen spectrum. As detailed in the chapter, these inferences are deductive. 
Using the Ritz combination principle as a premise, from the Balmer series, we 
can deduce the Paschen, Bracket, and Pfund series. These deductions can be 
reversed as well. Adding the premise of only a single line from the Balmer 
series, we can deduce the entire, infinite Balmer series from the Paschen ser-
ies. There are infinitely many series in the hydrogen spectrum, although only 
finitely many have been observed. The series are closely connected by further 
deductive relations such that we can infer deductively from any series to any 
other series by means of the Ritz combination principle and, if needed, the 
additional premise of a finite set of suitably selected lines. Although these 
interrelations are deductive, the final import is inductive. The Ritz combina-
tion principle and the finitely many spectral lines observed provide inductive 
support for the entire system of infinitely many series, each with infinitely 
many lines.
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There might be, for some, an air of paradox in the idea that we can com-
bine deductive relations to yield a structure with inductive import. That im-
pression is mistaken. These cases are actually more secure inductively than 
many of those considered in earlier sections. In those earlier cases, inductive 
relations of support are combined to produce structures with overall induct-
ive import. Inductive risk is introduced both in the component relations of in-
ductive support and in the combined structure. If those component relations 
of support are deductive, then this first source of inductive risk is eliminated.

5. The Maturity of a Science

5.1. Inductive Rigidity
A preparation for the discussion of the fourth and final claim is the char-
acterization of what constitutes mature sciences. They are characterized by 
inductive rigidity. That is, each proposition of the science is well supported 
evidentially so that a change in the proposition is not allowed by the evidence 
for the science. There is no assurance that a science can achieve maturity. 
In the early stages of the development of a science, important propositions 
are entertained hypothetically. They are not fixed rigidly. As the development 
continues, further relations of inductive support are found, the hypotheses 
gain evidential support, and their provisional status is discharged. If this pro-
cess is completed, then the science achieves maturity such that each of its 
propositions is well supported.

Once this maturity is achieved, the inductive rigidity of a mature science 
is widely recognized among its practitioners. Challenges to the science are 
treated as tiresome, moribund exercises. A skeptic might doubt some prop-
osition in a mature science. In response, someone competent in the science 
would be able to display the evidence that supports the proposition. In the 
case of special relativity, this is a dialogue with which I have some personal 
experience. The theory has been challenged routinely by critics since its in-
ception over a century ago. Many of its foundational propositions have been 
disputed, at one time or another, unsuccessfully. The light postulate of the 
theory asserts that all inertially moving observers find the same speed c for 
light in vacuo. It is initially a puzzling postulate. Imagine an inertially mov-
ing observer chasing at high speed after a light signal that moves at c. That 
observer will not find the light signal slowed from c, even in the slightest.  
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This perplexing result makes the postulate a favored target. However, that 
postulate has direct support from de Sitter’s analysis in 1913 of light emitted 
from distant double stars. Its deeper support derives from the Lorentz covar-
iance recoverable from Maxwell’s electrodynamics, in turn supported by a 
plethora of individual experiments in electricity and magnetism.7

This maturity is a goal that proponents of a theory strive to achieve, and 
standard textbook sciences commonly come close to achieving it. It is not 
uncommon, however, for the full achievement of the goal to be incomplete 
in parts of the theory. There propositions might achieve general acceptance 
while lacking proper support. The falsification of such a proposition is usual-
ly associated with great excitement and even a momentary sense of crisis. 
However, precisely because the falsified propositions never were strongly sup-
ported, their failure can be absorbed into theory.

On September 19, 1957, Francis Crick announced what came to be called 
the “central dogma” of molecular biology. It speaks, in various forms, of a uni-
directional pathway of synthesis within cells from DNA to RNA to proteins. 
The reverse pathway is prohibited. Although the dogma was widely adopted, 
there was little real evidence for it. It was a simple and comfortable idea that 
fit with a denial of the Lamarckian inheritance of acquired characteristics.8 
When it was discovered that certain viruses could implement the reversed 
pathway from RNA to DNA, the result was readily incorporated into molecu-
lar biology. Nature published an excited editorial, “Central Dogma Reversed,” 
in 1970.

In the twentieth century, many new particles were discovered. It was as-
sumed routinely that the laws governing them would respect parity.  That is, 
they would not distinguish left from right. In retrospect, there was no good 
evidence for this assumption other than that it had become routine in the 
physical laws discovered earlier. Then, in 1964, Cronin and Fitch discov-
ered experimentally that the weak interaction in particle physics can violate 
charge-parity conservation. In another example, the hard-to-detect neutrinos 
had long been attributed to a zero rest mass. This had seemed to be a reason-
able assumption. The early determinations of the neutrino rest mass pointed 
to a quantity in the neighborhood of zero. However, as neutrino physics de-
veloped, it became clear that a tiny mass had to be attributed to neutrinos. 

7	 For historical details, see Norton (2014).
8	 Here I rely on Cobb (2017).
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That would enable the process of neutrino oscillation in which neutrinos 
migrate over the three different flavors in which neutrinos manifest. This os-
cillation explained experimental and observational anomalies, most notably 
a dearth of measured electron neutrinos emitted by the Sun.9

In these last cases, anomalous evidence could be absorbed into the 
existing theories since the propositions that they contradicted lacked the 
strength of evidential support of other parts of the theory. Had these other 
better-supported parts been contradicted, the outcome would have been 
more troublesome. A well-supported proposition is tightly bound with so 
much more of the theory. Should it fail, it would bring down much more of 
the theory with it.

Although particle physics could absorb nonzero neutrino masses, mat-
ters would have been quite different had the OPERA Collaboration (2011) 
measurement been correct. Its measurements, it announced, appeared to 
show that neutrinos were propagating faster than light. If correct, then this 
would have destabilized particle physics. It would have contradicted a funda-
mental posit of the governing quantum field theory, the locality of quantum 
field operators. Particle physics was saved for the time being.

The inductive rigidity of a mature science does not make the science in-
corrigible. It is simply a statement of the best that can be gleaned from the 
evidence. No matter how strong the inductive support of a science, some 
inductive risk is associated with it. When incontrovertible evidence does 
emerge that contradicts a well-supported proposition within a mature theory, 
the result can be and usually is a breakdown of the theory. Rigid steel cables 
have some elasticity, but they will snap if overextended. What ensues is a 
revolution in science, a popular topic of investigation in the history of science.

These revolutions commonly occur when the science is extended beyond 
domains in which it was first developed and in which its evidential base is 
found. Newton’s seventeenth-century mechanics was developed on an evi-
dential base of slow-moving objects, such as falling stones and orbiting plan-
ets. Special relativity emerged when developments in nineteenth-century 
electrodynamics gave reliable results concerning much faster propagations at 
the speed of light. Special relativity, in turn, fails when we move to domains of 
intense gravitation, as Einstein found through his general theory of relativity. 

9	 For a review, see Gonzalez-Garcia (2003).
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All of these superseded theories, however, remain evidentially well supported 
as long as we consider only the evidence of the domains for which they were 
devised. Although general relativity and relativistic cosmology now tell us 
that Euclidean geometry can fail when applied to spaces of cosmic extent, 
Pythagoras’ ancient theorem remains as reliable as it ever was for the builders 
of houses, castles, and skyscrapers.

5.2. A Distributed Vindication
Although the inductive rigidity of a mature science is a commonplace for 
its practitioners, its demonstration would be a massive task. The network of 
interrelated propositions is enormous for any real science. A full display of 
the evidence and inductive relations supporting each goes well beyond what 
is possible in a book chapter. Indeed, for a well-developed science of great 
scope, displaying this rigidity in detail likely would be beyond the capacities 
of any single author. Rather, the requisite knowledge, though likely not fully 
known to any one scientist, is distributed over the full community.

This distribution is illustrated by our proper confidence in the laws of 
conservation of energy and momentum and our expectation that no proposal 
for a perpetual motion machine can succeed. Given the variety of types of 
proposals advanced over the centuries, a full inventory of the evidence against 
them would be prohibitively long. In each case, it is not enough merely to 
assert generically that the conservation of energy and momentum prohibits 
the operation of the machine. A full analysis requires us to display where 
the details of the mechanism proposed conflicts with other propositions in 
established science.10 Different proposals will call on different expertise in 
the different sciences in which the proposals are formulated. We can be con-
fident, however, that for each new proposal there is an expert in the commun-
ity familiar with the pertinent science and able to respond.

A recent illustration is the “EmDrive” proposal for spaceship propulsion 
brought to the attention of a larger scientific community by a New Scientist 
article (Mullins 2006). It consists of microwaves in a chamber such that, it is 
proposed, the forces exerted by the microwaves in many directions on the 
chamber walls do not entirely cancel out. They leave a small net force that 
can propel the chamber. In this, it is unlike any other scheme of propulsion 
known. All known schemes produce propulsion by driving some form of 

10	 For a history of these proposals, see Ord-Hume (1977).
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matter in the opposite direction to the thrust sought. A rocket expels hot 
gases. An airplane projects a current of air or hot gases behind it. A ship’s 
propeller projects a stream of water behind it. The forward force on the rock-
et, airplane, or ship is balanced by an equal and opposite (reaction) force on 
the driven matter, as required by Newton’s third law of motion. This driven 
matter carries rearward momentum. The conservation of momentum then 
assures us that the rocket, airplane, or ship gains forward momentum in the 
opposite direction. That is what accelerates it.

The EmDrive violates the conservation of momentum. It is a closed de-
vice supposed to set itself into motion without any ejected matter or a reactive 
force. Although the proposal is prima facie extremely implausible, interest in 
it has been remarkably stable and is matched only by the tenacity of skeptical 
critics. Part of the positive interest lies in wishful thinking. If it works, then it 
is a device that could power starships! Another reason for its endurance lies 
in the small magnitude of the force predicted. Detecting it requires the most 
delicate experiments. As critics have pointed out, such experiments can easily 
produce spurious results if all of the confounding effects11 are not properly 
controlled.

The resulting literature is too extensive to survey here. Recounting one 
exchange, however, is sufficient to illustrate how the distribution of exper-
tise works. Harold White and his collaborators at the NASA Johnson Space 
Center are proponents of these microwave propulsion systems. In a technical 
paper, White and March (2012) proposed that the reactionless thrust might 
arise through the Casimir force of the quantum vacuum. This is specialized 
physics. As they acknowledge in their introductory paragraph, classical elec-
trodynamics precludes a reactionless force. Indeed, that classical electrody-
namics conserves momentum is a result readily accessible to anyone with a 
serious, college-level course in electrodynamics. The Casimir effect, however, 
is more arcane. It is a force produced by quantum fields in a vacuum. Its basic 
mechanism is not so obscure. However, it is more demanding to develop a 
theoretical analysis of it that would securely preclude the reactionless force 
proposed by White and March. Such an analysis is within the expertise of 
Trevor Lafleur (2014), a physicist specializing in plasma physics. His analysis 
finds no basis for the reactionless force in the quantum vacuum.

11	 Such confounders can be subtle. For example, Tajmar et al. (2018) report such a confounder 
in the coupling between electrical cables in the experimental setup and the Earth’s magnetic field.
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6. Inductively Self-Supporting Structures
There are self-supporting inductive structures.

6.1. Inductive Closure: That Is All There Is
A self-supporting inductive structure is a set of propositions such that each 
one in the set is well supported evidentially; the evidence supporting it is in 
the set of propositions; and the propositions that warrant the relations of in-
ductive support are propositions within the set. This set is inductively closed.

We have already seen such self-supporting inductive systems in the 
small. If we take the background propositions from among which they pro-
ceed as fixed, then they are found in the examples above of pairs of mutually 
supporting hypotheses and of networks of inductive support such that the 
relations of support cross over one another in a bewildering tangle. The more 
difficult and interesting problem is whether such systems arise on the large 
scale and whether they are embodied by our mature sciences. I will argue in 
the subsection below that, if a mature science is properly characterized by the 
rigidity described in the previous section, then the material theory entails 
that it is a self-supporting inductive structure.

Before proceeding, it will be helpful to address directly the sense that 
such structures are paradoxical. They might sound akin to lifting oneself into 
the air by pulling on one’s own bootstraps. However, there is no paradox. If 
one can affirm that each proposition in the set is well supported individually 
in virtue of other propositions in the set, then there is nothing more that can 
be asked. The analogy to pulling oneself up by one’s own bootstraps fails.12  
A better architectural analogy is to some elaborate sculpture whose total sta-
bility appears to be impossible, yet it still stands. A simple example is the 
tensegrity icosahedron of Figure 2.5.

12	 In the imagined scenario, we hover in midair by pulling on our bootstraps. The pulling 
force is supposed to counter the force of gravity. This analysis neglects another force. The upward 
force from the bootstraps in tension is balanced by the downward force from the corresponding 
compression in our legs. The force of gravity remains unbalanced, and the eager bootstrap puller 
falls to the Earth.
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Figure 2.5. Plan and elevation of a tensegrity icosahedron;  
model and photographs by John D. Norton
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In a superficial description, it seems to be impossible that such a tense-
grity structure can stand. There are six rods connected only by cords in 
tension. One end of each of three rods rests on the table surface. All of the 
remaining rods and their parts are held suspended above the table surface. 
No rod directly touches any other rod. Their sole connections are through 
cords in tension. Such a structure, it seems, would collapse into a pile of rods 
and cords. Must not a rod, supported only by cords in tension, anchor those 
cords on another rod still higher in the structure? And must not that rod 
be held by cords tied to another still higher rod? And so on in an infinite 
regress? Yet there are only six rods, and it stands.

On closer examination, we can inspect any rod individually and affirm 
that it is supported securely by cords attached to both ends. That is true for 
any rod that we examine. That is all that is needed for the structure to stand. 
We need no additional, holistic condition beyond the condition that each rod 
individually is supported.

It is the same with self-supporting inductive structures. If we can affirm 
that each proposition individually is well supported inductively, then nothing 
further need be demanded. Of course, if we were tacitly to assume a hierarch-
ical structure for relations of inductive support, then these self-supporting 
inductive structures are impossible. Then at least some of the propositions 
needed to warrant all of the inductive inferences in the structure could not 
be inductively supported themselves within a finite structure. An infinite 
regress would ensue. However, as argued in detail above, this hierarchical 
assumption is incorrect.

One might still harbor reservations. These self-supporting inductive 
structures necessarily harbor circularities in the relations of support. That 
these circularities are benign I argue at length in Chapter 3, “Circularity.” 
Or one might accept that such structures exist but that they make the im-
port of evidence equivocal since our evidence might support many such 
systems. In Chapter 4, “The Uniqueness of Domain-Specific Inductive 
Logics,” I argue that a mechanism, native to the material theory of induc-
tion, precludes this danger.

6.2. Mature Sciences Are Self-Supporting Inductive Structures
We can now see that mature sciences are inductively self-supporting. This 
conclusion requires that the compass of a mature science is expanded enough, 
possibly even to embrace neighboring sciences, so that inductive closure is 
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secured. That means that we can select any proposition in the mature science 
and will find, within that compass, the evidence that inductively supports the 
proposition along with the propositions that warrant the inductive support.

This assertion of self-support supposes that we can expand the compass 
of a mature science sufficiently to secure closure. We can imagine that se-
quences of inductive inferences and warranting propositions form an infinite 
chain that outstrips finite description so that no finite expansion is adequate. 
I do not see how, as a matter of inductive logic, such a chain can be dismissed 
without further examination of its details. Perhaps it is possible. However, I 
do not see that it arises in actual practice in our mature sciences. If that were 
the case, then the inductive rigidity of a mature science would not be access-
ible to us. Yet our repeated experience in the history of science is that we do 
have mature sciences that display just the inductive rigidity described here.

7. Nonempirical Components of the Large-Scale 
Structure of Inductive Support
This chapter provides an account of the large-scale structure of inductive sup-
port that uses only materially warranted inductive inferences or relations of 
inductive support. One might accept that much of this large-scale structure 
is captured by the material theory. However, it might be tempting to imagine 
that the material account still needs to be supplemented by deeper, nonempir-
ical truths if the account of the large-scale structure is to be complete. Such 
deeper truths would be beyond normal evidential scrutiny and thus outside 
the reach of the material theory.

To make it plausible that no such added components are viable, in this 
section I consider and reject some candidates.

7.1. The Universal Logic of Induction
The least adventurous proposal for the added component is that the large-
scale structure requires at least some universal rules of inductive inference 
or some general calculus of induction. Perhaps we do need to assume the 
universal applicability of the probability calculus to all relations of induct-
ive support, as Bayesians seem to hold. The failure of all such universal rules 
has been argued at length in the Material Theory of Induction (Norton 2021) 
and reviewed in Chapter 1. There is no need for these arguments to be re-
peated here.
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7.2. Kantian Synthetic, A Priori Propositions
Might the very viability of induction at all depend on a Kantian synthetic a 
priori proposition? Such a proposition would be factual, but it would require 
no evidence since its truth — supposedly — can be established a priori: that 
is, independently of experience. Since the literature on this one idea could oc-
cupy many lifetimes, I dare express only my view that this literature has failed 
to provide viable examples of synthetic a priori propositions that could serve 
this function. Kant’s original proposals did not fare well. It might have been 
appealing to imagine in the eighteenth century that, as an a priori certainty, 
space could never manifest to us other than as Euclidean. However, those 
who have absorbed the variant spatial geometries brought by general relativ-
ity find it otherwise. The geometry of space is not something determinable a 
priori but a subject for empirical investigation.

The mode of failure of this one proposal for a synthetic a priori propos-
ition afflicts all of the proposals. If they make a definite, factual assertion, 
then they end up failing empirically. If they escape empirical refutation by 
vagueness, then they make no factual assertion and are empty.

7.3. Causality
Might we seek such a condition in a principle of causality? It is a Kantian 
principle and has an enduring popularity outside Kantian circles. The prin-
ciple asserts that every effect is brought about in a regular manner by some 
cause. Might such a supposition be a precondition for science and thus for 
inductive inferences in science? I have criticized this conception at length 
elsewhere.13 In short, the problem is that the terms “cause” and “effect” are so 
poorly specified that the principle is factually vacuous. We can always imple-
ment the principle in any scenario simply by artful choices for what the terms 
designate. Things in the world do connect in a myriad of interesting ways. 
What those ways are cannot be stipulated a priori but must be discovered 
empirically.

7.4. Mathematics
It is often found remarkable that mathematical descriptions of the world are 
so fertile and powerful. Might the supposition of a mathematical structure 

13	 See, for example, Norton (2003, 2016, 2024).
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of the world be a prior condition necessary at least for the physical sciences? 
There is much to say on this supposition. The main point of relevance is 
that the supposition itself is open to empirical testing. We have tested it and 
found that it applies to a surprisingly large range of phenomena. This means 
that, in the absence of any deeper, a priori vindication, it is a contingent fact 
to be learned inductively. In this regard, it is no different from the other 
warranting facts of the physical sciences. It is not an obstacle to the material 
warranting of inferences but a part of it.

An illustration shows how the proposition is not an a priori principle but 
open to the possibility of failure empirically. Much of modern physics pre-
sumes that its basic laws are to be written as differential equations. That fun-
damental presumption has been challenged by Stephen Wolfram (2002). His 
“new kind of science” seeks to replace these differential equations in physics 
by discrete algorithms and cellular automata. It is a most radical proposal. 
Wolfram has continued to press his approach, but its reception among physi-
cists remains poor. Their skepticism is not based on an assertion that, as an a 
priori matter, the physical world must be governed by differential equations. 
Rather, as Becker (2020) reports briefly, the doubt is that Wolfram’s methods 
can recover the present results of physics with the same scope and accuracy. 
The concern is empirical. The proposal lacks powerful enough inductive sup-
port to supplant existing methods.

Nonetheless, we can still ask what the prospects are for an a priori justifi-
cation for the mathematical character of nature. These prospects are poor, in 
my view, since it is doubtful that there is a deep truth in the supposed math-
ematical character of nature. Rather, I harbor an enduring concern that our 
deference to the power of mathematical descriptions is excessive. The suppos-
ed truth is empty unless the specific mathematics favored by nature is speci-
fied. Yet the only way that we know to identify the right mathematics among 
many choices is empirical. Thus, I find it hard to be moved by a celebrated 
and poetic confession attributed to Heinrich Hertz: “One cannot escape the 
feeling that these mathematical formulas have an independent existence and 
an intelligence of their own, that they are wiser than we are, wiser even than 
their discoverers, that we get more out of them than was originally put into 
them.”14 On the contrary, I am in awe not of the formulae but of the creativity 

14	 As quoted in Bell ([1937] 1953, 16). The quotation is unsourced and seems to be the 
origin of later repetitions. Recently, Shour (2021) has tracked down the origin of the remark in 
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of mathematicians who made them. New physical theories commonly come 
in clumsy mathematical clothing. Each new physical theory is taken as a chal-
lenge by mathematicians to find formulations in which the new theory looks 
mathematically simple and natural. The ensuing mathematics fits the world 
not through some preordained harmony but merely retrospectively through 
our ingenious and artful contrivances.15

To see the process, one need only recall the inadequacies of geometry as 
Euclid formulated it for the celestial mechanics of the seventeenth century. 
Kepler sought to use the Platonic solids in a nestled geometric structure to 
explain the relative orbital sizes of the planets. We now regard the whole pro-
ject not as reflecting the inner mathematical constitution of the world but as 
dependent on barren mathematical coincidences. One can only wonder at 
Newton’s labors in his Principia to develop his celestial mechanics using sim-
ple Euclidean geometry so poorly suited to the task. The theory becomes so 
much more elegant and transparent when re-expressed in the later methods 
of vector calculus, contrived in part precisely for this purpose.

7.5. The Ineffable
Finally, when explicit attempts to identify these nonempirical conditions fail, 
one might be tempted by the idea that these conditions are present but in-
effable. They are so deeply enmeshed in our ways of thinking that, it is specu-
lated, we cannot discern them. This appears to me to be the last defense of a 
failing program. These conditions have powerful consequences in connecting 
facts, and these connections are fully accessible to us. Yet the conditions that 
underwrite these connections are supposed to be opaque to us. The suppos-
ition of their invisibility makes them irrelevant. What matters are the contin-
gent connections that they supposedly induce among the facts of the science, 
and we can be secure in accepting these connections only if we can affirm or 
support them through methods accessible to us.

Hertz’s published writings. (I thank Marc Lange for letting me know of Shour’s paper.)
15	 For another expression of this view in counterpoint to Einstein’s later Platonism, see 

Norton (2000, Appendix D).
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8. Conclusion
The four claims defended in this chapter form the basis of the material under-
standing of the large-scale structure of relations of inductive support. These 
claims by no means exhaust the questions that one might raise about this 
large-scale structure and the accompanying skeptical challenges to the ma-
terial understanding. Some of these questions and challenges will be raised 
in the chapters to come in Part I, and the claims defended in this chapter will 
be used to answer them. I will ask in Chapter 3, if the structure is nonhier-
archical, does it harbor circularities? (Yes.) Are they benign? (Yes.) What of 
uniqueness? I will ask in Chapter 4. That is, can a finite body of empirical 
evidence, even if extensive, yield a unique, self-supporting structure? (Yes.) 
Or must we forever contend with multiple, competing, self-supporting struc-
tures? (No.) Relations of inductive support are nonhierarchical and circular. 
Does this mean, I will ask in Chapter 5, that the material theory of induc-
tion is just a coherentist epistemology? (No.) And finally, in Chapter 6, what 
of the problem of induction? Is the material theory prone to the traditional 
problem? (No.) Is there an analogous problem residing in a fatal regress of 
warrants? (No.)

These are all good questions and worthy challenges. I will show that 
the material approach to inductive inference has ample resources for an-
swering them.
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3

Circularity

1. Fear of Circles
The nonhierarchical structure of relations of inductive support admits circu-
larities. They are inevitable once we examine a large enough set of these re-
lations. The circles can be small, as when two propositions mutually support 
each other. The circles can be large, as when extended chains of relations of 
support eventually connect back to their starting points. Some will find the 
mere presence of these circles disturbing, apparently with good reason. In de-
bates, philosophical or not, defeat is assured if your opponent can expose your 
reasoning as circular. In formal structures, circularities are vicious and must 
be eliminated, often by the most elaborate of novel theorizing. The damning 
verdict is automatic and unanswerable. You have found a circularity? There 
is no need to waste any more thought on the enterprise. It is fatally flawed. 
The perpetrator of a circularity might be expected to resort to all manner of 
sophistry. But escape is impossible, and the ultimate collapse of the enterprise 
is inevitable.

Such is the fear of circles, horror circulorum. I have written this chapter 
for those in its grip. My goal is to provide them with therapy, for the hor-
ror is based on an oversimplified view of circularities. It neglects the many 
forms that circularities can take. Some are as fatal as this dark view fears. 
Many are benign, and, as we shall see, others are even essential to a theoretic-
al structure. To ban them entirely would restrict unnecessarily the scope of 
our theorizing. To show this, I provide a small classification of circularities, 
according to how they affect the logic of the structure in which they appear. 
It will show that the circularities of relations of inductive support are benign 
and even essential.
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There are three categories. The first is composed of the “vicious” circular-
ities explored in Section 2. They lead to logical inconsistencies and underwrite 
the dark view of circularities as fatal defects. When such circularities arise 
in inductive structures, they are transient and eliminated by suitable adjust-
ments to the propositions in the structures. The second, explored in Section 3, 
includes circularities in structures whose content is left indeterminate. They 
might merely be failed arguments or intermediate stages of development on 
the way to the third type. Or, if they are ineliminable, they might be the basis of 
a convention. The third, described in Section 4, encompasses the circularities 
that are part of a well-behaved structure whose content is uniquely defined, 
without contradiction. This is the case of the relations of inductive support of 
a mature science. In Section 5, I summarize how the circularities in relations 
of inductive support appear in the taxonomy. The mechanism identified in 
Chapter 4, “The Uniqueness of Domain-Specific Inductive Logics,” leads to a 
convergence toward inductive structures with univocal import.

	 That benign circularities are possible is the tonic that can cure horror 
circulorum. It tells us that mere identification of a circularity in some system 
is a starting point, not an end point. If we want to take the next step and damn 
the system for the circularity, then there is a positive obligation to establish 
that the specific form of circularity present is harmful. This cannot be done, I 
believe, for the circularities in a mature science. They are benign.

2. Vicious Circularity
A “vicious circularity,” as I use the term here, is a set of circular relations in 
some formal structure that leads to a contradiction.

2.1. The Idea
The term “vicious circle” has long been familiar in treatises on logic. Kirwan 
(1807) already found its use established. Curiously, the formal definition that 
he gave was merely of question begging, “petitio principii,” which I describe in 
more detail in Section 3. Kirwan wrote of 

. . . that mode of argumentation called the vitious circle [sic], in 
which one point is proved by another, and this other is proved 
solely by the first; so that the proofs are mutual and under the 
same point of view. (441–42; Kirwan’s emphasis)
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That what is described is really question begging is made clear by Munro’s 
(1850) treatise, whose exposition follows Kirwan’s closely. Munro illustrated 
the circle in the following way: 

The whole of Dr. Brown’s elaborate lectures on the nature of 
virtue amounts to nothing more than a vicious circle. We ap-
prove of actions, because they are right; and they are right, 
because we approve of them. (231)

More curiously, Kirwan’s own example was of a circle that produced a contra-
diction. His definition of a vicious circle was immediately illustrated by the 
self-refutation of skeptics:

Thus the sceptics argue that we ought to doubt of every thing, 
because human reason is fallible, and may deceive us. And 
since reason may deceive us, we should doubt of the validity of 
the reasons that induce us to doubt. (Kirwan 1807, 442)

The idea of a vicious circle as essentially leading to a contradiction was 
cemented by Bertrand Russell’s work in mathematical logic. In reflecting on 
Cantor’s proof that there can be no greatest cardinal number, Russell arrived 
at what came to be known as Russell’s paradox. It was given an early elab-
oration in “The Contradiction” (Russell 1903, Chapter X). The paradox con-
cerns sets and their members. Some sets can have other sets as their members. 
Naively, we easily accept that some can even be members of themselves. A set 
of sets can be a member of itself, for example. But what of those sets that are 
not members of themselves? What of the set of all such sets? The supposition 
that there is such a set immediately produces a contradiction. If it is a member 
of itself, then it is not a member of itself. But if it is not a member of itself, 
then it is a member of itself. The contradiction arises essentially through the 
circular relationship between the set and its members.

Although the paradox looks at first like a minor annoyance easy to cir-
cumvent, it was immediately recognized as a deep problem for set theory and 
the foundations of mathematics. It shows that sets cannot be defined merely 
as an extension of any property. That is, we cannot say “consider the set of all 
things that have property P,” where that property, expressed as some formula, 
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can be freely chosen.1 The most searching and elaborate investigations were 
needed to give set theory a noncontradictory foundation. One avenue was the 
development of the axioms of Zermelo-Fraenkel set theory. Russell’s path led 
to the theory of types, found in his joint work with Alfred North Whitehead, 
Principia Mathematica. There Russell and Whitehead reinforced the odi-
ous character of vicious circles. The first named section in the first volume, 
Chapter 2, is “The Vicious-Circle Principle,” and one of its formulations was 
that “whatever involves all of a collection must not be one of the collection” 
(their emphasis). Breaches of this principle, they announced, were to be called 
“vicious-circle fallacies” (Russell and Whitehead 1910, 40).

The vicious circle of Russell’s paradox derived from its imprudent use 
of self-reference. Such imprudence proved to be a fertile source of analogous 
paradoxes. Russell (1908) provided a convenient compendium. It began with 
the now classic Epimenides:

Epimenides the Cretan said that all Cretans were liars, and all 
other statements made by Cretans were certainly lies. Was this 
a lie? The simplest form of this contradiction is afforded by the 
man who says “I am lying”; if he is lying, he is speaking the 
truth, and vice versa. (222)

Its structure matches that of Kirwan’s (1807) example of the self-refuting 
skeptics. The inventory continued with Russell’s set paradox and a list 
of other related paradoxes familiar to readers of the literature, including 
Berry’s paradox, Richard’s paradox, and the Burali-Forti contradiction. 
These paradoxes provided the impetus for a century of philosophical work 
on truth in the foundations of formal logic. It was designed to find ways of 
precluding paradoxical sentences such as “this sentence is false” or finding 
unparadoxical ways of including them. The contradictions that follow from 
self-reference became one of the most powerful tools of formal logic. They 
are the basic device used in Gödel’s famous demonstration of the incom-
pleteness of arithmetic.

To philosophers who have any interest in formal matters, all of this is so 
elementary as to have become part of “what everyone knows.” At the same 

1	 This troublesome principle has been called “the intuitive principle of abstraction”  
(Stoll [1963] 1979, 6).
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time, these foundational investigations have forged an automatic and endur-
ing link between circularity and contradiction. So the horror circulorum is 
established.

2.2. Vicious Circles in the Material Theory of Induction?
Are the circularities of inductive support vicious? Nothing compels it. As we 
shall see below, one can have circularities that are not vicious: that is, they 
produce no contradictions. Such are the circles arising among the relations of 
inductive support for mature sciences. The inductive support of these mature 
sciences is secure and even unassailable, and it would not be so if contra-
dictions could be found within it.

This is the situation with the evidential support of a mature science. 
However, prior to this mature stabilization, contradictions can and do arise 
among the relations of support. Developing sciences are commonly built upon 
hypotheses whose evidential grounding has not been secured. Sometimes 
these hypotheses fail, and that failure manifests in contradictions. In 1917, 
Einstein presented the first relativistic cosmology using the assumption that 
the universe is static. His hypothesis was soon contradicted by Hubble’s dis-
covery of the recession of the galaxies.

These contradictions are not manifestations of an ineliminable, founda-
tional flaw in the very idea of inductive support. They are unlike the vicious 
circularities of naive set theory, whose circularities forced us to reconceive the 
very idea of a set and of the truth of propositions. Rather, they are a natural part 
of the work of fallible investigators. The structures that they produce are fallible 
but malleable, and it is a routine part of investigations to reform the structures 
to eliminate them. Einstein discarded his assumption of a static universe, and 
other theorists began to explore the notion of a dynamic, expanding universe 
compatible with general relativity. These contradictions and adaptations are of 
no more concern than an accounting error in a budget. Perhaps a receipt was 
mistyped or an expense neglected. It is a simple but tedious exercise to find the 
error and correct it. There has been no fundamental breach of a principle of 
arithmetic that would forever preclude the use of budgets.

The radiocarbon dating of historical artifacts, described in Chapter 10, 
“Mutually Supporting Evidence in Radiocarbon Dating,” shows how these 
contradictions arise within a circle and are remedied. Artifacts are dated by 
two means. The first is traditional historical analysis. The second is the meas-
urement of the radioactive 14C (“carbon 14”) content of the artifact. What 
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results are two sets of propositions, one historical and the other radiocarbon. 
Each should support the other. When radiocarbon dating methods were first 
explored, it soon became apparent that there were recalcitrant discrepancies 
in the dating provided by the two means. That is, there were contradictions 
within the circular relations of mutual support among the radiocarbon dates 
and historical dates.

The elimination of these contradictions became a major focus of research 
on radiocarbon dating methods. Radiocarbon dating depends essentially on 
knowing the original 14 C content of the artifact. That content is halved for each 
14 C half-life of 5,730 years. It was natural to suppose that these original levels 
match those of artifacts formed today. It soon became apparent, though, that 
this assumption was the source of the contradictions. These levels have varied 
over historical times. Theoretically grounded reconstruction of these origin-
al levels proved to be unworkable. Instead, these levels were reconstructed 
by means of the historically known ages of artifacts. The corrections needed 
were collected in a calibration curve, as is shown in the later chapter. Using 
such curves, the radiocarbon and historical datings of artifacts were adapted 
to one another in the precise manner needed to eliminate the contradictions. 
After that adaptation, each set of datings could be used to check and affirm 
the other set. The circularity among the two sets of propositions remained but 
without contradiction.

In a similar vein, the structures of inductive support for a mature science 
can be disrupted by new, empirical discoveries. The disruptions manifest as 
contradictions that can be removed by adjustments to the inductive struc-
tures. Because of the rigidity of relations of inductive support in a mature 
science discussed in Chapter 2, the adjustments likely will propagate through 
the entire structure. They will have revolutionary import.

Newton’s seventeenth-century mechanics prevailed for over two centur-
ies. Its inductive support apparently was unassailable. One of its basic results 
was that the velocity of a uniform observer was to be added to or subtracted 
from that of any propagation to recover the velocity that the observer would 
find for it. The new evidence of Maxwell and Lorentz’s nineteenth-century 
electrodynamics destabilized Newton’s mechanics. Under Einstein’s careful 
scrutiny, the electrodynamics revealed that light propagation violated this 
simple Newtonian result. The speed of propagating light was always the same, 
no matter the uniform motion of the observer.
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The contradiction was resolved when Einstein realized that space and 
time themselves, at high speeds, do not behave as Newton had concluded. 
The evidence and relations of evidential support leading to Newton’s theory 
were not discarded. Rather, their limited scope was now recognized. They 
could be applied only to systems moving at much less than the speed of 
light. This restriction was readily implemented. Newton drew the evidence 
for his mechanics from the motions of ordinary falling bodies, moons, 
and planets. These are all bodies whose speeds are much less than that 
of light. The evidential base of Einstein’s special relativity embraced that 
of Newton’s mechanics for lower speeds and that of electrodynamics for 
higher speeds. Einstein’s new physics required alterations to every physical 
theory in which space and time played roles. The alterations propagated 
through physics with revolutionary import.

3. Indeterminate Circularities
A less troublesome form of circularity arises when the circles produce no con-
tradictions but leave the structure indeterminate. The indeterminacy might 
not be obvious since the analysis might be offered as determinate.

3.1. Begging the Question
A familiar example, known since Aristotle, is circular reasoning, “begging 
the question”2 or petitio principii. It is a form of reasoning that pretends to es-
tablish a conclusion but only gives the illusion of doing so. Richard Whately’s 
(1856) Elements of Logic gives what seems to be a standard definition for 
nineteenth-century work.3 Alerting us in a preface (“advertisement”) that he 
uses brackets to indicate equivalent meanings, Whately tells us that

. . . “petitio principii” [“begging the question”] takes place 
when a premiss [sic], whether true or false, is either plainly 
equivalent to the conclusion, or depends on it for its own re-
ception. (184)

2	 This is the original sense, to which I adhere. A recent usage gives the expression the 
meaning of “inviting the question.”

3	 Mill (1882, 571) reports Whately’s treatment extensively.
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He continues to note the delicacy of the identification, for unobjectionable 
deductive inferences will have this character in case a premise entails the 
conclusion and vice versa. Such is the case for inferences that demonstrate 
the equivalence of two physical conditions, such as the equivalence of the 
“Thomson” and “Clausius” forms of the second law of thermodynamics. To 
be worthy of the label petitio principii, there must be some sense that the 
inference is used deceptively, to pretend that more is gained than really is, 
“obliquity and disguise being of course of most importance to the success of 
petitio principii . . .” (222).

Examples are easy to find. One is a religious figure or tract for which 
infallibility is to be concluded since the figure or tract itself declares its infal-
libility. The more interesting cases of begging the question arise when the 
circularity is sufficiently hidden that its presence is easily overlooked. Mill 
provides an example:

Plato, in the Sophistes, attempts to prove that things may exist 
which are incorporeal, by the argument that justice and wis-
dom are incorporeal, and justice and wisdom must be some-
thing. Here, if by something [Mill’s emphasis] be meant, as 
Plato did in fact mean, a thing capable of existing in and by 
itself, and not as a quality of some other thing, he begs the 
question in asserting that justice and wisdom must be some-
thing; if he means any thing else, his conclusion is not proved. 
(1882, 574)

A more extended example, I contend, arises in the many demonstrations of 
probabilism: Dutch book arguments, decision theoretic representations, the 
accuracy-based scoring rule argument, and so on. In The Material Theory of 
Induction (Norton 2021, Chapters 10 and 11), I argue that all of these proofs 
proceed by employing premises in which the basic assumptions of probabilism 
are already present in disguised form. When their presence is identified, the 
demonstration collapses. It then becomes easy to see that arbitrary adjustments 
to the rules of the betting scenario, to the properties of the preferences as-
sumed, or to the scoring rule used can lead to variant, nonprobabilistic calculi.

For my purposes here, the essential fact is that this sort of circular rea-
soning fails to determine the conclusion sought. Nonetheless, the conclusion 
sought might be true, or it might be false.
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3.2. Circularities that Produce Conventions
Similar indeterminacy-producing circularities arise among magnitudes in 
science. The indeterminacy is then often taken as evidence that the magni-
tude of some quantity can be set as a convention. Perhaps the best-known 
examples arise in relativity theory and in geometry. In his special relativity 
paper in 1905, Einstein argued that we cannot affirm the simultaneity of spa-
tially separated events, factually, by light signals (or, analogously, by any other 
means). Any scheme that uses light signals to ascertain the relative timing of 
such events requires that we know how fast light propagates in one direction. 
A natural scheme requires, for example, that we know that light propagates at 
the same speed from a place A to a place B as it does in the reverse direction. 
Yet to know this we must be able to determine how quickly light propagates 
from one place to another. This determination requires that we can already 
compare the timing of events at these two places.

Einstein (1920, 22–23) summarized our predicament: “It would thus ap-
pear as though we were moving here in a logical circle.” 4 The significance of 
this circle is that there are no independent facts separately for the simultan-
eity of spatially separated events and the speed of light propagating between 
them. Rather, we can choose freely as a convention either the simultaneity re-
lation or this speed. Then the other is determined. Here is how Einstein put it: 

That light requires the same time to traverse [the forward path] 
as for [the reverse path] is in reality neither a supposition nor a 
hypothesis about the physical nature of light, but a stipulation 
which I can make of my own free will in order to arrive at a 
definition of simultaneity. (23; Einstein’s emphasis)

His foremost expositor in this matter, Hans Reichenbach (1958, 126–27), 
summarized a more extensive analysis of the same circularity:

Thus we are faced with a circular argument. To determine 
the simultaneity of distant events we need to know a velocity, 
and to measure a velocity we require knowledge of the simul-
taneity of distant events. The occurrence of this circularity 
proves that simultaneity is not a matter of knowledge, but of 

4	 “Man scheint sich also hier in einem logischen Zirkel zu bewegen.”
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a coordinative definition, since the logical circle shows that a 
knowledge of simultaneity is impossible in principle.

Under Poincaré’s and Einstein’s inspiration, Reichenbach argued for a struc-
turally analogous convention that he called the “relativity of geometry” 
(Section 30). It depends on a similar logical circle. One can determine that the 
geometry of a space is Euclidean or otherwise by the expedient of surveying 
it with measuring rods. The essential condition is that the rods are rigid ones 
that measure distances truly. The complication, Reichenbach urged, is that 
rods can be acted on by what he called “universal forces” that equally dis-
tort all bodies. This complication creates the circle. We cannot know which 
universal forces, if any, are acting on a rod unless we already know the true 
geometry of the space. The circle is resolved by declaring that we may select 
the geometry of space conventionally. We merely posit the universal forces 
needed so that our rod measurements give us that geometry.

For completeness, I should mention that both conventionality theses 
were hotly debated in the later twentieth century without any clear resolution. 
Those opposed to the conventionality claims urged that there were other non-
conventional means to break the circles. We do not need to take sides in this 
debate for my concerns here.5 All that we need to see is that these circular de-
pendencies among physical quantities can leave the quantities indeterminate. 
Even a fairly modest empiricism must be troubled by the idea of quantities 
whose values cannot be determined by any physical measurement or obser-
vation. If the indeterminacy is sustained, then the comfortable resolution is 
to assert that there is no physical fact for these values. They may be chosen 
arbitrarily: that is, as a convention.

3.3. Indeterminate Circularities in Relations of Inductive 
Support
It is possible for this sort of circularity to arise among relations of inductive 
support. If they prove to be ineliminable, then we might expect an empirically 
minded scientist to proceed as above. If we are sure that no evidence can 

5	 However, I incline toward the anticonventionalist view. For an elaboration, see the 
chapters “The Conventionality of Simultaneity” and “Geometric Morals” in Norton (2007). 
Reichenbach’s supposition of universal forces is troublesome since, if the mode of analysis is 
accepted, then analogous suppositions can be used to establish the conventionality of any physical 
magnitude measured by some instrument.
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break the circle, then we have concluded that these are propositions whose 
truth is immune to evidential scrutiny. Such propositions are leading candi-
dates for conventional stipulation. Indeed, conventional stipulation, by the 
supposition of the case, will make no difference empirically.

The more common situation is the one that arises in the examples of cir-
cular dependencies recounted in the earlier chapters and explored in great-
er detail in the later chapters. The circularities might be such initially as to 
leave the quantities of interest indeterminate. However, further investigation 
brings new facts to bear that break the circularity. A focus on exactly such 
investigations can become a major stimulus for further research.

Dalton’s original atomic theory was trapped in a circle, as detailed in 
Chapter 11. To know the correct molecular formulae of substances, Dalton 
needed to know the relative weights of the atoms combined in them. But he 
could know those relative weights only if he already knew the molecular for-
mulae. This meant that his theory was compatible with water having a huge 
array of different molecular formulae: H2O, HO, HO2, and many more. He 
was free to stipulate any of them without fear that the meager evidence at his 
disposal would contradict his choice. Dalton chose HO. Had the circularity 
been unbreakable, we might have settled eventually on a curious sort of atom-
ic theory in which the relative masses of the atoms could be set arbitrarily, 
much as we arbitrarily set the zero point for the potential of a Newtonian 
gravitational field. As we now know, this freedom was transient. It still took 
over half a century of further work to bring enough additional facts to bear to 
break the circle and recover H2O.

The determination of celestial distances involved similar indeterminacy- 
producing circularities. Our earliest efforts to determine the distances to the 
Moon and the Sun were troubled by one. We could measure the angular sizes 
of these bodies so that, if we knew their diameters, then we could infer the 
distances to them. However, we needed to know just these distances to deter-
mine their diameters. In Chapter 12, “The Use of Hypotheses in Determining 
Distances in Our Planetary System,” I describe how diligent analysis by an-
cient astronomers was able to break the circularity and produce estimates of 
the diameters and distances.

A similar circularity appeared in Hubble’s classic paper in 1929 on the 
recession of the nebulae. Hubble had apparent brightness measurements for 
forty-six nebulae. To convert those measurements to distances, he needed to 
know the absolute brightnesses of these nebulae. Then, using the fact that 
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brightness diminishes with the inverse square of distance, he could recover 
the distances to the nebulae by comparing how bright they seem to be with 
how bright they really are. However, for twenty-two of them, Hubble lacked 
absolute brightness determinations. Absent other information, to know their 
absolute brightnesses, he first needed to know their distances. This closes 
the circle, leaving the distances to these twenty-two nebulae indeterminate. 
As recounted in Chapter 7, “The Recession of the Nebulae,” Hubble brought 
further statistical considerations to bear to break the circularity and recover 
determinate, if fallible, distances for these twenty-two nebulae.

In sum, this sort of indeterminacy-producing circularity can arise 
among relations of inductive support. It presents no foundational challenge 
to the very notion of inductive support. There are several possibilities, none 
foundationally troublesome. The circularities can be broken by further sci-
entific investigations. If ineliminable, then they might prove to arise from 
conventions. Or they might be ineliminable simply because of a paucity of 
evidence. Certain sorts of historical facts are obvious candidates. We might 
like to know many details of some ancient civilization. However, if sufficient 
archaeological evidence has not been preserved, then we have no choice but 
to settle for indeterminacy, not of the facts but of what the evidence can de-
termine about them. That is just how it should be.

4. Determinate Circularities
The most benign circularities are those that arise in determinate structures. 
Then none of the issues of contradiction or indeterminacy arises. This sort 
of circularity is so widespread and familiar that it rarely arouses complaints.

4.1. Elementary Examples
Simple computations of determinate magnitudes often involve circularities. 
An easy example is the computation of the black area B and the white area W 
of the yin-yang symbol of Figure 3.1.
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Figure 3.1. The yin-yang symbol

From the symmetry of the figure, we have

B = W

It is half of a circular dependency. Assuming that the total figure has unit 
area, we also have

W = 1 – B

This is the second half of the circular dependency. There is nothing trouble-
some in the circularity. The two equations are solved uniquely to give

B = W = 1/2

A slightly fancier computation is the standard way that the following in-
finite sum is evaluated:

S = 1/2 + 1/4 + 1/8 + 1/16 + . . .

In a familiar manipulation, the sum is doubled to yield

2S = 1 + 1/2 + 1/4 + 1/8 + . . . = 1 + S

This last equation expresses a circular dependence but is readily solved to give 
us the sum S = 1.

The only danger in this otherwise benign computation is that we must be 
assured antecedently that the infinite sum does have a definite, finite value. 
Even if we are not assured that the sum is finite, the circularity can still give 
us a determinate result. Consider
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S = 1 + 2 + 4 + 8 + . . .

It is doubled to yield

2S = 2 + 4 + 8 + 16 + . . . =  S – 1

This circular equation in S has two solutions. S = –1 can be discarded if we 
preclude a negative sum. The applicable solution is S = infinity.

Finally, we might ask whether these circularities could mislead us when 
the sum sought is badly behaved. Such is the case with Grandi’s series, whose 
sum we might try to write as

S = 1 – 1 + 1 – 1 + . . .

Of course, there is no such sum. The partial sums oscillate indefinitely be-
tween 0 and 1. If we proceed formally, we might write

S = 1 – 1 + 1 – 1 + . . . =  1 – (1 – 1 + 1 – . . .) = 1 – S

This circular equation in S has a unique, finite solution, S = 1/2. This value 
cannot be the ordinary arithmetic sum of Grandi’s series, for there is no such 
sum. However, if we consider generalized notions of summation that might 
be applied here, then we can take this circular dependency as part of the con-
ditions of adequacy of the generalized notion. An example of such a general-
ized notion is the Cesàro sum. It proceeds by taking the arithmetic average of 
the first n terms in the series. The sum of the entire series is just the limit of 
this average as n goes to infinity. The Cesàro sum for Grandi’s series is 1/2.6

4.2. An Extreme Example
These examples of benign circularity have been elementary. They serve to 
show, however, that circularities within well-defined structures are common 
and unremarkable. At the other extreme, we can have similarly benign circu-
larities in exotic structures. Most striking of them is one that directly chal-
lenges the historical stimulus of horror circulorum, Russell’s Vicious-Circle 
Principle. The principle prohibits circularities, such as sets that are mem-
bers of themselves. In response, the edifice of modern set theory, as exem-
plified in the Zermelo-Fraenkel system, was built precisely to preclude such 
circularities.

6	 In another approach, we consider S(a) = 1 – a + a2 – a3 + a4 – . . . = 1/(1 + a) for 0 < a < 1. 
We define S(1) = Lima1 S(a), and it does have the value 1/2.
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All of this changed with the appearance of Peter Aczel’s non-well-founded 
set theory or hyperset theory. It provides an account of sets that allows for 
just the sort of circularities prohibited by Russell’s principle but without in-
ducing his paradoxes. The details of the theory go well beyond what I can 
review here. Most briefly, the approach drops the Foundation Axiom of the 
Zermelo-Fraenkel system and replaces it with the Anti-Foundation Axiom. 
The import of the transition can be seen in the case of the simplest circularity 
in set membership. Following Barwise and Etchemendy (1987, 37–41), it is the 
set W, defined circularly by the fact of its self-membership:

W = {W}

That is, the set W is defined as that set that has itself as its sole member. If we 
substitute for W, then we can rewrite the set as W = {{W}}. Continuing, we have 
W = {{W}} = {{{W}}} = {{{{W}}}}. A full substitution leads to an infinite nestling 
of set memberships:

W = {{{{{{{ . . . }}}}}}}

Precisely this infinite nestling of set memberships is prohibited by the 
Zermelo-Fraenkel Axiom of Foundation. All such nestlings, according to 
it, must terminate finitely. Aczel’s Anti-Foundation Axiom allows it because 
it can be given a definite graph theoretic representation,7 and moreover the 
axiom asserts its uniqueness.

In this set W, we have just the sort of circularity that should trigger horror 
circulorum, a set that is its own member. However, that very circularity de-
fines a determinate, unique structure in non-well-founded set theory.

4.3. Intermediate Examples
Between these elementary and exotic instances of benign circularities, there 
are many more instances, all of them part of unremarkable, routine science. 
A great achievement of nineteenth-century physics was Maxwell’s electro-
dynamics. Its basis, in a modern formulation, are the four vector differential 
equations known as “Maxwell’s equations.” In the simplest case of electric 
and magnetic fields in vacuo, these equations fix the electric field strength 
vector E and the magnetic field strength vector H. Using the older Gaussian 

7	 It is just W → W → W → W → . . . .
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system of units (in which the equations are simpler) and standard notational 
conventions, the first two equations are just

∇.E = 0 and ∇.H = 0

These equations do not govern how the fields evolve over time, such as when 
electromagnetic waves propagate. Their time evolution is recovered from the 
next two equations, which exhibit a tight circular dependence. The third is

∇xH = (1/c) ∂E/∂t

It asserts that a time-varying electric field produces a rotational magnetic 
field, whose lines of force form circles around those of the electric field. The 
fourth equation is

∇xE = –(1/c) ∂H/∂t

It asserts an analogous process: a time-varying magnetic field produces a ro-
tational electric field, whose lines of force form circles around those of the 
magnetic field.

This circular dependence among quantities like E and H is common. 
A second and much more elaborate set of circularities arises in Einstein’s 
gravitational field equations for his general theory of relativity. They are 
used to determine the basic quantity of the theory, the metric tensor. It is, 
expressed in coordinate-based components, a matrix of ten quantities: gik = 
(g00, g01 = g10, g02 = g20, . . . , g33). These ten quantities are fixed by Einstein’s 
ten second-order, coupled, nonlinear, partial differential equations. Through 
their coupling, they harbor an elaborate set of circular interdependencies 
among the components gik.

Although circularity is inherent in both Maxwell’s equations and 
Einstein’s equations, they produce determinate structures: that is, allowing 
for standard-gauge freedoms, both admit well-posed initial value problems. 
Loosely speaking, this means that, if we determine the configuration of fields 
for the present moment, then their evolution into the future is uniquely deter-
mined. We have no trouble using these equations to determine precisely how 
radio waves propagate and how black holes form.

4.4. Determinate Circularities among Relations of Inductive 
Support
Circularities among physical quantities arise routinely as a benign feature 
of determinate structures in physical theories. Similarly, it is routine for the 
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structures of inductive relations in a science to harbor circularities, even as 
the bearing of those relations is univocal. Such is the most common case 
among the examples of circularities in inductive structures seen in this chap-
ter and elsewhere in this book. For example, Dalton’s original atomic theory 
was beset with a circularity. Subsequent research removed it and gave us de-
terminate molecular formulae and atomic weights. The ancient circularities 
that troubled the determination of distances to celestial bodies were resolved 
so that we now have precise determinations of them. Hubble’s analysis in 1929 
was hampered by a circularity that precluded the direct determination of dis-
tances to twenty-two of the forty-six nebulae in his data set. After further 
investigations, the distances to these closer nebulae are no longer in doubt. 
Although radiocarbon and historical dating of artifacts involves circular de-
pendencies, we now have sufficient cross-checking of the methods that the 
original uncertainties have been eliminated.

5. Conclusion
Circularities arise routinely among rich structures of evidential support. They 
are no mere accidents. Rather, they are part of what enables a mature science 
to establish the familiar solidity of its evidential support. For those in the grip 
of horror circulorum, their presence is a source of concern and doubt. In this 
chapter, I have sought to demonstrate that this fear is unfounded.

Some circularities are worrisome. Such are the vicious circularities 
whose contradictions forced us to abandon the naive notion of a set and to 
develop elaborate theories of truth. We saw in Section 2 that there can be 
circularities that produce contradictions in relations of inductive support. 
However, they are not of the same type that would force us to abandon the 
very idea of inductive support. They are transient difficulties resolved by fur-
ther investigations.

Other circularities do not produce contradictions but leave their struc-
tures underdetermined. That is troublesome only if it is pretended other-
wise. It is this deception that renders begging the question objectionable. 
Otherwise, these circularities can be employed usefully to establish the 
conventionality of a physical magnitude. In the case of relations of inductive 
support, these indeterminacies can arise in intermediate stages of investiga-
tion. If they prove to be ineliminable, then perhaps we have found a hidden 
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convention, or perhaps insufficient evidence exists for us to learn definitively 
about the target system.

Most commonly, the indeterminacies are eliminated by further investi-
gations. They lead to an inductive structure with univocal import character-
istic of a mature science. As Section 4 recounts, in this they are like many of 
the circularities among physical quantities in science untroubled by indeter-
minacies. That they arise commonly in mature sciences is not happenstance. 
In the next chapter, “The Uniqueness of Domain-Specific Inductive Logics,” 
I will argue that this uniqueness results from a definite mechanism. If there 
are competing systems, then the competition is unstable. If one system gains 
an advantage by learning facts favorable to it but weakening its competitor, 
then it follows from the material conception of inductive inference that this 
strengthens the inductive reach of the first while diminishing that of the 
second. As long as further evidence is available and investigators pursue it, 
this instability is self-reinforcing and leads to the unique admissibility of the 
first system.
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4

The Uniqueness of Domain-Specific 
Inductive Logics

1. The Challenge Posed
According to the material theory of induction, the inductive relations within 
a mature science form a self-supporting structure.1 That is, the propositions 
of the science derive their inductive support entirely from an extensive body 
of empirical evidence, such that each proposition in a theory is supported 
individually by this body of evidence through the mediation of other propos-
itions. Those other propositions are supported in turn in the same way.

This raises a challenge: what assurance do we have of the uniqueness of 
the resulting relations of inductive support? We should not expect such an 
assurance for a developing science sustained only by a fragmentary body of 
evidence. In such cases, the evidence is too weak to determine unique rela-
tions. But what of the case of a mature science in which the body of evidence 
is sufficiently expansive to provide strong evidential support for all of the 
propositions of the science? Is such a science uniquely supported? Might there 
be a second science whose propositions contradict the first science but is as 
strongly supported in all of its parts by the same body of evidence?

Were there such cases, the result would be inductive anarchy, and it 
would be of an especially troublesome kind within the context of the material 
theory of induction. Each set of facts proposed by each science would support 
its own inductive logic. Since the facts disagree, the resulting logics would 
not agree on the bearing of evidence. One could find propositions in a science 

1	 My thanks to James Woodward for helpful comments on an earlier draft of this chapter.
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supported inductively or not according to which of the inductive logics is 
employed.

Perhaps we can find reasons to expect such multiple systems. If we think 
of relations of support as analogous to relations of structural support in a 
building, then we can erect very different self-supporting systems of masonry 
on the same foundations. So why do we not have multiple systems of induct-
ive logic?2 The underdetermination thesis in its strongest form is the grim 
speculation that no body of evidence, no matter how extensive, can deter-
mine the content of a theory. Inductive pessimists who find this speculation 
appealing will expect multiple systems as a matter of course. My goal in this 
chapter is to refute this inductive pessimism by means of three arguments.

First, if the underdetermination thesis were true, then all sciences, even 
the most mature, would be awash in incompatible competitor sciences that 
enjoy comparable inductive support by the evidence. As a matter of history, 
this is not the case. Rather, as I will review briefly in Section 2, once a sci-
ence achieves maturity, its competitors are discarded, and a single science 
prevails and endures. Since the underdetermination thesis is accepted in 
some literatures as a truism of evidence, in Section 7 I review briefly why it is 
really a poorly grounded speculation, better called the underdetermination 
conjecture.

Second, competing relations of support derive from competing theor-
ies that make incompatible factual assertions. As I will argue in Section 3, 
the empirical character of science requires that such factual differences be 
reflected in differences of empirical evidence, or they lie outside the scope 
of empirical sciences. It follows that empirical evidence can always decide 
for some and against others of the competing theories. (I will develop this 
concern in Sections 7 and 8 in further discussion of the underdetermina-
tion thesis.)

2	 Here the analogy to buildings is weak and misleading, for we can imagine a flat terrain 
on which we can erect many great cathedrals of differing design, selected according to our whims. 
However, a body of evidence analogous to this featureless terrain is bereft of evidential value. 
It can sustain only the thinnest of inductive logics such as the relations of “completely neutral 
support” described in The Material Theory of Induction (Norton 2021). The analogy improves 
somewhat if we imagine building on a complicated and richly structured terrain that admits only 
specific modes of construction. The empirical foundation of our science should be structured 
richly enough to direct us to a fuller content of the science itself.



1214 | The Uniqueness of Domain-Specific Inductive Logics

Third, as I will relate in Section 4, there is a natural mechanism peculiar 
to the material theory of induction that favors the emergence of uniqueness. 
Understood materially, the competition between scientific theories is dynam-
ically unstable as long as continuing attention is given to the full exploration 
of the evidence. If one theory gains an evidential advantage over another, 
then that theory’s inferential powers are enhanced. According to the material 
theory of induction, facts warrant inductive inferences. Thus, the evidentially 
strengthened theory has secured more facts and with them a strengthened 
warrant to infer inductively to still more facts. The competing theory is cor-
respondingly weakened. If this process continues, then it amplifies the ad-
vantage in a positive feedback loop and leads one theory to dominate and 
eventually eliminate its competitors.

These instabilities are illustrated in Section 5 with several examples. Two 
later chapters provide more extended examples. In Chapter 14, “Stock Market 
Prediction: When Inductive Logics Compete,” we see that there are multiple 
systems currently in use for predicting price movements in the stock market. 
The chapter shows that they are in unstable competition and that a prop-
er pursuit and weighing of the evidence would lead to one dominating the 
others. In Chapter 13, “Dowsing: The Instabilities of Evidential Competition,” 
I recount how the practice of dowsing emerged in the sixteenth century. Even 
then it was a controversial practice. Two views competed: the proponents of 
dowsing and skeptics who argued that the practice was ineffective. Over the 
ensuing centuries, the evidential case for the skeptics made self-reinforcing 
advances that successively undermined the scientific credibility of dowsing 
until it collapsed.

In concluding sections, I consider standard challenges in the literature to 
the uniqueness claimed in this chapter. What of challenges to any theory by 
unconceived alternatives? Does not the already mentioned underdetermina-
tion thesis preclude uniqueness? What of observationally equivalent theories? 
In Sections 6, 7, and 8, I discuss each question and argue that none supports 
a cogent challenge. In Section 9, I argue that a material approach to inductive 
inference fares better at accommodating the uniqueness of inductive support 
of mature science than do formal accounts. In Section 10, I provide a brief 
summary and conclusion.
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2. The Uniqueness of Mature Sciences
Once a science reaches maturity in its domain of application, it stabilizes 
and remains fixed. The effect is so familiar that we need to recall only a few 
instances. At the level of precision required for virtually all applications, 
Euclid’s ancient geometry has sufficed up to the present day. Deviations from 
it arise, according to general relativity, only when we venture well beyond 
the realm in which Euclid’s geometry found its evidential support: that is, 
we explore systems with intense gravity or those on cosmological scales. At 
the level of precision for even the most exacting dynamic systems, Newton’s 
seventeenth-century mechanics has sufficed up to the present day. Deviations 
appear only in domains remote from those in which Newton’s mechanics is 
well supported evidentially. Examples of these remote domains are systems 
moving close to the speed of light or those at atomic scales, where quan-
tum effects are important. The chemistry of common materials is based on 
a system of elements secured in the nineteenth century, deriving from the 
work of Lavoisier and its codification in the periodic table of Mendeleev. 
The diversity of geological structures derives from Lyell’s early-nineteenth- 
century uniformitarianism, and the variety of life forms derives from 
Darwin’s mid-nineteenth-century theory of evolution. The examples can be 
multiplied. The uniqueness of mature sciences contradicts the proliferation 
predicted by the underdetermination conjecture.

It can be tempting to imagine that the dominance of one mature science 
does not derive from the weight of evidence. It is, we might speculate darkly, 
merely a reflection of local conditions such as external social factors or polit-
ical pressures or even the concerted fraud of scientists. Of course, aberrations 
are possible when local conditions eclipse the proper weighing of evidence. 
When they arise, such aberrations do not survive changes of location and 
time. Lysenko’s mid-twentieth-century corruption of biology in Soviet Russia 
depended on his political power and support. Lysenkoism failed when that 
support was lost. It was bad science, unsupported by evidence. What is dis-
tinctive about mature sciences is their uniformity across culture and time. 
The geometry of Euclid might have been codified in fourth-century BCE 
Alexandria, yet it long escaped its Alexandrian roots to become the geometry 
used internationally and for millennia, without serious challenge, until tiny 
corrections were required by general relativity in the twentieth century.
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3. Competition Is Empirically Decidable
Competing systems of relations of evidential support derive from compet-
ing theories. They compete in the sense that they make incompatible factual 
claims about the world. Since science is empirical, such competition cannot 
be sustained indefinitely. The empirical character of science requires that the 
factual claims of a theory must be supported inductively by the evidence of 
observation and experiment.3 To respect this empirical character, the com-
petition among incompatible factual claims of competing theories must be 
resolvable by observation and experiment. If their factual differences are be-
yond observation or experiment, then whatever constitutes these differences 
lies outside empirical science.4 It follows that there must be some possible ob-
servation or experiment capable of deciding among competing theories. The 
competition will be resolved as long as scientists are diligent and inventive 
enough in their pursuit of empirical evidence.

A radical, skeptical view holds that there are limited prospects for this 
sort of comparison. The worry is that observations are so theory laden that 
they are useless for comparisons of theories. Theories become, to use Kuhn’s 
(1996, Chapters X, XII) expression for paradigms, “incommensurable” or, 
more simply, beyond cogent comparison. I do not share this skepticism. 
Theories can be compared on their adequacy to the empirical evidence and 
are routinely thus compared. The best account of this comparison is provided 
by Nora Boyd’s (2018a, 2018b) empiricism, already mentioned in Chapter 2. 
Boyd shows that, if we are to decide between two theories on the basis of some 
item of evidence, the procedure is to wind back toward the provenance of the 
evidence. We continue until we have stripped away enough of the theoretical 
encumbrances to have freed the statements of evidence of entanglement with 
the theoretical presumptions of either theory.

3	 To preclude confusion, the empiricism advocated here is what I call “small e” 
empiricism. It is the widely held view that we can learn our sciences only from our experiences. 
It is distinct from antirealist versions of “big E” Empiricism, such as van Fraassens’ (1980) 
constructive empiricism in which all that we know of the world is only what we can or could 
experience directly.

4	 Further analysis might be needed, however. The two theories might appear to be 
different only since they merely represent the same facts in different guises. Perhaps one or both 
theories contain content superfluous to the empirical successes of the theories.



The Large-Scale Structure of Inductive Inference124

These decisions need not be immediate. However, when empirical evi-
dence favors one theory over another, it introduces an instability that must be 
resolved. Competing theories are responsible to all of the empirical evidence 
in their domains of application. A faltering theory can choose to ignore or 
discount unfavorable empirical evidence only temporarily while awaiting 
rescue from further evidence. Alternatively, the faltering theory can make 
internal adjustments to accommodate the unfavorable evidence. Such adjust-
ments weaken the theory and make it more prone to further weakening.

These considerations would not apply to pairs of theories in one domain 
whose empirical content is so disjointed that they never disagree on what is 
observable while still retaining their identities as distinct theories. Although 
I grant this possibility in principle, I have had trouble finding real examples. 
Candidates can be sought in theories that treat some domain at very differ-
ent scales both in size and in time. Perhaps neuroscience and psychology are 
cases in which both theories treat what is essentially just brain activities. They 
use different theoretical devices without intersecting or intersecting much 
empirically. Although this disjointed character is possible, neuroscientists in 
particular work energetically to breach it. I discuss another candidate briefly 
in Chapter 14, “Stock Market Prediction: When Inductive Logics Compete.” 
There are different systems for predictions of moves in stock prices. Insofar 
as one system might make predictions only in the shorter term and another 
might make them over the longer term, it might be possible for them to pro-
ceed from disjointed factual bases. Although this is a possibility in principle, 
it does not seem to have been realized.

4. Inductive Competition Is Unstable
When one theory, in competition with another, gains a slight evidential ad-
vantage, it follows from the material nature of inductive inference that this 
advantage will be amplified. Facts warrant inductive inference, and the more 
facts a theory has secured the more it can infer inductively.

The role of hypotheses in a developing science can make this process of 
amplification potent. As we have seen, when the body of evidence supporting 
a science is meager, or the import of the existing evidence has not yet been 
fully explored, the scientists proceed in their investigations by positing hy-
potheses of suitable strength to warrant their inferences. These hypotheses 
must eventually be given suitably strong evidential support. During the 
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preliminary period, it is possible to sustain multiple systems of facts and 
the inductive logics that they induce. Systems in competition will be distin-
guished by their employment of incompatible hypotheses. The viability of 
these multiple systems is fragile and unstable. If one system gains a small 
advantage through the import of novel evidence or a novel interpretation of 
existing evidence, then that small gain strengthens the system, in particular 
lending more support to its founding hypotheses. The competing systems are 
correspondingly weakened. This momentary advantage can persist and be 
amplified, or a weakened system itself can find new evidence that restores its 
support. However the competition might play out, its dynamics is unstable 
and overall tends to favor further strengthening of the system that has gained 
a small inductive advantage. The tendency then is for the advantaged system 
to be strengthened still further, whereas those in competition find it harder 
to recover. The dynamics drives toward the dominance of one system and the 
elimination of others.

5. Illustrations of Instability
A detailed examination of the competition described in Section 4 in particu-
lar cases would be lengthy. In later chapters, I provide such examinations in 
the cases of competing systems of stock market prediction and the historical 
competition between proponents and skeptics of dowsing. Here I can describe 
other cases only briefly. To do so, I draw from the convenience provided by 
Chapter 9 of The Material Theory of Induction (Norton 2021). As part of its 
analysis of the argument form “inference to the best explanation,” the chapter 
reviews pairs or sets of theories in competition. We can see in these exam-
ples how each theory gains an evidential advantage while disadvantaging its 
competitors. Here I will not recount the details of the competing theories but 
only the dynamics of the competition. I refer readers to this chapter in The 
Material Theory of Induction for further details and citations of the pertinent 
literature.

5.1. Darwin’s Origin of Species
In his Origin of Species, Darwin developed his theory of the origin of diverse 
biological forms through natural selection. It is portrayed throughout as in 
competition with the proposal that this diversity arises from the independent 
creation of each of these forms. Darwin argued that advantageous features 
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of organisms arise through one process, their selection by nature. However, 
independent creation must attribute each new feature to a new decision by 
a Designer to create each organism just as it is. More telling are examples of 
organisms with features that have no apparent advantage. Why do terrestrial 
geese, for example, have webbed feet when webbing is useful only in water? 
Darwin gives an evolutionary account: terrestrial geese evolved from aquatic 
geese. Independent creation can attribute the webbed feet only to a capricious 
decision by the Designer.

With each successful accounting of advantageous and otherwise anom-
alous attributes, Darwin’s original hypothesis of natural selection gains evi-
dential support. Each of these successes weakens the competing hypothesis 
of independent design, which accumulates a growing burden of independent 
and capricious design decisions. The accumulation of these successes ampli-
fies the evidential advantage of natural selection. It is moved from plausible 
speculation to a well-supported proposition while its competitor, independ-
ent creation, languishes.

5.2. Lyell’s Principles of Geology
Uniformitarian geology asserts that present-day geological features were 
produced slowly by processes still acting in the present. Lyell’s Principles of 
Geology made the case for it. Lyell was in a polemical dispute with compet-
ing catastrophist theories. They accounted for the same features by processes 
not currently acting and often of great violence. The initial advantage of the 
catastrophists was that it is natural to imagine great mountains and deep 
valleys as created by sudden, momentous events. Lyell chipped away at this 
advantage by showing how one geological feature after another can arise from 
currently acting processes. To use an example that he promoted, a competing 
account of fossils is that they arise in stone from a “plastic virtue, or some 
other mysterious agency.” Lyell, however, accounted for them in terms of the 
fossilization of ordinary living things.

The evidential dynamic is similar to that of Darwin’s case for natural se-
lection.5 With each uniformitarian success, Lyell’s uniformitarian hypothesis 
is strengthened and its evidential advantage amplified, whereas support for 
special and even mysterious catastrophist processes is weakened.

5	 That is not surprising since Lyell’s work was an inspiration for Darwin.
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5.3. Thomson’s Cathode Rays
J.J. Thomson’s paper in 1896 on “Cathode Rays” is celebrated as establishing 
that cathode rays consist of negatively charged particles, soon to be known 
as “electrons.” Thomson, at the time, was embroiled in a debate with Philipp 
Lenard over the nature of these cathode rays. Thomson advocated for a par-
ticle account. Lenard defended the competing view that they are radiative, 
which then meant that they were waves propagating in the ether. Lenard had 
argued against a matter theory of cathode rays akin to Thomson’s by noting 
that the rays persist even when the cathode ray tubes are completely evacu-
ated. That is, there is no matter in the tubes to comprise the rays. Only ether 
remains. The rays, he concluded, had to be processes in the ether. Thomson’s 
analysis depended on his experimental results that cathode rays are deflected 
by magnetic and electric fields exactly as if they are charged particles in rapid 
motion. Lenard struggled to accommodate these items of evidence in his ac-
count of ether. He could only speculate that Thomson’s magnetic field had 
somehow disturbed the ether so that the rays would bend. This vagueness 
further weakened his retreating theory.

Thomson pressed his advantage with a coup de grâce. Waves in the ether 
bend because their velocity varies from place to place. This is how light is 
refracted by media of differing optical densities. A uniform magnetic field 
would disturb the ether in the same way in every place. Thus, elementary 
wave optics precludes it from bending cathode rays. However, uniform mag-
netic fields do bend the rays. Thus, the evidence that gave strong support to 
Thomson’s particle theory is the same evidence that undid Lenard’s ether 
wave theory.

The evidential advantage of Thomson’s hypothesis is amplified by its 
accommodation of further evidence. For example, a metal vessel catching 
cathode rays becomes negatively charged, as one would expect if the rays are 
streams of negatively charged particles. An ether wave theorist might seek to 
dismiss this as an accidental artifact of the experimental arrangement. That 
escape ceases to be plausible once the charged particle hypothesis has an evi-
dential advantage.

5.4. Einstein and the Anomalous Motion of Mercury
In November 1915, an exhausted Einstein was putting the finishing touches 
to his general theory of relativity. In that month, he found to his great joy 
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that his new theory accounted exactly for a long-standing anomaly in the 
orbit of Mercury that so far had resisted explanation. His theory’s success 
with Mercury was immediately recognized as an evidential triumph. The 
history does not follow the pattern of one theory gaining a slight evidential 
edge, which is then amplified. The accounts competing with Einstein’s theory 
had all been discredited by the time of his completion of general relativity. 
However, if we consider the logical relations among the competing theories, 
independently of their order of emergence historically, then we see the same 
pattern of competition and amplification of slight evidential advantages.

The natural competitor to Einstein’s theory is that the anomalous motion 
of Mercury arises from gravitational effects fully within Newtonian theory. 
It results from the perturbative effects of further, unrecognized matter. The 
“further matter” hypothesis has an initial advantage. It had become routine 
for astronomical anomalies to be resolved by the identification of further 
matter. For example, irregularities in the orbit of Uranus could be accounted 
for by the mass of a more distant, unrecognized planet. That led to the discov-
ery of the planet Neptune. General relativity, however, is an exotic theory of 
extraordinary complexity mathematically. That it happens to return precise-
ly the anomalous motion of Mercury is interesting. But it is hardly decisive 
evidence for the theory when standard Newtonian theory has a proven track 
record of accommodating just such anomalies by prosaic means.

However, these prosaic means falter. The various formulations of the 
favored, further matter hypothesis successively fail when evidence capable 
of separating the competing formulations is accommodated. If the further 
matter was located in a planet, “Vulcan,” then its position was calculable, but 
no planet was observed there. Further possibilities located the matter in a 
slightly flattened Sun or in a dispersed cloud of matter surrounding the Sun 
that produces the zodiacal light. Neither proved to be viable. With each fail-
ure of the further matter hypothesis, the fortunes of Einstein’s theory rose. 
Another possibility was an adjustment to the exponent in Newton’s inverse 
square law of gravity. Although that exponent can be adjusted to accommo-
date the anomalous motion of Mercury, it fails to fit well with the motions of 
the remaining planets. Einstein’s theory, however, has no adjustable param-
eters. It cannot accommodate any other motion of Mercury. Seen against this 
accumulation of failures of competitors, Einstein’s theory rises as the only 
viable alternative.
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5.5. Big Bang and Steady State Cosmology
In the mid-twentieth century, the prominent decision for cosmology was be-
tween the big bang and steady state theories. Later textbook accounts point 
to Penzias and Wilson’s announcement in 1965 of their discovery of cosmic 
background radiation. It was, they said, the observational fact that confirmed 
the big bang theory and refuted the steady state theory. We are led to imagine 
the competition as ending abruptly.

That is not what happened. There was no immediate decision favoring big 
bang cosmology. It did gain a small advantage since the big bang cosmologists 
of the time — notably Dicke’s group at Princeton University — had predicted 
something like it. However, the big bang cosmologists of the 1960s were reluc-
tant to claim a definitive victory in print and with good reason, for the import 
of the evidence was still equivocal. Rather, it took roughly three decades for 
the decision between the two to be definitive.

Three developments were needed during these decades. First, consider-
ably more observational work was needed. We now report Penzias and Wilson 
as observing thermal radiation of a cosmic origin of 2.7K. However, to affirm 
that a radiation field is thermal requires measurements across the spectrum. 
Penzias and Wilson had only measured one wavelength, 7.4cm. Many more 
measurements were needed and in fact were undertaken in the decades fol-
lowing. The incontrovertible evidence of a thermal spectrum was provided by 
NASA’s COBE satellite in 1989.

Second, big bang cosmology needed to establish that it did indeed pre-
dict such thermal radiation. This required the development of precise cosmo-
logical models. In them, the radiation that we now measure is the remnant of 
radiation in a hot early universe that decoupled from matter when the cosmic 
fireball had cooled to 3,000K. That decoupled radiation is cooled to 2.7K by 
the expansion of the universe. Many components of this big bang account 
have to work correctly. The most troublesome is establishing that the early 
cosmic fireball was an equilibrium thermal system to which a temperature 
can be assigned in the first place. One could simply assume thermal equi-
librium from the outset. It would be better, however, if cosmic processes in 
the early universe would produce this equilibrium. That was precluded in the 
cosmological models popular in the 1960s and 1970s by the so-called horizon 
problem. It showed that matter in those models was expanding so fast that 
it could not interact enough to achieve thermal equilibrium. The standard 
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solution has been to invoke an early inflationary phase in the expansion of 
the universe.

The ready acceptance of this inflationary account illustrates the ampli-
fication of earlier successes. Until a big bang cosmology has some strong 
support, the inflationary addition is merely a speculative supplement to an al-
ready speculative theory. Once the big bang dynamics is supported, however, 
an inflationary phase is easy to accept as its natural completion.6

Third, it needed to be shown that steady state cosmology cannot accom-
modate the cosmic background radiation. This is by no means obvious, for 
thermal radiation can be acquired cheaply by theorists. All they need is some 
system to come to thermal equilibrium. Steady state theorists sought this 
through various avenues. One was that there is a slight opacity to space itself. 
Radiation from the continuous process of creation of steady state cosmology 
would be absorbed and reradiated through this slight opacity, thereby arriv-
ing at a thermal equilibrium. This proposal failed since the amount of opacity 
needed would be too great to allow observation of distant radio sources. Other 
efforts by steady state theorists, such as iron whiskers to thermalize starlight, 
also failed. This illustrates how an evidentially disadvantaged theory is fur-
ther weakened by the need for successively more far-fetched repairs.

These three developments led to the decision in favor of big bang cosmol-
ogy. That decision came slowly. Big bang cosmology enjoyed only a slight ad-
vantage at the outset. It grew steadily as observational results and theoretical 
developments favored it while efforts by steady state theorists to accommo-
date the same evidence faltered.

5.6. Arp and Bahcall on the Origin of Galactic Red Shifts
While the publicly more visible debate between big bang and steady state 
cosmologies proceeded, a narrower, less visible debate unfolded among 
astrophysicists and astronomers on the observational foundations of these 
cosmologies. Both big bang and steady state cosmologies assumed an expan-
sion of the universe. Its evidential support lay in the finding by astronomers, 
starting most prominently with Hubble in 1929, that the galaxies are receding 
from our galaxy with a velocity that, on average, increases linearly with their 

6	 However, doubts linger about whether a period of inflation really does solve the horizon 
problem or whether it merely relocates it into the need to fine-tune initial conditions in a still 
earlier phase of cosmic expansion.
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distances from our galaxy. (Hubble’s analysis in 1929 is the subject of Chapter 
7, “The Recession of the Nebulae.”) An inference to a distance-dependent vel-
ocity of recession proceeded from the observation that light from the galaxies 
is uniformly shifted to the red end of the spectrum, with the shift increasing 
linearly with distance. This red shift was interpreted as deriving from a vel-
ocity of recession.

That the red shift in a galaxy’s light resulted from its velocity of recession 
was disputed energetically by Halton Arp, a well-established astronomer. His 
case against this association grew in the 1960s and was regarded as sufficient-
ly serious to merit a direct confrontation at the meeting of the American 
Association for the Advancement of Science (AAAS) on December 30, 1972, 
in Washington, DC. There Halton Arp faced John Bahcall, an astronomer at 
the Institute for Advanced Study in Princeton, New Jersey, there to defend the 
standard view.

I need not here rehearse the details of the debate. I have recounted them 
elsewhere (Norton, 2023) and refer readers to this source for elaborations. 
What matters for my purposes here is that the confrontation of Arp and 
Bahcall provides another illustration of the unstable dynamics of competi-
tion among theories. Is the red shift of light from galaxies the result of their 
motion of recession, as Bahcall affirmed? Or is it the result of some other 
source, as Arp argued? Each laid out his case.

Bahcall based his case on the evidence, available in multiple forms, that 
the red shift of light from the galaxies varies roughly linearly with the dis-
tances to those galaxies. Establishing that linear dependence was his major 
concern. The connection to a velocity of recession was provided by the then 
favored expanding universe cosmologies: they all required a linear relation 
between the velocity of recession of a galaxy in our vicinity and its distance 
from us.

Arp’s case depended on his own extensive observations of galaxies. Arp 
had amassed an extensive collection of cases of galaxies that appeared to be 
physically connected but had very different red shifts. A physical connection 
would mean that the associated galaxies must be at roughly the same distance 
from us. Their marked differences in red shift could not then derive from a 
linear dependence of red shift on distance.

The two views in competition were sufficiently strong to merit serious 
examination at the AAAS meeting in 1972. However, the competition was 
unstable. Bahcall’s view was already the recognized view. As his position 
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strengthened subsequently, Arp’s dissenting view was correspondingly 
weakened.

We can trace this instability in the competition in three areas. The first 
area was new astronomical data, which continued to conform to Bahcall’s 
view. Arp’s view, however, was weakened by investigations indicating that the 
physical associations so central to his case were merely fortuitous alignments 
in our sky of objects separated by great distances.

The second area was the connection to cosmology. Bahcall’s view con-
formed to then standard cosmologies. If one applies general relativity to the 
sorts of matter distributions observed by the astronomers, then a dynamic 
cosmology ensues. It might be contracting or expanding. However, a static 
universe, such as Einstein had originally proposed in 1917 and Bahcall need-
ed, was unstable and thus precluded.

Just as Bahcall’s view was supported by then standard cosmology, so too 
his view of the linear dependence of red shift and distance provided support 
for the cosmology. It was the observational basis of the expansion of the 
universe. The outcome was a magnification of his evidential advantage. His 
evidential success strengthened support for expanding universe cosmologies, 
and their strengthened support then further enhanced his position.

Arp’s view, however, found no support in existing cosmology. If the red 
shift was not derived from a velocity of recession, then the ensuing cosmol-
ogy was one of an overall static mass distribution that lay outside standard 
cosmology. To preserve the viability of his critique, Arp needed to presume a 
static cosmology for which there was no real independent support. The evi-
dential processes that enhanced support for Bahcall’s view simultaneously 
weakened support for Arp’s view.

The third area in which the instability manifested was in the physical 
basis of the red shift. Bahcall’s standard view could employ a simple basis, 
ready to hand. The velocity of recession of galaxies in an expanding universe 
cosmology led directly to it. With that source precluded, Arp had no corres-
pondingly established physics from which to derive the red shifts. He resorted 
briefly to speculation, such as “tired light.”

Quasars proved to be a decisive test. They are luminous bodies with 
great red shifts. In the standard view, they must be very distant from us and 
thus have enormous intrinsic luminosity. Initially, in this view, it was hard 
to explain the enormous energies that it supposed for these bodies. Arp’s al-
ternative was that they are merely nearby objects, highly red shifted, but not 



1334 | The Uniqueness of Domain-Specific Inductive Logics

of such great intrinsic luminosity. Quasars were subsequently identified as 
the enormously energetic nuclei of a galaxy, likely holding a supermassive 
black hole. Once again the evidential success of Bahcall’s standard view was 
magnified. The view supported the immense energy and distance of quasars, 
and establishing a physical basis for their immense energy then enhanced 
support for Bahcall’s standard view. Arp, however, was unable to provide a 
cogent physical basis for the high red shift of quasars if they are assumed to 
be nearby objects.

As Bahcall’s standard view went from strength to strength, Arp’s dissi-
dent view faltered and was dropped from serious consideration.

5.7. More Illustrations
Chapter 9 of The Material Theory of Induction (Norton 2021) recounts two 
more competitions: oxygen versus phlogiston theories in the late eighteenth 
century and corpuscular versus wave theories of light in the nineteenth cen-
tury. The details of their competition are too involved to admit compact sum-
maries. I can extract one result, however.

At the crudest level, oxygen theory prevailed over phlogiston theory 
when Lavoisier’s experiments required that oxygen must be attributed to a 
conserved weight. Phlogiston theory faltered since the same experiments 
required that phlogiston be attributed to a dubious negative weight, levity. 
Similarly, a major factor in the decision on theories of light came with Fizeau 
and Foucault’s measurements of the speed of light in air and water. The cor-
puscular theory required the speed to increase in a denser medium, whereas 
the wave theory required it to decrease in a denser medium. The experiments 
found a decrease in the speed.

We see here that theories in competition are responsible to the same ex-
periments and that careful exploration can find experiments that only one 
of the theories can accommodate. Although we might doubt that just one 
experiment can be decisive, that responsibility still plays a major role in the 
dynamics that leads one theory to prevail over its competitors.

6. Unconceived Alternatives
The instability illustrated in these examples arises in the competition between 
two theories. Is that enough to make the case? Might we worry that there is a 
third, fourth, or fifth, as yet unimagined or unarticulated, theory lurking in 
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the wings, such that evidence cannot separate one of them from our favorite 
theory? The possibility of such further theories has been defended, notably by 
Stanford (2006), as “unconceived alternatives.”

They do not provide the sort of threat that one might imagine. They open 
the possibility that our current best theory might not be the one best sup-
ported by the evidence. That is not the question here. The question is wheth-
er the best supported theory is unique. That can be the case even when the 
theory that we happen to favor most strongly is not the best supported.

For unconceived alternatives to challenge uniqueness, they must provide 
us with a theory challenging our favored theory that is equally well supported, 
assuming that our favored theory is the best supported given the evidence, 
or the challenger theory must provide us with two unconceived alternatives 
equally well supported and still better supported than our favored theory.

The analysis already given indicates that such an achievement lies beyond 
what unconceived alternatives can supply. As long as these alternative theor-
ies differ in some factual claim, their difference must be open to adjudication 
by observation and experiment, even if that adjudication might not be prac-
tical immediately. Otherwise, their differences lie outside empirical science.7

7. The Underdetermination Conjecture
If one seeks literature to contradict this chapter’s claim of uniqueness, the 
natural reference is the “underdetermination thesis.”8 Loosely speaking, it 
asserts that no body of evidence, no matter how extensive, can pick out a 
theory uniquely as the one best supported inductively. The thesis is then used 
to advance the tendentious claim that our commitment to any theory, even 
those of the most mature sciences, always relies on the addition of other fac-
tors, possibly social, psychological, pragmatic, or conspiratorial. The thesis 
is mislabeled as a “thesis” insofar as theses are commonly taken to be prop-
ositions for which we have good evidence. It is, as I will now argue, merely 
a conjecture that has never secured proper support. It can be stated for my 
purposes here as

7	 The closest that the literature can provide, for these theories, balanced 
perfectly evidentially, arise as the observationally equivalent theories used to support the 
underdetermination thesis. In Section 7, I explain why these examples fail in their purposes.

8	 For an introduction, see Stanford (2017).
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Underdetermination conjecture: any body of empirical evi-
dence, no matter how extensive, will provide inductive support 
for multiple, mutually exclusive sets of propositions such that 
no one set is distinguished as enjoying the strongest support.

This conjecture should be distinguished from the weak, de facto claim that 
at some definite moment the extant evidence for a theory might fail to deter-
mine it. This circumstance commonly arises in newly emerging sciences. If 
the science matures, then it is merely a transient shortcoming. Otherwise, it 
is not.

The full conjecture is remarkably strong in its pessimism. It applies to all 
bodies of evidence and theory. Thus, it is astonishing that the conjecture has 
never advanced beyond what for many is merely a comfortable hunch. For 
them, the conjecture seems to be plausible and welcome. If one is inclined 
to it, then easy but inadequate examples might be enough motivation. The 
evidence can tell us of a correlation between children who watch cartoons 
and children who behave violently in the playground.9 That evidence leaves 
undetermined which causes which, or if there is a common cause of both, or 
if the correlation itself is mere happenstance. The example merely illustrates 
de facto underdetermination. Randomized control trials can decide among 
the possibilities.

Once it has been mentioned enough in the literature, the plausibility of 
the conjecture for some makes it easy to lose sight of the fact that there is no 
cogent demonstration of the conjecture. The arguments offered in favor of 
the underdetermination conjecture have been subjected to repeated analysis 
and have failed scrutiny. The arguments can be shown to neglect much of the 
existing work in inductive inference and to make dubious claims concerning 
observationally equivalent theories. Laudan and Leplin (1991) and Norton 
(2008) explore these failures, too extensive to be developed in detail here.

The simplest and most common demonstration of the conjecture rests 
on an inadequate account of inductive inference. A single body of empirical 
evidence can be entailed by many different sets of hypotheses, with suitable 
boundary conditions and auxiliary assumptions. With a naive hypothetico- 
deductive account of confirmation, it would then follow that they are 
all equally well supported inductively. This naive account has long been 

9	 This example is from the opening paragraph of Stanford (2017).
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subjected to criticism from many perspectives. Consider the standard geo-
logical and evolutionary account of the origin of fossils. Compare it with a 
revisionary theory claiming that the Earth and its rock strata were created 
five minutes ago, complete with an intact fossil record. Since both entail the 
same evidence, we would have to say that both are equally well supported. 
The standard response in the literature is sketched in Section 5, “Hypothetical 
Induction,” in Chapter 1. It is that bare hypothetico-deductive confirmation 
must be supplemented by further conditions to enable discrimination in such 
cases. We might be told, for example, to assign greater support to the more 
explanatory hypothesis or to the simpler one.

Within the material theory of induction, merely entailing the evidence 
by itself does not confer inductive support for a hypothesis or theory. The 
entailment must happen in the right way: each of the parts of the propos-
itions in the theory must be supported inductively in accordance with the 
requirements of the material theory. The supposition that the creation oc-
curred exactly five minutes ago, as opposed to ten or fifteen minutes or a 
millennium ago, must be supported. The revisionary theory can provide no 
discriminating evidence. In comparison, standard geology does provide ex-
tensive evidence for its chronology of the formation of the Earth.

The transition from hypotheses that merely entail the evidence to an 
evidentially well-supported body of propositions is difficult and can take a 
long time. We see in Chapter 12, “The Use of Hypotheses in Determining 
Distances in Our Planetary System,” that, in spite of sustained and ingen-
ious efforts, a system of orbital sizes for the planets of our solar system was 
not firmly established until the eighteenth and nineteenth centuries. Indeed, 
at the most general level, the nature of inductive inference is sufficiently ir-
regular, according to the material theory of induction, that there can be no 
sufficiently expansive framework sufficiently precise to admit a cogent dem-
onstration of the conjecture.

After I drafted this chapter, Sam Mitchell sent me his book published in 
2020. It also seeks to undo the skepticism concerning the reach of evidence 
associated with Duhem and Quine. His concern is specifically to respond to 
the claim that the import of evidence is always holistic. We cannot be assured 
that contradicting evidence refutes any specific hypothesis, the inductive 
pessimists insist. They suppose that any such judgment requires auxiliary hy-
potheses that can be the real culprits in the contradiction. Mitchell disagrees. 
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His analysis agrees on many points with the one developed here and is most 
welcome.

8. Observationally Equivalent Theories
Theories that have the same observable consequences are frequently displayed 
in the literature on the underdetermination thesis as “observationally equiva-
lent theories” or “empirically equivalent theories.”10 They serve to illustrate 
the underdetermination thesis since, it is asserted erroneously, no evidence 
can favor one over the other, and they are used in an attempt to make the case 
for the underdetermination thesis.

Do these observationally equivalent theories pose a threat to the unique-
ness urged in this chapter? Here I will recount briefly why they do not. I will 
use a simple example of a pair of observationally equivalent theories. For a 
more expansive inventory of examples and for more detailed, critical analysis 
of the underdetermination thesis along the lines below, see Norton (2008).

In the early seventeenth century, purely astronomical observations of 
the relative positions of the Sun, Moon, and planets could not discriminate 
two systems. The first was the familiar Copernican heliocentric system. The 
second was the Tychonic geocentric system. The observational equivalence 
followed assuredly from the simple fact that the Tychonic system could be 
generated merely by relocating the point of rest in the Copernican system 
from the Sun to the Earth but otherwise preserving all relative motions.

This example and the others like it fail to sustain any interesting conclu-
sions about the limited reach of evidence for two reasons. First, if the com-
peting theories differ in something factual, then the empirical character of 
science requires that the difference should manifest in something observable. 
The Copernican and Tychonic systems differ in whether the Earth or the Sun 
is at rest. Purely astronomical facts about the relative positions of the Sun, 
Moon, Earth, and other planets cannot decide, for they provide no notion of 
rest. They can be separated, however, if we ask after the physical forces acting 
among the bodies of the solar system. Newton’s later physics distinguished 
bodies moving inertially from those that accelerate. Inertial motion becomes 

10	 Here I resist this latter expression because of its vagueness. If two theories have 
identical observational consequences, it does not follow that they are supported equally by 
observations. That is, one can still be favored empirically over the other, as I argued in the 
preceding section.
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the Newtonian surrogate for rest. At most, either the Earth or the Sun can be 
in inertial motion. When we seek the gravitational forces acting between the 
bodies of the solar system, that body must be the Sun and not the Earth. We 
decide in favor of the Copernican system.11

This decision was possible because subsequent investigations in a broader 
domain, that of gravitational physics, provided the further evidence needed 
to separate the systems. This possibility remains for every case of observation-
ally equivalent theories. Insofar as they differ on anything factual and they lie 
within empirical science, we cannot preclude new evidence separating them. 
Indeed, we should expect determined investigators to find such evidence.12

Second, if we set aside the possibility of new evidence, then there is a 
second failing of all the cases of observationally equivalent theories in the lit-
erature. If the case is to be presented in the literature, then it must be possible 
to demonstrate in the confines of tractable publication that the two theories 
really are observationally equivalent. For example, there is a simple recipe 
for converting the Copernican system into the Tychonic system. We take the 
motions of the Copernican system and simply subtract vectorially from them 
the motion of the Earth. The result is a system of motions with the Earth at 
rest but agreeing with the Copernican system in all relative motions.

When such a translation is available, we cannot preclude the possibility 
that the two theories do not differ in anything factual. Rather, they are merely 
different presentations of the same theory. If we restrict considerations only 
to the relative positions of bodies in the solar system, then this is the case for 
the Copernican and Tychonic systems. They differ only in the designation 
of which body is at rest. But that designation lies outside the body of facts 
pertinent to our restricted domain. It is, as far as they are concerned, merely 
an empty stipulation.

11	 As an exercise, one might like to contemplate whether some distribution of masses 
might enable the Tychonic system to conform to Newtonian gravitation theory. One would 
require, for example, that the Earth must be much more massive than the Sun so that the Sun 
orbits the Earth and not vice versa. We can then no longer account for the motion of Venus, 
whose maximum elongation from the Sun is between 45º and 47º. It would be pulled out of its 
orbit around the Sun by the far greater attraction of the Earth or, failing that, display significant 
perturbations because of the Earth’s attraction.

12	 Here the historical sciences might provide an exception. The totality of evidence 
recoverable from some archaeological site, for example, might leave questions about the site 
unanswered. The failure is not the result of a lack of power of inductive inference but merely the 
paucity of evidence.
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This possibility threatens all cases of observationally equivalent theories. 
That they can be interconverted opens the possibility that they are merely the 
same theory. They differ only in their descriptions and in superfluous posits of 
no factual import. It is possible and sometimes enticing to mistake these posits 
as having factual import, even though they manifest in nothing observable. 
The most familiar example in real science concerns a suitably refined version 
of Lorentz’s ether-based electrodynamics and the relativistic electrodynamics 
that Einstein introduced in 1905 with his special theory of relativity. The two 
are observationally equivalent, and, as far as experimentation was concerned 
in the first decade of the twentieth century, they were treated as the same 
theory. However, Lorentz insisted that the ether factually has a state of rest, 
contrary to Einstein’s principle of relativity. The difficulty was that nothing 
observable — no experiment — could determine just which of the infinity 
of inertial states of motion was that ether state of rest. The mainstream of 
physics soon came to discount the ether state of rest as fictional.

9. Formal Accounts
Since the material theory of induction can meet the challenge, it is proper 
to ask whether formal accounts of inductive inference can also meet it. They 
do not do well with it and for reasons associated directly with their formal 
character.

First, as I argued at some length in The Material Theory of Induction 
(Norton 2021), the rules of various formal systems are poorly articulated, and 
an ambiguity in their import is inevitable. Consider, for example, the use of 
arguments by analogy to infer the properties of light. Light is analogous to 
sound in that both have a wave character. The pitch of sound is analogous 
to the color of light. However, sound needs a medium in which to propa-
gate, the air, analogous to the discredited nineteenth-century luminiferous 
ether. This difficulty does not arise in a different analogy. In it, light is taken 
as analogous to rapidly moving corpuscles. Then light, like corpuscles, can 
propagate in vacuo without the support of a medium. Yet the corpuscles of 
the nineteenth-century and earlier theories have no wave-like properties. Just 
how are we to weigh the conflicting successes and failures of these different 
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analogies? The general rules in the literature are too vague and hedged to give 
us a definite answer.13

Second, there are multiple formal schemes for inductive inference and no 
clear guides to which to use in any application. Take, for example, argument 
by analogy and inference to the best explanation. Neither of the analogies of 
light to sound and light to rapidly moving corpuscles recovers the phenomen-
on of light polarization. Sound waves are longitudinal, whereas polarization 
derives from the transverse character of light waves. That is, neither of the 
familiar analogies provides an explanation of polarization. Rather, the best 
explanation of polarization is that light is not analogous to either sound or 
corpuscles.14

Which formal scheme should be applied where? In particular cases, 
we might use prudence to decide and have things work out tolerably well. 
However, we do so in the absence of unambiguous metalogical rules.

Third, the Bayesians are confident that they have a solution. Their scheme, 
they believe, embraces and explains all others and can recover uniqueness 
through various limit theorems. This confidence can be sustained only as 
long as they ignore the enduring and insoluble problem of the priors. The 
Bayesian system is not and cannot be self-contained. The selection of prior 
probabilities must be made outside the normal processes of conditionaliza-
tion by Bayes’ theorem. Yet these priors can be so selected as to protect almost 
any bias. The simplest illustration arises when we have two theories T1 and T2 
that deductively entail the same evidence E. Then we have equal likelihoods: 
P(E|T1) = P(E|T2) = 1. An application of Bayes’ theorem then tells us that

P(T1|E) / P(T2|E) = P(T1) / P(T2)

That is, our comparative assessment of the relative support afforded to the two 
theories by the evidence, the ratio of posterior probabilities P(T1|E) / P(T2|E), 
is determined entirely by whatever external judgments led us to the ratio of 
prior probabilities P(T1) / P(T2). Bayesians face an unwelcome dilemma: either 
set these priors arbitrarily so that the final judgment is arbitrary, or seek 

13	 See Chapter 2 of this text and Chapter 4, “Analogy,” in The Material Theory of Induction 
(Norton 2021).

14	 Might we try the analogy to waves propagating along a flexible rope since they are 
waves of transverse displacement? This analogy fails to recover the behavior of polarized light in 
polarizing filters. The best explanation of the behavior is that, when it comes to polarizing filters, 
light is not analogous to waves on a flexible rope.
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guidance from other accounts of inductive inference. This problem troubles 
all formal calculi of inductive inference, or so I have argued in Chapter 12, “No 
Place to Stand: The Incompleteness of All Calculi of Inductive Inference,” in 
The Material Theory of Induction (Norton 2021). None can be self-contained 
but can only return nontrivial results insofar as nontrivial inductive content 
is introduced from outside the scope of the calculus.

It is fortunate that scientists do not try to conform their judgments of 
inductive support algorithmically to these conflicting and ambiguous formal 
schemes, for that would induce inductive anarchy.

10. Conclusion
In this chapter, I have sought to establish that the threat of multiple and 
equally well-supported systems of inductive inference has been parried. The 
escape derives from the empirical character of science. Competing systems of 
inductive logic derive their competing factual warrants from different theor-
ies within science. When these warranting facts differ, their differences must 
manifest in something accessible to possible observation, or they lie outside 
empirical science. When the pertinent observations are secured, they will 
strengthen one of the theories while weakening its competitors.

This escape is enhanced by the close integration of the facts of a science 
and its relations of inductive support, asserted by the material theory of in-
duction. The integration promotes a positive feedback dynamic that acceler-
ates the strengthening of one system of relations of support at the expense of 
its competitors. As more of the factual claims of a science are sustained by the 
evidence, the growing body of supported fact authorizes stronger inductive 
inferences within the domain of the science. That in turn leads to inductive 
support for still further facts. As one theory ascends, even if haltingly, its 
competitors will fall. When sufficient evidence is available, the accumulation 
of these processes will lead to the dominance of one science and its associ-
ated relations of inductive support while its competitors are eliminated. The 
uniqueness and inductive solidity of mature sciences in their domains are 
expected and explained.
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5

Coherentism and the Material Theory of 
Induction

1. Introduction
At the large scale, relations of inductive support within the material theory of 
induction are nonhierarchical and admit circles. In this aspect, these relations 
are similar to the relations of justification within coherentist theories of epi-
stemic justification in epistemology. To me, this was a welcome coincidence 
and offered the possibility that the coherentist literature would be useful in 
addressing outstanding issues in the large-scale structure of material relations 
of inductive support. Are circularities in the overall structure troublesome? 
Are they vicious? Do they leave inductive structures underdetermined? These 
questions do have satisfactory answers within the material theory. I have de-
veloped them in the two preceding chapters. In developing these solutions, it 
became apparent that the coherentist literature was consistently unhelpful in 
solving these problems. Further investigation showed that this was no mere 
oversight by coherentist philosophers. Rather, the framework of coherentism 
in epistemology is sufficiently different from that of the material theory of 
induction that its problems are only similar to but not identical with those of 
the material theory. Moreover, the resources accessible to coherentist analysis 
prove to be weaker than those accessible in the material theory, and coheren-
tists at best can provide weaker solutions to the problems.

In this chapter, I will review the similarities and dissimilarities between 
the two approaches with the purpose of substantiating the appraisal just 
given. In Section 2, I will recall the basic claims of coherentist theories of 
justification, and in Section 3 I will note the aspects in which they are similar 



The Large-Scale Structure of Inductive Inference144

to the large-scale structure of relations of inductive support of the material 
theory. In Section 4, I will catalog the many dissimilarities. Coherentism is 
holistic, whereas the material theory is local (Section 4.1). Coherentism takes 
global coherence as its basic relation, in which the material theory takes a local 
relation of inductive support as its basic relation (Section 4.2). Coherentism 
defines itself by its opposition to foundationalism in epistemology. As a re-
sult, it faces significant difficulties in accommodating the role of the world in 
its justifications. The material theory has no corresponding problem (Section 
4.3). Where the material theory is a theory of inductive logic independent of 
human cognition, coherentism takes beliefs as the relata for relations of justi-
fication and must give an account of how these relations appear in an agent’s 
cognition (Section 4.4). Finally, of lesser concern, the common exemplars of 
beliefs for coherentism are prosaic beliefs in ordinary life. The material theory 
is designed to be an account of evidential relations in the sciences. The result is 
that coherentists identify different problems from material theorists as press-
ing and emphasize different aspects of the relations of support (Section 4.5).

In Section 5, I will review the common problems facing both coherentism 
and the material analysis. Are the circularities in their structures harmful? 
Do these structures allow multiple, equally admissible systems? How does the 
world inform the relations of support and justification? Are the structure’s 
justifications indicative of truth? In efforts to answer these questions, it is 
argued that coherentism has fared poorly, whereas the material theory has not.

In Section 6, I will review the recent Bayesian literature on coherentism. 
The primary goal of that literature is to vindicate or disprove the idea that 
overall coherence leads to truth-conducive justification. That means that it 
proceeds from the holism of coherentism. Since the material analysis of the 
large-scale structure of inductive support is not holistic, the Bayesian analy-
ses are tangential to it. In Section 7, I will arrive at a negative appraisal of 
the entire Bayesian project of examining coherentism. It is misplaced since 
the notion of coherence itself is not a probabilistic notion. The probabilis-
tic formalization is premature since the notion of coherence remains poorly 
articulated. Finally, it follows from the material theory of induction that a 
probabilistic framework is not general enough to provide any universally 
applicable results on coherence. Results derived using the false presumption 
of universal applicability are ill founded.
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2. Coherentist Theories of Epistemic Justification
Coherentist theories of justification came to prominence in the later part of 
the twentieth century through the work of several philosophers, most notably 
Keith Lehrer (1974, 1990, 2000) and Laurence BonJour (1985). The literature 
seems to have lost its momentum in the early 2000s. Presumably, part of the 
reason was that BonJour (1999) abandoned the approach after recognizing 
the gravity of the problems facing it.1 The coherentist approach was subse-
quently revived by Bayesians, notably Bovens and Hartmann (2003) and 
Olsson (2005). These Bayesian accounts proceed from the assumption that a 
coherentist approach is already at hand. They seek to express and assess the 
core notion of coherence in probabilistic terms. Often their results contra-
dict coherentism. My impression is that BonJour’s The Structure of Empirical 
Knowledge (1985) provides the best articulated version of coherentism and in 
a form that can be connected most readily with the concerns of the material 
theory of induction. Hence, I will draw from his treatment.

The coherentist theories of justification (henceforth just “coherentism”) 
should be distinguished from a coherentist theory of truth, such as that ar-
ticulated in Rescher (1973). The latter gives an account of what it is for a prop-
osition to be true,2 whereas the coherentist theories of justification seek only 
the grounds under which an agent is justified in holding a belief.

The core claim of coherentism has been stable over the decades. Lehrer 
(1974, 154) gives it thus:

Justification is a reciprocal relation of coherence among be-
liefs belonging to a system. According to a coherence theory, 
a belief is completely justified if and only if it coheres with a 
system of beliefs.

More recently, Olsson (2017), in his article in the Stanford Encyclopedia of 
Philosophy, gives it thus:

According to the coherence theory of justification, also known 
as coherentism, a belief or set of beliefs is justified, or justifiably 

1	 “With the exception of work being done by Bayesians, few epistemologists are presently 
working on coherentism” (Murphy 2020, Section 6); “coherentism is pretty obviously untenable, 
indeed hopeless” (BonJour 1999, 139).

2	 They “hold that truth is to be simply identified with coherence” (BonJour 1985, 88).
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held, just in case the belief coheres with a set of beliefs, the set 
forms a coherent system or some variation on these themes.

The stipulations (Lehrer) “if and only if” and (Olsson) “just in case” are strong 
and prove to be troublesome. They reflect the conception of coherentism as 
the alternative to foundationalism.

In the foundationalist conception, beliefs are justified inferentially by 
other beliefs. A regress ensues as we trace back along the chains of the justifi-
catory inferences. The regress is halted by positing basic beliefs that terminate 
the chains since they themselves are not justified inferentially. The obvious 
candidates for these basic beliefs are those somehow given to us directly by 
experience. This direct connection with experience is what allows us or even 
compels us to accept them. The existence of some form of basic beliefs is the 
distinctive thesis of foundationalists.

In opposing foundationalism, coherentists seek to escape the regress 
argument by denying the linearity of relations of justification. Instead of 
tracing the chains of justification back to these anchoring beliefs, coheren-
tists urge that tracing the chains merely takes us on a tour of our system of 
beliefs that eventually will cycle back to our starting point. There is no need 
for terminal beliefs to anchor our chains of justification. All that is needed is 
that our full system of beliefs forms a coherent system.

3. Similarities
It is in the articulation of this last conception that coherentist writing comes 
closest to resembling the description in Chapter 2 of the large-scale relations 
of inductive support in the material theory of induction. BonJour introduces 
the coherentist escape from the foundationalist’s regress argument as follows:

According to the envisaged coherence theory, the relation 
between the various particular beliefs is correctly to be con-
ceived, not as one of linear dependence, but rather as one of 
mutual or reciprocal support. There is no ultimate relation of 
epistemic priority among the members of such a system and 
consequently no basis for a true regress. Rather the compo-
nent beliefs of such a coherent system will ideally be so related 
that each can be justified in terms of the others, with the direc-
tion of argument on a particular occasion of local justification 
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depending on which belief (or set of beliefs) has actually been 
challenged in that particular situation. And hence, a coher-
ence theory will claim, the apparent circle of justification is 
not in fact vicious because it is not genuinely a circle: the justi-
fication of a particular empirical belief finally depends, not on 
other particular beliefs as the linear conception of justification 
would have it, but instead on the overall system and its coher-
ence. (1985, 91–92; BonJour’s emphasis) 

Correspondingly, as we saw in Chapter 2, the material theory of induction 
introduces a large-scale structure of relations of inductive support that is 
nonhierarchical and contains circles of dependency of all sizes.

4. Dissimilarities
Although the similarities noted above are striking, there are many dissimi-
larities between coherentism and the material theory of induction. The theor-
ies differ on so much that they are best understood as distinct. In this section, 
I will review the main differences.

4.1. Holism versus Localism
BonJour (1985, 91) distinguishes “local” and “global” levels of justification. 
The local level contains justifications for a belief or small set of them that take 
the larger system of belief for granted. The global level concerns the justifica-
tion of the belief system in its entirety. It is this global level, BonJour argues, 
that has been neglected and becomes the basis of coherentism. Earlier he 
gives priority to the global over the local:

According to a holistic view [coherence theory], it is such a 
system of beliefs which is the primary unit of justification; 
particular beliefs are justified only derivatively, by virtue of 
membership in such a system. (24) 

He then insists on the importance of the global level for any admissible view:

For the sort of coherence theory which will be developed here 
— and indeed, I would argue, for any comprehensive, non-
skeptical epistemology — it is the issue of justification as it 
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arises at the latter, global, level which is in the final analysis 
decisive for the determination of empirical justification in 
general. (91)

More tersely, BonJour avers that “the basic unit of justification for a coherence 
theory is an entire system of beliefs” (103).

The conception is holistic. The justification for a belief derives from its 
relationship to a belief system that, in its totality, is coherent. This large-scale 
coherence is constitutive for justification.

This holistic conception brings recalcitrant problems for coherentism, for 
the strength of a belief system is gauged by its coherence at the global level. 
The obvious and immediate difficulty is that systems can vary in the strength 
of their coherence in different parts. How are these varying strengths to be 
combined into a single global measure? There are many ways to provide syn-
optic measures of varying quantities. When the quantities are numerical, 
we can choose from among arithmetic means, geometric means, medians, 
modes, and much more. Since we do not have a precise measure of coherence, 
we cannot even begin to ask which is the appropriate synoptic assessment. 
Thus, the strength of the justification of any particular belief in the system de-
pends on a univocal judgment of the strength of its coherence, where no such 
univocal judgment is available. The problem is compounded when we seek to 
decide among competing belief systems. We must arrive at judgments of each 
system’s coherence clear enough to sustain univocal comparison.3 This diffi-
culty will return below when I report that Bayesians have found it impossible 
to identify a single probabilistic measure of coherence.

The material theory of induction, by its constitution, is a local theory. It 
inverts BonJour’s conception of the global as the primary unit and the local 
as derivative. That is, materially, the basic relation is the inductive support 
accrued to each proposition by the evidence and warranting facts. The to-
tality of all of these relations is the large-scale structure. Whatever notion of 
support applies to this structure as a whole is derivative. It results from the 
combination of the local relations of inductive support. Similarly, that there 

3	 BonJour concedes this problem: “But the main work of giving such an account [of 
coherence], and in particular one which will provide some relatively clear basis for comparative 
assessments of coherence, has scarcely been begun, despite the long history of the concept” (1985, 
93–94; BonJour’s emphasis). 
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are circular interdependencies is not constitutive of inductive support. It is 
a derivative result recovered only after all of the local relations of inductive 
support are combined.

Since the material theory does not anchor the support of individual prop-
ositions to the coherence of the entire system, it escapes the difficulty just 
sketched for coherentists. The inductive support for some proposition is de-
pendent in turn on the inductive support for its evidence and warranting fact. 
We can trace this support back through the support for further propositions 
and might end up touring through much of the pertinent science. The overall 
strength of support for the original proposition derives from the summation 
of these relations of support. Such summations can deliver different overall 
strengths of inductive support for different propositions. They do not depend, 
as a holist would require, on a single measure of the coherence of the science 
as a whole.

Thus, the material theory accommodates cases of science in which co-
herence is strong in some places but not in others. It allows the strength of 
inductive support for individual propositions to reflect these differences, as it 
should if coherence matters at all.

Quantum mechanics is one of our most successful scientific theories. 
It underpins much of modern science, from particle physics to the physics 
of condensed matter and semiconductors, to modern theories of chemical 
structures and reactions, and to more. However, in places, it lacks coherence. 
Most notably, quantum measurement is a recalcitrant problem. There are 
multiple competing accounts of it. Their persistence is a clear sign that none 
is correct or, at least, that none is demonstrably so. A second area of difficulty 
is that quantum field theory breaks down at sufficiently high energies. This 
is revealed by the appearance of infinite energies whose presence needs to be 
controlled by computational techniques such as renormalization.

These weaknesses reflect a lack of coherence in those parts of quantum 
theory. They will affect some results of quantum theory more than others. 
These differences will then be reflected in differences of inductive support 
assigned by the material theory. For example, quantum theory has met with 
extraordinary success in accounting for the emission spectra of the elements. 
According to the material theory, the support for this account propagates 
through much of quantum theory. It does so in a way insensitive to the va-
garies of quantum measurement and thus can be strong. Matters are different 
with the familiar claim that quantum measurement as a “collapse of the wave 
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packet” consists of an instantaneous effect that has propagations faster than 
light. The strength of inductive support for this superluminal propagation 
depends in turn on the strength of support for this particular approach to 
quantum measurement. Its status remains unclear, and there are compet-
ing accounts of quantum measurement that do not include this collapse as a 
physical process.

The differences in inductive support for these two propositions are re-
covered fully from a summation of the iterated supports. Neither is traced 
back to a univocal measure of the coherence of quantum theory as a whole.

4.2. Coherence versus Inductive Support
The problems just sketched for coherence theories derive from the suppos-
ition that coherence is assessed holistically. Those problems are compounded 
by the lack of a clear articulation of the notion of coherence, whether under-
stood holistically or locally. At an intuitive level, the idea is simple enough. 
Coherence is a matter of how well “a body of beliefs ‘hangs together,’. . .” to use 
BonJour’s (1985, 93) expression. Giving a clearer account, however, presented 
BonJour with so many obstacles that he began with a disclaimer that his re-
sponse was “deliberate — though I think, justified — evasion” (94). What 
follows (94–100) is a four-component “outline” of the notion of coherence.  
A system of belief is coherent to the extent that it is

•	 logically consistent;

•	 probabilistically consistent;

•	 explanatory; and

•	 includes significant conceptual change.

Logical and probabilistic consistency are enhanced by the extent of inferen-
tial relations among beliefs. The explanatory strength of the system rises as 
the extent of the explanatory anomalies falls. Finally, the inclusion of signifi-
cant conceptual change is justified by noting that such changes commonly 
come with scientific advances.

The difficulties of this outline are all too clear. Since it depends on four 
conditions, the possibilities for internal conflict are great. For example, the 
early forms of quantum theory in the first decades of the twentieth century 
were extraordinarily explanatory. That was their appeal. However, equally 
clearly, they were logically inconsistent.



1515 | Coherentism and the Material Theory of Induction

The deeper problem is that articulation of the notion of consistency now 
depends on further theories, most notably of probability and explanation. 
The presumption is that, elsewhere, there are cogent accounts of each.4 That is 
not so. These are troubled notions. I spent considerable effort in The Material 
Theory of Induction (Norton 2021) showing that these notions fail to function 
as routinely expected. There is a default presumption that, whenever we have 
some sort of uncertainty or indefiniteness, probabilities capture it. Chapters 
10–16 were devoted to showing that this presumption has no good foundation 
and leads to mistaken judgments. Regarding “explanation,” there is no single, 
universal understanding of the term. In Chapters 8 and 9, I argued that there 
is no distinctive notion of explanation able to power inductive support, even 
in the canonical and celebrated examples of inference to the best explanation.

BonJour has no stomach for any real defense of his account. “A fully ad-
equate explication of coherence,” he admits, “is unfortunately not possible 
within the scope of this book (nor, one may well suspect, within the scope 
of any work of manageable length)” (1985, 93). Matters did not improve, and 
BonJour later wrote that “the precise nature of coherence remains a largely 
unsolved problem” (1999, 124).

Lehrer (1990, 2000) offers a different account of coherence. It is nar-
rower and takes explanation as the core notion within what he calls “The 
Explanatory Coherence Theory of Truth” (2000, Chapter 5). The basic defin-
ition is thus:

S is justified in accepting that p if and only if the belief of S that 
p is consistent with that system C of beliefs having a maximum 
of explanatory coherence among those systems of beliefs un-
derstood by S, and the belief that p either explains something 
relative to C that is not explained better by anything which 
contradicts p or the belief that p is explained by something rel-
ative to C and nothing which contradicts it is explained better 
relative to C. (2000, 105)

Impressive as this definition appears to be, its content is obscure as long 
as the core notion of explanation invoked in it remains vague. Subsequent 

4	 BonJour (1985, 93) writes that the “various detailed investigations by philosophers and 
logicians of such topics as explanation, confirmation, probability, and so on, may be reasonably 
taken to provide some of the ingredients for a general account of coherence.”
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discussion of the then current state of accounts of explanation proves to be of 
no help in clarifying the notion. Lehrer reviews the “immense literature” on 
the topic and arrives at the sober conclusion that

This literature illustrates most clearly the futility of hoping to 
find an explication of explanation to which we can fruitfully 
appeal in our articulation of the explanatory coherence theo-
ry. (2000, 106)

Lehrer (1999) provides a correction to his earlier accounts.5 Using formula-
tions similar to his (1990, Chapter 6; 2000, Chapter 6), he derives coherence 
from the notion of an “acceptance system”:

To summarize, my acceptance of p coheres with my evaluation 
system if and only if all objections to my acceptance of p are 
beaten or neutralized on the basis of my evaluation system. 
(1999, 247)

There is considerable discussion of how this coherence with the evaluation 
system is to be understood. The overall import is not clear, at least to me. 
Lehrer allows (1999, 246), for example, that logical inconsistency does not 
preclude further acceptance. There are repeated allusions to what is “reason-
able,” though “reasonable” is left as a primitive term.6 Curiously, the notion of 
explanation has all but disappeared from the account.

Thagard’s (2000) account of coherence as constraint satisfaction is heav-
ily influenced by computational perspectives. It is a significant work that de-
serves more attention than I have space here to give it. However, it shares the 
weakness of other accounts discussed here. It relies on further relations whose 
nature is unclear. The constraints that figure centrally in the account include 
those expressed in terms of explanatory and analogical relations. Their im-
port is translated into summable weights that provide a holistic measure of 
the system’s overall coherence (see, e.g., 7, 38, 43). Explanation and analogy 

5	 It is presumably Lehrer (1990), although the second edition (Lehrer 2000) has only 
minor changes.

6	 An earlier treatment by Lehrer based coherence on a notion of “comparative 
reasonableness.” He suggested that comparative reasonableness could be explicated in terms of 
comparative expected epistemic utility, “but no such account, including ones I have articulated, 
strikes me as quite adequate to my purposes” (1989, 253).
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are commonly invoked in such discussions, and their principled nature and 
relation to inductive support remain obscure, as I argued at some length in 
The Material Theory of Induction (Norton 2021, Chapters 4, 8, and 9).

In sum, these accounts of coherentism are compromised by a failure to 
articulate clearly the core global notion of coherence. Their efforts rely on in-
voking local relations, notably probabilistic and explanatory relations, while 
neglecting to give cogent accounts of them or admitting that none is at hand.

The material theory of induction faces no comparable problem. Its core 
notion is not global but the local relation of inductive support. I elaborated 
that notion extensively in The Material Theory of Induction (Norton 2021). 
The material theory succeeds just where coherentism fails, for the material 
analysis of probabilistic, explanatory, and analogical relations, as they figure 
in evidential support, supersedes the vaguer notions appealed to by BonJour 
and Lehrer above.

4.3. Coherentism versus Foundationalism
A principal motivation of coherentism is its opposition to foundationalism. 
The latter, as we saw above, asserts that there are certain basic beliefs founda-
tional in the sense that they do not require further justification for belief. This 
concept has proven to be the Achilles’ heel of coherentism. It leads directly to 
what BonJour calls the “input objection” (1985, 108) or the “isolation objec-
tion” (1999, 127). It is the obvious problem that one can have entirely fictional 
narratives that exhibit considerable coherence while having nothing to do 
with the real world. Creating such artifices is the trade of writers of fiction. In 
BonJour’s version, it asserts that

Nothing about any requirement of coherence dictates that a 
coherent system of beliefs need receive any sort of input from 
the world or be in any way causally influenced by the world. . . .  
Such a self-enclosed system of beliefs, entirely immune from 
any external influence, cannot constitute empirical knowledge 
of an independent world. (1985, 108)

The difficulty facing coherentists is that they need to allow for input from the 
world without conceding to foundationalists. Chapters 6 and 7 of BonJour 
(1985) contain a labored, extended struggle to allow worldly inputs to beliefs 
without being forced to make this concession. The result, as summarized by 
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Murphy (2020, Section 5a), is that these inputs arise through “cognitively 
spontaneous beliefs” that are nonvoluntary and an “observation[al] require-
ment” that stipulates that such inputs are required.

This challenge of allowing worldly inputs without conceding to founda-
tionalists has been a defining issue for coherentism. It is based, as far as I can 
see, on a false dilemma demanding that we choose either to be coherentists or 
to be foundationalists. Haack (1993, 19) has argued cogently that a serviceable 
epistemology arises from a combination of foundationalist and coherentist 
positions. Her “foundherentism” is initially formulated as follows:

Foundherentism may be approximately characterized thus:

(FHl) A subject’s experience is relevant to the justification of 
his empirical beliefs, but there need be no privileged class of 
empirical beliefs justified exclusively by the support of experi-
ence, independently of the support of other beliefs;

and:

(FH2) Justification is not exclusively one-directional, but in-
volves pervasive relations of mutual support.

The material theory of induction is almost entirely indifferent to this 
issue, which has so controlled coherentist thinking. On the local level, the 
theory proceeds without any need for inputs from the world. The theory can 
authorize inductive inferences in mathematics.7 When treating the large-
scale structure of inductive support for a science, the analyses of this volume 
do presume that science is empirical. That is, the content of the science is to 
be supported by empirically accessible facts of the world. That condition is es-
sential to the argument of Chapter 4 for the uniqueness of the inductive struc-
tures of a mature science. According to it, the decision among competing 

7	 Goldbach’s unproven but widely believed conjecture is that any even number can be 
expressed as a sum of two prime numbers. A familiar heuristic argument for it notes that, the 
larger the number, the more ways in which it can arise as the sum of two numbers, increasing the 
chances that two of them are prime. This is an inductive argument warranted by the supposition 
that the two numbers summed are distributed independently enough of the distribution of primes 
that it is highly likely always to include a pair of primes. For this and more examples, see Franklin 
(2013, 18).
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theories eventually will be made empirically, as long as those theories are 
genuinely distinct empirically.

This application of the material theory requires only that the overall sys-
tem of propositions in some way gains inputs from the world in order that 
the resulting science is empirical. The epistemologies under discussion here 
are foundationalism, coherentism modified to allow worldly inputs, and 
foundherentism. All allow for inputs from the world. Insofar as each of their 
schemes can be reimplemented within relations of inductive support, the ma-
terial theory of induction can work with all of them.

Indeed, coherentism and material theory differ in the roles that circular-
ities play in their structures. For coherentism, the circularities among relations 
of justification arise explicitly as a way to block the foundationalist regress 
argument for basic beliefs.8 For the material theory, as we saw in Chapter 2, 
circularities block a different regress argument. Without them, warranting 
facts would require further warranting facts of ever greater generality.

4.4. Beliefs versus Propositions
A major difference, implicit in the discussion above, can now be made explicit. 
It concerns the relata of the relations of justification or inductive support. For 
coherentists, the relata are the beliefs consciously held by some agent. For the 
material theory of induction, the relata are the propositions of an inductive 
logic, independent of any agent’s thoughts. There is no presumption that these 
propositions are the objects of belief in any consciousness. Both BonJour and 
Lehrer are internalists in their coherentism. That is, the justification of some 
belief must be accessible cognitively to the agent. In this regard, they are clos-
est to the relations of inductive support of the material theory of induction, 
for it is also supposed that these relations can be made explicit. In an ex-
ternalist version of coherentism, if there is such a thing, the justifications of 
beliefs would not always be accessible.9 They might arise through some causal 
process that connects with the world, though that process is not cognitively 
accessible to the agent.

This difference adds a burdensome extra layer of complications to coher-
entism. Here is how BonJour expresses it:

8	 See, for example, BonJour’s (1985, 87) introduction of circularities.
9	 BonJour (1985, 101–02) dismisses an externalist coherentism as unacceptable since it 

would be weaker than an externalist foundationalism.
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But if the fact of coherence is to be accessible to the believer, it 
follows that he must somehow have an adequate grasp of his 
total system of beliefs, since it is coherence with this system 
which is at issue. One problem which we will eventually have 
to confront is that it seems abundantly clear that no actual be-
liever possesses an explicit grasp of his overall belief system; 
if such a grasp exists at all, it must be construed as tacit or 
implicit, which creates obvious problems for the claim that he 
is actually, as opposed to potentially, justified. (1985, 102; Bon-
Jour’s emphasis) 

That the relations of justification must be thought consciously or at least ac-
cessible cognitively 10 to some agent does indeed create problems for coher-
entism (and internalist epistemologies in general). The difficulties are so well 
known that I need only briefly mention them here. Such epistemologies face a 
dilemma. Are the justificatory relations those of an ideally rational agent? Or 
are they those of the actual cognitive processes of real people?

If the relations are those of ideal rationality, then the normative in-
junctions of the theory are unrealizable by ordinary human cognition. 
Establishing the logical consistency of even a fairly small set of beliefs is so 
computationally burdensome that ordinary minds cannot do it.11 These com-
plications already arise in the easiest case of deductive relations. They are no 
easier when it comes to securing probabilistic and explanatory consistency as 
varieties of coherentism require.

If, instead, coherentism pertains to the actual reasoning processes of 
human agents, then the method of analysis is misplaced. How we actually 
reason is properly the subject of empirical psychology.12 A long-standing and 
well-established tradition in empirical psychology has shown just how poor 
we are in ordinary deductive and probabilistic reasoning.13 That we human 

10	 For example, BonJour writes that “a person for whom a belief is inferentially justified 
need not have explicitly rehearsed the justifying argument in question — to others or even to 
himself. . . . What is required is rather that the inference be available to the person in question, so 
that he would be able in principle to rehearse it” (1985, 19; BonJour’s emphasis).

11	 For details, see Cherniak (1984).
12	 Goldman (1985) has investigated the relationship of epistemology and psychology.
13	 For a small sample of this enormous literature, see Kahneman, Gilovich, and Griffin 

(2002).
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reasoners conform to the conditions of coherence requires that we have 
achieved deductive and probabilistic consistency in our belief systems or as-
pire to it. According to empirical studies in psychology, this goal seems to be 
beyond the reach of most human agents.

BonJour does not, as far as I can see, directly address this dilemma. 
Instead, he identifies a reflexive concern of the type that seems to trouble 
inward-looking philosophers but few others. Believers must have a correct 
grasp of their own system, and the correctness of this grasp in turn is a fur-
ther belief that requires justification. The impending regress is blocked, ac-
cording to BonJour, by a presumption, called the “Doxastic Presumption.” Its 
content is developed over several pages and, in one formulation (1985, 105), 
asserts that “I assume that the beliefs constituting my overall grasp of my 
system of beliefs are, by and large, correct.”

The material theory of induction is merely a codification of induct-
ive logic. It escapes all of these problems. There is no requirement that its 
relations of inductive support are to figure in their totality in some agent’s 
consciousness. This abstract conception, however, creates the danger that the 
theory is one of ideal rationality as inaccessible to human agents as the ideal 
rationality of coherentism. Although that danger is present, the burden taken 
by material theory is considerably less than that of coherentism.

In the simplest cases, the material theory allows scientists to answer 
specific questions. Does the evidence of the cosmic background radiation 
provide more support inductively for big bang cosmology than steady state 
cosmology? The material theory of induction can answer that question with-
out taking on the burden of establishing the coherence of the entirety of the 
scientist’s belief system.

The more complicated case does concern the entirety of the inductive sup-
port for a particular science. Is it, informally speaking, coherent? Coherentism 
requires a single agent to be able to affirm coherence for the totality of that 
agent’s belief system. The corresponding coherence of the evidential support 
for a science does not reside in the satisfaction of some overarching concept 
of coherence. Rather, it is simply the summation of many local relations of 
support, such that, in mature sciences, each proposition is well supported. 
Since the overall burden consists merely of many local parts, there is no re-
quirement that any individual scientist has a grasp of their totality. Rather, 
the task is distributed over the entire community of scientists. For a modern 
science of any depth, this distribution is inevitable, for full comprehension of 
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all of the details of its evidential support lies outside the cognitive powers of a 
single scientist. Experts in one wing of the science rely on the affirmations of 
experts in the other wings and conversely. The process continues over time. 
Great professional rewards await a scientist who can find evidence of internal 
inconsistencies that threaten or overturn an existing science. The result is 
that new generations of scientists scrutinize the consistency and evidential 
foundations of existing sciences anew. Mature sciences generally survive this 
scrutiny, indicating their solidity. When they do not, a new science emerges.

4.5. Examples
Associated with these last differences is one of lesser importance that I find 
to be striking nonetheless. Coherentist epistemology is designed to apply to 
beliefs of the most mundane variety. Here are a few examples from BonJour 
(1985) typical of the literature in the epistemology of belief:

I believe that the piece of paper upon which I am now typing 
is the very same piece of paper upon which I was typing late 
yesterday afternoon. (20)

As I sit at my desk (or so I believe), I come to have the belief, 
among very many others, that there is a red book on the desk. 
(117)

. . . the car going by is a Lotus. . . . (119)

. . . a figure . . . coming towards me . . . is my friend Frank. . . .  
(119)

There is a man lurking in the bushes. (120)

The material theory of induction is designed for relations of inductive support 
in science. There typical propositions that count as empirical evidence are 
things such as the following.

Space is filled with electromagnetic radiation of a thermal 
character with a temperature of 2.7K.

The perihelion of Mercury advances by forty-three seconds of 
arc per century more than predicted by Newtonian gravitation 
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theory, after perturbations from other planets are accommo-
dated.

The difference is that the exemplar beliefs of coherentism concern ordinary 
experience. The corresponding empirical propositions in the material theory 
of induction are remote from ordinary experience. No one just notices a 2.7K 
radiation heat bath in the depths of space or that Mercury is moving just a 
bit too fast over the span of a century. These propositions are secured only 
after considerable investigation and analysis and are major pieces of science 
in their own right.

It would be rash to infer from these differences that justification in the 
epistemology of belief and justification in inductive science are qualitatively 
different. Indeed, I incline toward the idea that justification in both is the 
same in their basic natures. Einstein (1936, 349) remarked that “all of sci-
ence is nothing more than the refinement of everyday thinking.” However, 
there might still be great differences in the refinement: that is, the details and 
thoroughness of execution. When someone accepts that there is a red book 
on the table, the justifications might proceed with similar principles as those 
of the cosmologist who accepts the 2.7K background microwave radiation. 
Where the first is a snap judgment that happens in moments, the second is 
underpinned by decades of careful, explicit analysis. These differences matter 
greatly. In judging that there is a red book on the table, we pay scant attention 
to the possibility that our experience is the result of some other cause. For the 
cosmologists, it took decades of measurements at many frequencies before 
the cosmic radiation could be affirmed to be thermal at 2.7K and not of some 
other nature.

Furthermore, the differences in the exemplars indicate that the two ap-
proaches will prioritize different aspects of the relations. Hence, BonJour frets 
extensively about the reflexive problem of whether we are justified in our own 
beliefs about our justifications (addressed in the Doxastic Presumption). In 
contrast, quantitative methods, such as those found in elaborate statistical 
testing, are important in inductive inferences in science but do not figure in 
the simple examples routinely used in coherentist epistemology.
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5. Problems of Coherentism
My initial hope, upon recognizing the similarities between coherentism and 
the large-scale structure of inductive inference, was that coherentist analy-
ses might be a useful resource in resolving problems in the material theory. 
This hope has not been realized. The two ventures do share similar problems. 
However, it seems to me that coherentism has fared worse in addressing them, 
either because of its weaker suppositions or because of its failure to address 
the problems better.

The most serious problem facing both systems, in my view, is that they 
harbor circularities of justification and support. As noted in Chapter 3, it is 
all too common to find that the mere presence of such circles is sufficient for 
rejection without any further analysis. I have already quoted BonJour’s (1985, 
91–92) response in Section 3, to which the reader is now referred. The specific 
response to the threat of circularities in that passage is this:

And hence, a coherence theory will claim, the apparent circle 
of justification is not in fact vicious because it is not genuinely 
a circle: the justification of a particular empirical belief finally 
depends, not on other particular beliefs as the linear concep-
tion of justification would have it, but instead on the overall 
system and its coherence.

BonJour’s later analysis gives the same response:

Justification, when properly understood, is ultimately nonlin-
ear or holistic in character, with all of the beliefs in the sys-
tem standing in relations of mutual support, but none being 
epistemically prior to the others. In this way, it is alleged, any 
true circularity is avoided. Such a view amounts to making the 
system itself the primary unit of justification, with its compo-
nent beliefs being justified only derivatively, by virtue of their 
membership in an appropriate sort of system. (1999, 123; Bon-
Jour’s emphasis) 

I have quoted this response at length to make its inadequacy clear. The re-
jection of a linear dependence of relations of justification does not eliminate 
circularities in the interdependencies within the overall system. We are urged, 
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incorrectly, to think that the potential harm of these circularities evaporates 
because the justification of particular empirical beliefs depends on the whole 
system. Murphy’s (2020, Section 2b) encyclopedia review recalls BonJour’s 
holistic attempt at escape, finds it lacking, and suggests that circularities are 
benign if they are within sufficiently strong relations of mutual support. Of 
course, nothing about strength precludes a vicious circularity or the possibil-
ity of arbitrariness.

A stronger response could have been given by coherentists along the lines 
given in Chapter 3. First, benign circularities are prevalent enough in sci-
ence that there can be no default supposition that a circularity is harmful. 
Rather, we have a positive obligation to establish that some specific circular-
ity is harmful and how it is so. The two dangers explored in Chapter 3 were 
the contradictions of vicious circularities and their opposite, indeterminate-
ness through the possibility of multiple structures that satisfy the circular 
relationships. In Chapter 3, I argued that both dangers are precluded in the 
support relations of a material theory of induction by the dynamic character 
of scientific investigation. Vicious circularities are removed when found, and 
indeterminateness triggers further investigations that eliminate it (unless we 
have a true convention). Surely a similar argument can be made concerning 
circularities among the justifications of beliefs.

This concern about circularity does not figure in BonJour’s (1985, 106) list 
of “three standard and extremely forceful objections”:

(I) the alternative coherent systems objection;

(II) the input objection; and

(III) the problem of truth.

BonJour’s narrative struggles with all three, whereas the material theory does 
not.

I have already discussed the second “input” objection in Section 4.3. It 
is an unnecessary weakness that derives from the damaging conception of 
coherentism as opposed to foundationalism. There is no corresponding prob-
lem for the material theory.

The first objection is that there might be multiple and equally admissible 
coherent systems that would undermine the justification of the one chosen. 
The difficulty that BonJour finds in answering derives directly from his 
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conception of coherentism as the alternative to foundationalism. As a result, 
his coherentist analyses seek to favor coherence over some sort of founda-
tional input from experience. As we saw in Chapter 4, the material theory can 
argue for the uniqueness of relations of support in a mature science precisely 
by relying heavily on empirical evidence to decide among competing systems. 
BonJour (1985, 143) does start to make an argument along these lines. He 
argues that, once observational input is considered, “it is no longer clear” that 
multiple and equally admissible systems can be sustained in the long run. 
That it is no longer clear is not enough. The possibility is there. In Chapter 4, 
where empirical evidence is given a greater role, this long-term possibility is 
eliminated through the empirical character of science: if the long-term ac-
cumulation of empirical evidence cannot separate two theories, then we have 
grounds for concluding that they are not distinct in their physical content in 
the first place.

The material character of inductive inference also provides an added 
resource: it induces an instability in competition among theories such that, 
when one theory has gained an advantage evidentially, that advantage is 
amplified, driving the competition toward resolution in its favor.

The third objection is that mere coherence among beliefs is not enough 
to establish that they are truths of the world. The obvious counterexamples 
are the coherent narratives of works of fiction. Mere coherence does not es-
tablish truth, unless one is willing to adopt a coherence theory of truth, which 
BonJour (1985, 109), prudently, is unwilling to do. This problem can be amel-
iorated if coherentism is not conceived as opposed to foundationalism, for 
then truths of the world can enter more freely as foundational experiences.

The material theory has no corresponding problem of truth. It does not 
seek truth conduciveness in some single, global property of the relations of 
inductive support, such as coherence. Rather, the task is distributed over all 
of the inductive relations. It is the burden of the individual warranting facts 
of an inductive inference to be truth conducive for that inference. When a 
fact warrants an inference to a proposition or warrants its inductive support, 
what is inferred or supported is the truth of the proposition. The truth condu-
civeness of the full structure of relations simply results from the accumulated 
truth conduciveness of the individual relations of support.
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6. Probabilistic Accounts of Coherence
In recent decades, there has been vigorous activity in writing on coherentism 
among Bayesian philosophers of science. There have been two strands of an-
alysis. In the first strand, probabilistic vindication or its negation is sought 
for the coherentist’s notion that coherence among beliefs either constitutes 
their justification or, more weakly, enhances their justification. Olsson (2005), 
for example, argues that this notion is not vindicated probabilistically but 
disproven. Huemer (2011) finds that the probabilistic analysis is inadequate 
for a disproof while providing an apparently cogent probabilistic implemen-
tation of coherentism. Further possibilities of probabilistic implementation 
are considered in Wheeler (2012). In the second strand, a single probabilistic 
measure of coherence is sought, such that belief systems that score higher 
are better justified. Once again the leading results are negative. Bovens and 
Hartmann (2003) offer a proof that no single probabilistic measure of coher-
ence can serve this function, but they suggest that a quasi-ordering14 by prob-
abilistically defined coherence is possible. These negative results have been 
disputed. Schupbach (2011) defends a coherence measure devised by Shogenji. 
To complicate matters, Shogenji (2013, 2544) then uses probabilistic analysis 
to argue for an anticoherentism in which coherence reduces the transmission 
of probabilistic support. These last contributions are only part of a vigorous 
debate. For a survey, see Olsson (2017, Sections 6–8).

Since there is no consensus among Bayesians on these results, it would be 
of little value to pursue the details any further. Rather, I will assess at the most 
general level the relevance of this work to my project. The principal goal of the 
Bayesian analyses has been to capture the essential intuitions of coherentism 
within a probabilistic framework and thereby to provide some deeper foun-
dation for it or, pessimistically, a definite refutation of it. That is, they seek to 
vindicate probabilistically the holistic approach of coherentism or to refute it. 
As I have indicated above, the material theory does not adopt coherentism’s 
holism. This means that these probabilistic proofs or refutations are of tan-
gential relevance only to the project of this book.

However, since the probabilistic analysis aspires to conclusions concern-
ing justification considered at the large scale, we might wonder whether it 
can connect somehow with the large-scale conceptions of the material theory 

14	 That is, the relation is reflexive, transitive, but not complete.
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concerning relations of inductive support. My overall assessment is that these 
Bayesian analyses provide very little of value to someone who does not share 
the radical Bayesian goal of reducing as much as possible of the epistemology 
and philosophy of science to repeated applications of Bayes’ theorem. I defend 
this assessment in the next section.

7. Why the Bayesian Analysis of Coherence Fails
Overall, the Bayesian analysis of coherentism has proven to be, at best, an 
infertile but benign distraction for non-Bayesians and at worst a positive mis-
direction. There are three reasons for this.

7.1. The Coherence of Coherentism Is not a Probabilistic Notion
Non-Bayesian coherentists have included probabilistic notions in their efforts 
to explain coherence. Sometimes coherence is manifested within a system of 
probabilistically related beliefs. However, the notion of coherence itself is not 
fundamentally a probabilistic notion, such that all of its cases can be reduced 
to results expressible probabilistically.

This nonprobabilistic character is evident in important examples. One of 
the best known arises in the competition between Ptolemaic and Copernican 
astronomy. The two systems could be adjusted so that they provide the same 
predictions for planetary motions. However, as detailed in Chapter 12, “The 
Use of Hypotheses in Determining Distances in Our Planetary System,” the 
Copernican system was more coherent than the Ptolemaic system. The latter 
system needed an independent epicycle-deferent construction for each planet. 
The former system resulted from the recognition that many of the Ptolemaic 
circles were not independent motions but actually the superposition of the 
Earth’s orbital circle on those of the other planets.

This greater coherence of the Copernican system was a key argument in 
its favor. It was widely recognized in the century after the death of Copernicus. 
Most importantly, it was not probabilistic in nature. It was then expressed 
and debated without any need for probabilistic conceptions.

7.2. Formalization Is Premature
Coherentism proceeds on the assumption that the coherence of this last ex-
ample and others like it is the manifestation of a general notion of coherence 
that can serve to justify the system of beliefs in which it arises. The problem 
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for coherentists is that a general characterization of coherence remains elusive 
and is one of the recalcitrant problems of coherentism. Just what is coherence?

It is easy to become impatient with the recalcitrance of such a problem. 
Then one can be tempted by the idea of a formal framework in which the solu-
tion to the problem is reducible to a precise mathematical question whose an-
swer is provided by mathematical demonstration. In the seventeenth century, 
Leibniz offered the prospect of a universal language with this perspective in 
mind: “When there are disputes among persons, we can simply say: Let us 
calculate, without further ado, and see who is right.”15 A similar optimism 
motivates the Bayesian analysis. Olsson (2017, Section 5) writes that

the arguably most significant development of the coherence 
theory in recent years has been the revival of C. I. Lewis’s work 
and the research program he inspired by translating parts of 
the coherence theory into the language of probability.

He proceeds to promise the benefits of the translation:

The probabilistic translation(s) of coherence theory has made 
it possible to define concepts and prove results with mathe-
matical precision.

My assessment of this development is that it is retrograde. It is, of course, 
both satisfying and decisive when mathematical demonstrations in a formal 
system can resolve vexing, informal confusions. I will celebrate all such suc-
cesses. However, such a resolution requires that the original problem admits 
precise mathematical formulation in the first place. This is not the case with 
coherentism in epistemology. Just what its notion of coherence is remains 
poorly understood. Instead of a successful clarification of the notion of coher-
ence, we have an intemperate rush to formalization. To superimpose a veneer 
of probabilities onto an imprecisely understood notion is not to illuminate it 
but to obscure it and its problems.

The focus of the present probabilistic analyses of coherence has drifted 
away from clarifying coherence. It has been replaced by extended and appar-
ently fruitless debates on just how to represent probabilistically some simple 

15	 As quoted by Kulstad and Carlin (2020, Section 3) with the citation The Art of Discovery 
(1685); C 176/W 51.
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notions to do with coherence. Because probabilistic independence is a major 
component of strong results in the probability calculus, there is a premium 
on giving it a place in the probabilistic analysis. The opportunity to introduce 
it comes from a notion in coherence theory of the independence of witness-
es. How can that independence be expressed probabilistically? Olsson (2005, 
25) considers that witness testimonials E1 and E2 agree in that both assert 
H. The independence of the testimony is then represented probabilistically 
by independencies of the conditional probabilities P(E2|E1, H) = P(E2|H) and 
P(E2|E1, ~H) = P(E2|~H). This seems to be odd since we expect it to be more 
probable that witness 1 and witness 2 will agree on H, if H is the case, than 
they would if H is not the case. We then learn (Olsson, 2005, 45) that, under 
correction from other authors, the representation is incorrect since it assumes 
perfect reliability or unreliability of the witnesses. A more elaborate model 
is needed. Huemer (2011, 40) argued that the independence of testimonies is 
too strong a condition in the first place for the probabilistic representation of 
coherence. All that is needed is that the truth of H makes agreement between 
the witnesses more likely: P(E2|E1, H) > P(E2|E1, ~H). That is, the attempt to 
base a probabilistic treatment on the probabilistic independence of testimon-
ies was too hasty in the first place.

These are just the beginning of familiar problems peculiar to Bayesian 
probabilistic representations. A non-Bayesian might be willing to admit a 
probability P(E2| H) that represents the chance that witness 2 testifies to H 
when H is the case. But what are we to make of P(E2|~H), the probability that 
witness 2 testifies to H, when H is not the case? We might imagine all sorts 
of scenarios in which H might be false, so that ~H is true. How likely is the 
aberrant testimony in each? How likely is each scenario? Have we exhausted 
all of the scenarios? All of the quantities arising here must be multiplied and 
summed. And when all of this is done and we sum up all of our quantities, 
do we have a result with sufficient probabilistic meaning that it can figure 
in the precise computations that follow? It requires quite an indulgence to 
imagine so.

The issue here is not just the problem of assigning a precise value to 
P(E2|~H). It is the very idea that we have a quantity here, well represented by 
any additive measure at all, and that it is one with sufficient commonality of 
meaning with the additive measure P(E2|H) for it to be combined freely with 
it in subsequent computations. It is a standard presumption that all of these 
maneuvers are admissible, for otherwise Bayes’ theorem could not be applied. 



1675 | Coherentism and the Material Theory of Induction

Presumption and familiarity bred of necessity, however, are not the same as a 
well-founded resolution of an enduring problem.

Thagard (2000, Chapter 8, 2004, 2005) has mounted a related critique of 
the Bayesian treatment of coherence as part of a defense of his account of co-
herence as constraint satisfaction. Among his many concerns is that Bayesian 
analysis requires “a host of conditional probabilities that people would be 
hard pressed to specify” (2005, 311).

Matters become worse when we consider the second strand of the prob-
abilistic analysis, the attempts to define a single numerical measure of coher-
ence in some system that is a function solely of the probabilities in that system. 
They go beyond problems associated with the mere use of probabilities. It is a 
risky speculation that any single measure of coherence is possible in the first 
place. And it is an even riskier speculation that probabilities alone suffice to 
define it when the notion itself is not probabilistic. It is hardly surprising that 
no consensus has emerged from the dense fog of elementary theorems in prob-
ability and counterexamples that constitute this literature.

For Bayesians committed to the idea that fundamental notions such as 
coherence are reducible to probabilistic notions, all of these complications are 
simply work proceeding as usual. The path is not easy, but they are convinced 
that a happy outcome awaits them eventually. They must persist. They must 
calculate more.

For those who are not Bayesians, the entire enterprise is one of premature 
haste in the pursuit of an illusion of precision. The original problem of the 
nature of coherence has faded away. In its place are exercises in elementary 
probability theory, endless revisions of them, all with increasingly dubious 
connections to the original problem. That no consensus has emerged on these 
probabilistic conjurings is no surprise if one doubts the appropriateness of the 
formalization in the first place.

Setting Bayesian or non-Bayesian commitments aside, let us recall that 
we have good reason to think that the notion of coherence is not a probabil-
istic notion. Is it really wise to persist in efforts to find a probabilistic basis 
for it?

7.3. A Probabilistic Framework Is not Sufficiently General
The Bayesian analysis of coherence aims at general results. If a probabilistic 
foundation can be found for coherentism, then it is vindicated universally. If 
coherentism is refuted in the Bayesian analysis, then it is refuted everywhere.
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The problem is that a probabilistic framework is not sufficiently general 
to support universal conclusions of this type. This is one of the main con-
sequences of The Material Theory of Induction (Norton 2021). It asserts that 
a case-by-case examination of the warranting facts of each domain deter-
mines whether relations of inductive support of the domain are probabilistic. 
There are many domains in which the relations are probabilistic. And there 
are many in which they are not. Chapters 10–16 of The Material Theory of 
Induction give extended examples. They do not need to be rehearsed here. 
Insofar as credences are set by strengths of inductive support, the same con-
clusion applies to them. Thus, one cannot proceed with probabilities as the 
automatic default when it comes to representing uncertainties in inductive 
support or credences. There is a positive obligation in each domain to display 
the facts warranting the probabilistic representation.

When such warranting facts are present, the justification of the results 
of the probabilistic analysis can ultimately be traced back in part to the facts 
warranting the probabilities. Figuratively, there should be a disclaimer at-
tached to the Bayesian analysis such as “applies in domains only where prob-
abilities are warranted.” To omit this disclaimer is to advance conclusions 
without proper basis. To suggest that the results have universal applicability 
is a misrepresentation.

These concerns can be reformulated as a general argument against the 
possibility of a universally applicable Bayesian epistemology or Bayesian phil-
osophy of science. Any analysis of this type will begin with general framing 
assumptions. Commonly, the probabilistic analyses of coherentism presume 
a collection of witnesses testifying to various facts. Further assumptions con-
cern the reliability of the witnesses and the extent to which their testimonies 
are related, other than through the truth or falsity of facts to which they test-
ify. Any conclusions drawn from these assumptions alone are secure in the 
sense that they are merely restating what is asserted by the framing assump-
tions of the analysis.

The delicate part comes when the probabilistic analysis gives us results 
that go beyond the framing assumptions. If these results are to have universal 
applicability, then their derivation is flawed since it depends essentially on the 
assumption that probabilistic relations can apply everywhere. Thus, for any 
result claimed to have universal validity, we cannot preclude the possibility 



1695 | Coherentism and the Material Theory of Induction

that it is merely an artifact of an illegitimate assumption.16 We end up believ-
ing that we have proven results when we do not.

Once we are alerted to the danger, examples of this sort of fallacy are easy 
to find. Here are several. The principle of indifference is a truism of evidence 
and credence. If you have no basis for distinguishing the support of two out-
comes and find them equally favored, then you should accord equal support 
or equal credence to them. This framing assumption is as anodyne a principle 
as one can imagine. Yet — famously — it cannot be implemented in a prob-
abilistic system. We end up with the widely known paradoxes of indifference. 
What is their origin? Perversely, the routine conclusion is that there is some 
fault in this truism of evidence. The fault lies elsewhere. It is the assump-
tion that probabilities can capture support or credence within this framing. 
Rather, this framing requires different relations of support or credence (see 
Norton 2008, 2010).

I provided another example in Chapter 1 through Laplace’s rule of suc-
cession. The rule tells us that, as a general matter, if we have had 1,826,213 
successes, then we should expect a success on the next trial with very high 
odds of 1,826,214 to 1. As I point out in the chapter, the framing is bare and 
simply assumes 1,826,213 unrelated successes. Nothing in it warrants the 
application of probabilities. As a result, nothing more can be inferred using 
probabilities about future successes. The inference to the very high odds of 
future successes is fallacious and simply an artifact of applying probabilities 
without a warrant.

A related example concerns a hypothesis H and its deductive conse-
quences E1, E2, E3, and so on. It is a well-known result of Bayesian analysis, 
reviewed in Norton (2011, 430–31), that it entails either an excessive pessim-
ism or an excessive optimism concerning the projectability of the hypothesis 
and its consequences but nothing in between. If we set the prior probability 
of H to zero as P(H) = 0, then conditionalizing on any evidence fails to alter 
the zero probability. We are dogmatically committed to the failure of any 
evidence to support H. If, however, we set P(H) > 0, even if P(H) is as small 

16	 Another potential source of error lies in the translation of nonprobabilistic framing 
assumptions into probabilistic relations. The translation might be erroneous but correctable. 
More seriously, there might be no good probabilistic translation. This is the case for a state of 
complete ignorance or completely neutral support. It leads to the failure of probabilistic analysis to 
accommodate the principle of indifference, as discussed in the main text and Norton (2008, 2010).



The Large-Scale Structure of Inductive Inference170

as we care to make it, then we commit to an excessive optimism in the pro-
jectability of its consequences. That is, if the first 10n of these consequences 
have obtained, then we become arbitrarily certain that the next 10n+1 – 10n will 
obtain, as n increases, for it is easy to show that

Limn→∞ P(E(10n)+1 + E(10n)+2 + . . . + E(10n+1) | E1 + E2 + E3 + . . . + E(10n)) = 1

That is, we become arbitrarily confident of roughly a tenfold increase in the 
number of consequences that we expect to obtain. That this is excessively 
optimistic, even credulous, is clear once we recall that the framing assump-
tions are sparse. They allow the set {E1, E2, E3, . . .} to be any noncontradictory 
set of propositions whatever (and then H could merely be their conjunction). 
This excess of optimism or pessimism is an artifact of the application of prob-
abilistic analysis in which the framing assumptions are too sparse to author-
ize them. They far outstrip what the framing assumptions authorize.

There is an easy escape from this difficulty. Bayesians should renounce 
the illusion that they are able to deliver results of universal applicability in 
the epistemology and philosophy of science. Rather, their results apply only in 
domains in which probabilities are warranted by some positive factual basis. 
Then strong and interesting domain-specific results will be recoverable, and 
their basis will not be mysterious. They will rest ultimately on the factual 
warrant for probabilities in the domain.

8. Conclusion
It appears initially that much is shared by the material account of the large-
scale structure of inductive support and coherentism: that is, coherence-based 
accounts of the justification of beliefs in epistemology. Both require that their 
respective relations of support are nonhierarchical or nonlinear. That agree-
ment gave some hope of further fruitful connections. That hope was dashed 
by the rather negative results of this chapter. The similarities in the two pro-
jects, we find, scarcely extend beyond the initial agreement on nonhierarch-
ical structures.

The main difference is that coherentism bases justification on a holis-
tic property, the overall coherence of belief systems. The material analysis 
bases inductive support on local relations, and the overall nonhierarchical 
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structure is derived from them. There are many further differences: coheren-
tism assumes various poorly articulated accounts of justification at the local 
level, where the material analysis is devoted to a full articulation of a relation 
of inductive support. Coherentism is formulated as an alternative to founda-
tionalism. That conception creates the enduring problem for coherentism of 
discerning how the world impinges on beliefs without conceding to founda-
tionalism. The material analysis has no corresponding problem. Coherentism 
concerns beliefs and thus struggles to accommodate the limits of cognition 
of any one believer. The material theory concerns abstract relations of induct-
ive support as matters of inductive logic and escapes these problems. Partly 
through these differences, coherentism has proven to be less able than the 
material theory to respond to the standard problems that both systems face.

In this chapter, I have reviewed Bayesian analyses of coherentism. Since 
these analyses accept the holistic conception of coherentism, they are of little 
relevance to the material analysis of the large-scale structure of inductive 
support. The review indicates the Bayesian analyses to be overreaching. There 
is a powerful negative result: insofar as a Bayesian analysis offers universally 
applicable results on coherentism that go beyond the nonprobabilistic fram-
ing assumptions, they are without proper foundation.

Finally, this chapter indicates how the material theory of induction re-
lates to the more general literature in the epistemology of belief. Although I 
focused on coherentism specifically, much of what I concluded applies more 
generally. Two more general conclusions can be recovered.

Epistemologists of all varieties treat local relations of justification and 
inductive support as antecedently understood. They use notions such as prob-
abilistic and explanatory relations in their accounts while leaving the elucida-
tion of such relations to others. The goal of the material theory of induction is 
to elucidate these very relations and others like them. Hence, the two projects 
proceed at different levels.

Epistemology concerns beliefs held by cognizers and how these beliefs 
are justified. The material theory avoids belief as much as possible. It gives 
an account of what inductively supports what, independent of beliefs and 
knowing agents, as matters of independent inductive logic. How some agent 
can use those relations to inform belief is a further problem left largely to the 
epistemologists.
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6

The Problem of Induction

1. Synopsis
Since the problem of induction is so widely known, I expect that many read-
ers will want a simple summary of the main claims instead of the more usual 
orienting introduction. This synopsis is for those readers.1

1.1 The Traditional Problem
I take the problem of induction here to be a specific difficulty in any logic 
of inductive inference, where “inference” is understood to be a mind- and  
belief-independent relation of logical support for propositions. Logics prone 
to the problem are based on universal rules of induction. Traditionally, the 
rule is enumerative induction: we are authorized to infer from the propos-
ition that some cases bear a property to the proposition that all cases do. 
Other rules might be abductive: we are authorized to infer to the best explan-
ation or the supposition that relations of inductive support are numerical and 
conform to the probability calculus.

The problem resides in a short and sharp demonstration that no induct-
ive rule can be justified. The demonstration uses either a circularity or a  
regress. The rule of enumerative induction itself is justified by some version 
of that rule: enumerative induction has worked, so we should expect it to 
continue to work. Hence, its justification is circular. If we consider other rules 
of inductive inference, then we encounter a similar circularity, if the rule is 
used to justify itself. Alternatively, the rule might be justified by applying 
a second rule, and that second rule is justified by a third, and so on in an 

1	 My thanks to James Norton and Anil Gupta for helpful remarks and reactions.
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infinite regress. The regress is fanciful since taking just one or two steps is 
strained and unrealistic.

Probabilistic accounts of inductive support and analyses of the problem 
do not escape the fundamental difficulty. In turn, there must be some justi-
fication for a logic whose basic rule is that inductive relations of support are 
probabilistic. Chapter 10 (especially Section 10) of The Material Theory of 
Induction (Norton 2021b) argues that all of the standard justifications for this 
basic rule are circular.

1.2 The Material Dissolution
The material theory of induction dissolves the problem by denying one of its 
premises. The problem of induction depends essentially on the presupposition 
that inductive inference is governed by universal rules. The material theory 
of induction asserts that there are no universal rules of inductive inference. 
Inductive inferences are warranted by local facts, not rules. With this under-
standing, the problem of induction can no longer be set up. It is dissolved.

1.3 Attempts to Recreate It in the Material Theory
A common rejoinder to this dissolution is the proposal that there is an analo-
gous problem for the material theory of induction. It derives from the circum-
stance that background facts can only warrant an inductive inference if they 
are true. Thus, they should also be warranted, and the inferences that war-
ranted them must also be warranted. Somehow, lurking in this circumstance, 
there is supposed to be a regress or circularity as devastating as the original 
problem of induction. Following are three versions of the problem supposed.

Regress end: Each inductive inference requires a warranting fact of great-
er generality than the conclusion. The resulting succession of warranting 
inductive inferences requires a sequence of warranting facts of increasing 
generality that admits no benign termination.

Regress start: Inductive inference cannot get started: any inductive in-
ference that attempts to go beyond some small, given set of particular prop-
ositions requires an unavailable warranting fact of greater generality outside 
the given set.

Circularity: These successive warranting inferences will eventually form 
circles of large or small extent. They are supposed to be as harmful as those of 
the original circularity in the problem of induction.



1776 | The Problem of Induction

1.4 Why the Attempts Fail
In earlier chapters, I described the large-scale structure of relations of induct-
ive support in science afforded by the material theory of induction. Briefly, 
in that theory, inductive inferences are warranted by facts that in turn are 
supported inductively, those inductive inferences are warranted by further 
facts, and so on. What results is the massively entangled structure of induct-
ive support relations of a mature science. This structure does not respect any 
hierarchy of generality. Relations of support routinely cross over one another. 
It follows that tracing back successively the facts that support some nominat-
ed inference leads to a journey through the propositions of the science. There 
are many forks in the journey’s path since its extent grows rapidly and soon 
might embrace much of science. There is no inexorable and unsustainable 
ascent to warranting propositions of ever greater generality. Hence, the sup-
position of regress end fails.

This massively entangled structure can be created by hypothesizing pro-
visionally propositions needed to warrant some initial inductive inference. 
The provisional character of the hypotheses must be discharged by further in-
vestigations that provide inductive support for them. This mechanism makes 
warranting hypotheses of greater generality available when the inductive pro-
ject of some science is initiated. Hence, the supposition of regress start fails.

There are circularities both large and small in this massively entangled 
structure of relations of inductive support. However, as I argued in Chapter 
3, we cannot automatically assume that the mere presence of circularities is 
harmful. There are benign circularities throughout science. One must estab-
lish by positive argumentation that the circularities here are harmful. These 
harms arise in two ways: as a contradiction of a vicious circularity or as an 
underdetermination. If either one arises, then it is eliminated by routine ad-
justments in the science. In place of self-defeating circularities, all that we find 
in the entangled structure is how one result in a mature science is supported 
by others, those by others still, and so on. The exercise merely recapitulates, 
over and over, ordinary relations of inductive support in mature sciences. 
Hence, the supposition of circularity fails.
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1.5 Local versus Distributed Justifications of Inductive 
Inference
The problem of justifying inductive inference has a different character ac-
cording to whether inductive inference is conceived as warranted by univer-
sal rules or by material facts.

If inductive inferences are warranted by universal rules, then the project 
of justifying them is reduced to that of justifying those few universal rules. 
All attention is devoted to a small sector of the sciences in which the inductive 
power is localized. We learn from the endurance of the traditional problem of 
induction that this localized version of the problem is intractable.

If inductive inferences are warranted by facts, then the justification for 
inductive inferences is not localized. It is distributed over all of the sciences. 
In a mature science, the justification for some chosen inductive inference lies 
in the applicable warranting facts. It is an unproblematic application of the 
material theory to a particular case. This is true for every inductive inference 
in the mature science, and that is all there is to the justification for induction, 
understood materially. The totality of the justification for inductive inference 
lies in the accumulation of many such unproblematic justifications and thus 
itself is unproblematic. When the justification is so distributed, the difficulty 
is reversed. Efforts to set up the problem of induction fail repeatedly.

2. Introduction
The synopsis above is merely a sketch of the analysis to be developed in great-
er detail in this chapter. My hope is that readers who might be unsatisfied 
by its brevity will be satisfied by the lengthier analysis below. Its first step is 
a more precise statement of the original problem. Although the problem of 
induction is widely recognized, I have no confidence that we all address the 
same problem. Before a claim of a dissolution of the problem of induction can 
be sustained, the problem itself must be clearly delineated. That delineation 
is the task that I will undertake in Sections 3–10 of this chapter. The task is 
largely historical, and readers who are confident that they know the history 
might want to skip ahead to Section 10.

Since inductive inference traditionally has been regarded as generally 
troublesome, in Section 3 I will seek to sweep away some preliminary dis-
tractions that might be taken mistakenly to be the problem of induction. In 
recalling a collection of what I call “inductive anxieties,” the section identifies 
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what the problem of induction is not. It is not, for example, the problem that 
enumerative induction is capricious. An inference from some As are B to all 
As are B sometimes can be sustained by only a few cases of As that are B, or it 
can fail to be sustained even by many cases.

In Section 4, I review David Hume’s own presentation of the celebrated 
argument. It was a masterpiece of philosophical writing, still justly admired 
today. His argument was narrower than the version that modern authors have 
taken from his analysis: Hume limited all inductive inferences to causal infer-
ences. And it was broader since he posed the problem largely in psychological 
terms. He characterized inferences as mental processes, as the “operation of 
thought.” In his celebrated fork, Hume divided all such operations as con-
cerning relations of ideas or matters of fact. Neither could justify inductive 
inferences about the future, he urged. The first cannot since we can imagine 
it failing. The second cannot since it requires that we presume in advance the 
very thing to be justified, that the future will resemble the past.

In Sections 5 and 6, I review the early reception of Hume’s analysis. After 
an initial response, notably from Immanuel Kant and even possibly Thomas 
Bayes, the analysis faded and merited only passing mention in nineteenth-cen-
tury discussions of induction. The term “the problem of induction” did not 
univocally have its modern meaning. Rather, it was a marker for more general 
inductive anxieties. For Mill, it denoted the capriciousness of inductive infer-
ence. In Section 7, I review the twentieth-century revival of Hume’s problem, 
first in the writing of Bertrand Russell and then, with greater focus, in that 
 of Hans Reichenbach and his student Wesley Salmon. They advocated a 
“circularity” version, reminiscent of Hume’s own. Briefly, inductive inference, 
now understood in Salmon’s formulation as any form of ampliative inference, 
cannot be justified by deduction, since then it would not be inductive, and  
it cannot be justified inductively, for that would be circular. In Section 8, I re-
call the “regress” version, delineated most thoroughly by Karl Popper. Instead 
of the circularity of a rule of inductive inference justifying itself, Popper im-
agined a rule of inductive inference being justified by another rule, and that by 
another rule, and so on in an unsustainable infinite regress.

In Section 9, I report that both Russell and Salmon insisted that their 
modern version of the problem of induction drops the psychological clothing 
that Hume gave it. The problem is purely one of inductive logic, which per-
tains to relations with propositions, independent of our thoughts and beliefs. 
Although modern epistemologists run together logical inference and mental 
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operations, I was pleased to find that this rarely caused confusion. The ex-
ception is noted in Section 10, where I review failed attempts to argue that an 
externalist epistemology of beliefs can solve the problem of induction.

The material dissolution of the problem of induction is presented again in 
Section 11. In Sections 12 and 13, I respond to the concern that the harmful 
regresses and circularities of the problem of induction reappear in the tangle 
of relations of inductive support for the material theory of induction. I argue 
in Section 12 that the regress of the problem of induction is already fanciful 
and dubious in its first steps, whereas that of the material theory is merely the 
recapitulation of ordinary relations of inductive support in familiar science. 
I argue in Section 13 that the circularities of the problem of induction are 
harmful since they leave its rules of induction indeterminate. Drawing from 
the analyses of Chapters 3 and 4, I argue that the circularities of the material 
theory do not create analogous problems of indeterminacy.

Elliott Sober and Samir Okasha have given responses to the problem of 
induction that are close to this material dissolution. I review their work brief-
ly in Section 14. Since I claim that there is no problem for the material theory 
in justifying inductive inference, in Section 15 I give a short summary of the 
character of the positive justification.

Finally, the present material dissolution of the problem of induction ap-
peared in its earliest form in my first paper on the material theory of induc-
tion (Norton 2003). It has attracted some small though continuing critical 
attention. This attention has been stimulating and led to refinements of the 
material dissolution. In Section 16, I review the critical reception of the ma-
terial dissolution in the literature and show how the refinements respond to 
and answer the negative criticism. Section 17 is a short conclusion.

3. What the Modern Problem of Induction Is Not: 
Inductive Anxiety
The very idea of inductive inference has been a long-standing target of hesi-
tation and vilification. The dissolution of the problem of induction advocated 
here is not designed to address all hesitations about induction. To preclude 
confusion, in this section I report two of these other hesitations. One is sim-
ply the observation that inductive inference is not deductive inference and 
thus must admit the possibility of failure. The second is that a particular form 
of induction, enumerative induction, is capricious. Sometimes it works well. 
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Sometimes it does not, and then it encourages ill-advised hastiness. Beyond 
these two identifiable hesitations, for many, induction is surrounded by an 
unfocused but nonetheless menacing miasma. In it, induction simply is a 
problem. I will call the totality of these hesitations “inductive anxiety.”

The first hesitation already has clear expression in the ancient tradition of 
skepticism. As part of his broadly spread critique of all forms of justification, 
the skeptic Sextus Empiricus himself gave a terse statement that still serves 
us well today:

It is easy, I think, to reject the method of induction. For since 
by way of it they want to make universals convincing on the 
basis of particulars, they will do this by surveying either all the 
particulars or some of them. But if some, the induction will be 
infirm, it being possible that some of the particulars omitted 
in the induction should be contrary to the universal; and if all, 
they will labour at an impossible task, since the particulars 
are infinite and indeterminate. Thus in either case it results, 
I think, that induction totters. (Annas and Barnes 2000, 123)

Earlier in his text, Sextus Empiricus gives a colorful illustration of how in-
duction totters: “Since most animals move their lower jaw but the crocodile 
alone moves its upper jaw, the proposition ‘Every animal moves its lower jaw’ 
is not true” (120).

We need not linger over this first hesitation. It is constitutive of (amplia-
tive) inductive inference that it can sometimes fail. That fact does not impugn 
its utility as long as the inferences are secure enough that their failures are 
tolerably rare. To abandon inductive inference entirely would destroy science, 
all of whose major results are supported inductively.2

For the second hesitation, Mill, in his monumental System of Logic, re-
counts several inductive inferences, some of which proceed securely from a 
few particulars, whereas others are never judged secure. They lead to a synop-
tic lament of the capriciousness of induction:

2	 Popper’s ([1959] 2002) attempt to account for scientific practice solely with deductive 
inference fails. Salmon (1981) has shown that close adherence to Popper’s strictures precludes 
science from making predictions.
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Why is a single instance, in some cases, sufficient for a com-
plete induction, while in others, myriads of concurring in-
stances, without a single exception known or presumed, go 
such a very little way toward establishing a universal propo-
sition? Whoever can answer this question knows more of the 
philosophy of logic than the wisest of the ancients, and has 
solved the problem of induction. (Mill 1882, 228)

In arguing for the cautious inductive ascent of his preferred method, Francis 
Bacon provided a celebrated riposte, which seems to be a combination of both 
of the hesitations listed above:

The induction which proceeds by simple enumeration is pu-
erile, leads to uncertain conclusions, and is exposed to danger 
from one contradictory instance, deciding generally from too 
small a number of facts, and those only the most obvious. (Bacon 
[1620] 1902, 83)

This second hesitation also need not detain us. Many accounts of inductive 
inference have taken up the task of accounting for why enumerative induction 
works when it does and why it fails when it does. This was explicitly the task 
of Harman’s (1965) paper in which the term “inference to the best explana-
tion” was introduced. My material account of inductive inference in Chapter 
1 of The Material Theory of Induction (Norton 2021b) identifies the warrant 
for this form of inductive inference in background facts. Generalizations are 
warranted or not according to whether these background facts are favorable 
or not. No doubt a Bayesian will find some combination of prior probabilities 
and likelihoods to fit the expected behavior of even the most capricious of 
inductive generalizations.

For further details of the troubled history of enumerative induction and 
a compilation of striking counterexamples mentioned in the traditional liter-
ature, see Norton (2010).

4. Hume’s Critique
Hume’s celebrated critique of inductive inference elevated these tradition-
al anxieties about induction from answerable concerns to what became the 
model of a recalcitrant philosophical problem in the twentieth century. His 
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critique needs some refinement before we recover the modern version of the 
problem of induction. Two refinements are notable.

First, Hume restricted all ampliative, nondemonstrative inferences to 
those mediated by relations of cause and effect:

All reasonings concerning matter of fact seem to be founded 
on the relation of Cause and Effect. By means of that relation 
alone we can go beyond the evidence of our memory and sens-
es. (1777a, 26; Hume’s emphasis)

This restriction needs to be loosened.
Second, Hume did not separate cleanly two things that should be kept 

separate. First are thoughts, beliefs, and mental processes, such as is properly 
the subject of a theory of mental action. They are distinct from logical rela-
tions among propositions, such as is the subject of an abstract logic, formu-
lated independently of thoughts and beliefs. For example, Hume’s fork, the 
celebrated distinction of “Relations of Ideas” and “Matters of Fact,” is intro-
duced in terms of mental processes. The first “Relations of Ideas” are discov-
erable, Hume insists (1777a, 25), “by the mere operation of thought, without 
dependence on what is anywhere existent in the universe.” This possibility is 
contrasted with a “Matter of Fact” whose contrary (negation) is possible. That 
is, “it can never imply a contradiction, and is conceived by the mind with 
the same facility and distinctness, as if ever so conformable to reality” (25). 
Elsewhere, however, his language could easily be mistaken by the unwary 
as conforming to an analysis of purely logical relations among propositions. 
On the supposition that present regularities might fail in the future, he asks 
“what logic, what process of argument secures you against this supposition?” 
(38). I will urge below that the distinctive Humean problem of induction res-
ides in the inductive logic and can be formulated only indirectly in terms of 
mental processes.

With these complications noted, we can follow Hume’s development of 
the problem.3 First, Hume affirms that demonstrative reasoning cannot give 
us knowledge of these relations of cause and effect:

3	 Comparable arguments can also be found more tersely in Hume’s earlier Treatise (1739, 
89–90).
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I shall venture to affirm, as a general proposition, which ad-
mits of no exception, that the knowledge of this relation is not, 
in any instance, attained by reasonings a priori, but arises en-
tirely from experience, when we find that any particular ob-
jects are constantly conjoined with each other. (1777a, 27)

His argument is based on the immediately following claim:

Let an object be presented to a man of ever so strong natural 
reason and abilities; if that object be entirely new to him, he 
will not be able, by the most accurate examination of its sensi-
ble qualities, to discover any of its causes or effects. (27)

The claim is illustrated by examples (27–28) that, Hume asserts, outstrip 
demonstrative reasoning. He imagines Adam, presumably new to the world 
and innocent of experiences of it. Adam cannot infer that water suffocates 
from its fluidity and transparency or that fire consumes from its heat and 
warmth. Someone innocent of natural philosophy could not infer that pol-
ished marble blocks will adhere tightly, that gunpowder is explosive, that 
lodestones attract, and more. An example earlier in the text, we shall see, 
reappears later in the text:

That the sun will not rise to-morrow is no less intelligible a 
proposition, and implies no more contradiction than the affir-
mation, that it will rise. (25–26; Hume’s emphasis)

Hume then looks for other possibilities for arriving at knowledge of cause and 
effect. There is only one candidate, “moral reasoning,” for he recalls his fork:

All reasonings may be divided into two kinds, namely, de-
monstrative reasoning, or that concerning relations of ideas, 
and moral reasoning, or that concerning matter of fact and 
existence. (1777a, 35)

Yet, he continues, moral reasoning cannot provide a firm basis for such 
knowledge. He justifies this failure by identifying a circularity within efforts 
to use moral reasoning for this purpose:
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We have said that all arguments concerning existence are 
founded on the relation of cause and effect; that our knowledge 
of that relation is derived entirely from experience; and that all 
our experimental conclusions proceed upon the supposition 
that the future will be conformable to the past. To endeavour, 
therefore, the proof of this last supposition by probable argu-
ments, or arguments regarding existence, must be evidently 
going in a circle, and taking that for granted, which is the very 
point in question. (35–36)

Since this is the celebrated circularity upon which the modern problem is 
based, we can pause for another trenchant statement of it:

It is impossible, therefore, that any arguments from experi-
ence can prove this resemblance of the past to the future; since 
all these arguments are founded on the supposition of that re-
semblance. (38)

5. The Reception
While Hume fretted that his earlier Treatise (1739) fell “dead-born from 
the press” (1777b, 8), there was still some fairly immediate and noteworthy 
reaction. It had a profound impact on Kant ([1783] 1909, 7), who famously 
credited Hume for “interrupt[ing] my dogmatic slumber.” Hume’s contem-
porary, Thomas Reid, mounted efforts to refute Hume’s skepticism.4 It is even 
plausible that his skepticism was one of the motivations for Thomas Bayes’ 
analysis of inverse probabilities. Zabell (1989, 292) notes that the timing of the 
initiation of Bayes’ research on inverse probabilities coincided with Hume’s 
publication in 1748 of his Enquiry. After Bayes’ death, his result was published 
and annotated by Richard Price (Bayes 1763). Zabell (1989, 294) and Earman 
(2002, Section 1) note that much in Price’s annotations indicates a response 
to Hume, even though Hume is not mentioned by name. For example, Price 
writes (in Bayes 1763, 371–72) that

4	 See Landesman and Meeks (2003, Chapter 29).
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Common sense is indeed sufficient to shew us that, from the 
observation of what has in former instances been the conse-
quence of a certain cause or action, one may make a judgment 
what is likely to be the consequence of it another time. . . .

Price also considers “the case of a person just brought forth into this . . . 
world” (409) (reminiscent of Hume’s mention of Adam) who makes succes-
sive observations of the sunrise and forms odds of its return. The example is 
one that Hume had used but to skeptical ends.

6. The Nineteenth-Century Hiatus
In the nineteenth century, any recognition that Hume might have received for 
identifying the problem of induction faded. He was instead generally tolerat-
ed as a troublesome skeptic concerning topics such as causation and miracles. 
His analysis was not lauded then, unlike today, as the revered locus classicus 
for the modern problem of induction. In that century, the phrase “the prob-
lem of induction” appeared frequently. However, its focus was diffuse, and 
it appeared mostly to designate some version of the “inductive anxieties” 
sketched in Section 3.

Whatever role Hume’s critique might have had in the initiation of Bayes’ 
work on inverse probabilities, there is little trace of it in subsequent work. 
Laplace’s development of the rule of succession in his Essay (1814), sketched 
here in Chapter 1, used Hume’s example of successive sunrises but made no 
mention of Hume. The Essay includes an entire chapter (1902, Chapter 17) on 
induction and similar ampliative inferences. It recounts some history of such 
inferences, including mentions of the English writers Newton and Bacon but 
not the Scottish writer Hume.

Perhaps it is unsurprising that logic texts of the nineteenth century make 
scant mention of Hume’s critique. Their charter is to delineate the structure of 
the logics, not to rehearse skeptical assaults against them. Kirwan’s (1807, 231) 
early logic treatise does cite Hume but to dispute his assertion that chance 
is the absence of a cause. Munro’s (1850, 233–340) Manual of Logic decrees 
that induction is material and thus “extralogical” insofar as the induction 
is not complete. That means that its premises fail to include all instances of 
the generalization, so the inference is not deductive. Whately’s Elements of 
Logic (1856) includes a lengthy chapter on induction (Book 4, Chapter 1) 
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and struggles with many hesitations but never clearly articulates Hume’s 
argument or mentions Hume in the context of induction. Creighton’s An 
Introductory Logic (1898) has a section entitled “The Problem of Induction” 
(Chapter 13, Section 47). However, the term “problem” is less the identifica-
tion of a difficulty than the setting of a task: how are we to pass from chaotic 
experience to scientific knowledge?

As late as Schiller’s (1912) discussion of formal logic, the phrase “the 
problem of induction” did not have its modern meaning. The work has a 
chapter entitled “The Problem of Induction” (Chapter 17). The problem iden-
tified is the difficulty of determining the truth of premises used in deductive 
syllogisms. Hume’s concern appears only briefly some eight pages into the 
meandering chapter as the unanswered question “how do we know that the 
future will resemble the past?” (239).

One might have expected more from W. Stanley Jevons, notable for 
his nineteenth-century writing on scientific methodology. His two logic 
texts (1888, 1902) make no mention of Hume or any problem of induction, 
although both discuss induction extensively. His major work of methodol-
ogy, Principles of Science (1874), similarly covers induction extensively and 
advocates for a Bayesian inverse approach. It too has no mention of Hume or 
any trace of the possibility that Bayes himself might have been motivated by 
Hume’s challenge.

John Stuart Mill might have been the preeminent writer of his age on 
scientific methodology. We saw in Section 3 that he labeled the capriciousness 
of inductive inference as “the problem of induction” and declared hyperbolic-
ally that to solve it is to “know more of the philosophy of logic than the wisest 
of the ancients.”

The third book of the six forming his System of Logic is devoted to induc-
tion. In it, Mill presents his methods, whose content remained a core of pres-
entations of scientific methodology into the mid-twentieth century. Buried in 
this third book among its twenty-five chapters is Chapter XXI. It addresses 
what, in effect, is Hume’s circularity argument. Its subsidiary treatment indi-
cates that Mill regarded the problem as a minor nuisance, a philosopher’s 
sophistry, that can be dispatched forthwith by his sharp wit. Mill notes (1882, 
398) that his inductive methods depend on the law of causality, that every 
event has an invariable, antecedent cause. We are assured of this law by pro-
cesses of induction that join those cases in which causation is not yet apparent 
with those in which it is. The inevitable circularity appears:
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If, then, the processes which bring these cases within the same 
category with the rest, require that we should assume the uni-
versality of the very law which they do not at first sight ap-
pear to exemplify, is not this a petitio principii? Can we prove 
a proposition, by an argument which takes it for granted? And 
if not so proved, on what evidence does it rest? (398)

In stating this Humean circularity, Mill makes no mention of Hume. It is not 
for lack of knowledge of his work, for Hume’s controversial analysis of mir-
acles is discussed at length elsewhere in Mill’s System of Logic. That Hume’s 
analysis had indirect or even direct influence on Mill, however, is suggested 
by his distinctively Humean choice of examples:

It would be absurd to say, that the generalizations arrived at 
by mankind in the outset of their experience, such as these — 
food nourishes, fire burns, water drowns — were unworthy of 
reliance.5 (401)

Mill’s dismissal of the circularity fares as poorly as any that underestimates 
its gravity. His dismissal allows that we first arrive at the law of causality by 
a fragile, simple, enumerative induction but that our inductive methods are 
subsequently reinforced by applying the law to itself so that a certainty results:

The law of cause and effect, being thus certain, is capable of 
imparting its certainty to all other inductive propositions 
which can be deduced from it. . . . And hence we are justified 
in the seeming inconsistency, of holding induction by simple 
enumeration to be good for proving this general truth, the 
foundation of scientific induction, and yet refusing to rely on 
it for any of the narrower inductions. (403)

Mill has staked here the entirety of his inductive enterprise on the certainty 
of the law of cause and effect, which in his writing amounts to a principle 
of determinism. The irony, of course, is that this certainty was about to be 
falsified by the discovery of quantum theory in the 1920s.

5	 That bread nourishes is an example that Hume uses repeatedly in his Enquiry (1777a, 28 ff.).



1896 | The Problem of Induction

In any case, authors contemporary to Mill were not so easily bluffed. 
Lachelier devoted Section 2 of his 1871 doctoral dissertation, Du fondement 
de l’induction, to Mill’s argument. No matter how artful Mill’s analysis, 
Lachelier concluded that a purely empiricist view like Mill’s cannot derive 
conclusions for the future from the knowledge of the past (1907, 25; translated 
from Ballard 1960, 13):

If we see nature as nothing more than a series of impressions 
without reason and without connection, we can indeed re-
cord, or rather undergo, these impressions at the moment they 
are produced, but we cannot predict them nor even conceive 
of their production in the future.

Lachelier’s own ideas inclined toward a Kantian, rationalistic idealism, so 
Lachelier regarded this empiricist failure merely as motivation for his pre-
ferred approach. Although Hume’s circularity would have provided powerful 
further direction, Lachelier mentions it but immediately abandons analysis of 
it (Lachelier 1907, 17; Ballard 1960, 9):

The principle of induction itself, then, must be the product of 
an induction . . . (we leave aside the circle suspected to be in 
this reasoning).

Similarly, the British idealist F.H. Bradley had little interest in induction and 
any problems that Hume might have found in it. In his Principles of Logic 
(1883, 342), the treatment of inductive inference is deeply buried in the text 
and passed over dismissively: “[Mill’s methods of inductive logic] will not 
work unless they are supplied with universals. They presuppose in short as 
their own condition the result they profess alone to produce.” Bradley con-
cludes that “we may set down Inductive Logic as a fiasco.” Although this con-
clusion is reminiscent of Hume’s circularity, Hume is not credited with any 
insight and is not mentioned by name anywhere in the 534 pages of the text.

Perhaps prominent recognition of Hume’s argument has slipped past this 
sampling of nineteenth-century writing. If his critique had prominence in the 
nineteenth century, then we would expect it to register in survey writing. In 
light of this expectation, it is revealing that Thomson’s (1887) philosophical 
dictionary has an entry for “The Problem of Inductive Logic,” but it simply 
defines the problem as the capriciousness of inductive inference by giving the 
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quotation from Mill above in Section 3. This while elsewhere in the diction-
ary Hume appears copiously as something of a disreputable gadfly. Hume’s 
skeptical nihilism, Thomson reports, “gave . . . offence so serious to the British 
public” (xxx).

Still more remarkable is that the introduction of twenty-five pages to 
the 1894 edition of Enquiry, written by Lewis Amherst Selby-Bigge in 1893, 
makes no mention of Hume’s charge of circularity concerning inductive in-
ference. Rather, what attracts the editor’s attention concerns causation (xv). It 
is Hume’s affirmation “that there is nothing at the bottom of causation except 
a mental habit of transition or expectation, or, in other words, a ‘natural rela-
tion.’” Selby-Bigge then turns to other concerns and reports similar skeptical 
remarks by Hume on the relation of resemblance (xvi).

7. Twentieth-Century Revival: The Circularity 
Formulation
With the start of the twentieth century, “the problem of induction” was a 
phrase used variously to represent a variety of inductive anxieties or even just 
as a caption to introduce a wide-ranging discussion of induction.6 The phrase 
did not indicate the short, sharp problem posed by Hume that any justifica-
tion for a rule of induction must be inductive and thus circular.

Matters soon changed. Russell’s Problems of Philosophy (1912) gave terse 
and readily accessible accounts of a series of philosophical problems. The 
chapter “On Induction” developed a clear and compelling version of Hume’s 
original problem. Although Hume is not mentioned by name, the chapter’s 
Humean inspirations are clear by its use of familiar Humean examples. The 
running example asks what justifies our belief that the Sun will rise tomor-
row. Russell asks, for example,

Do any number of cases of a law being fulfilled in the past 
afford evidence that it will be fulfilled in the future? If not, it 
becomes plain that we have no ground whatever for expecting 

6	 Ernst Cassirer (1910) has a long chapter entitled “On the Problem of Induction” (“Zum 
Problem der Induktion”). The phrase “the problem of induction” seems to designate no sharply 
defined difficulty for induction, such as that posed by Hume. Rather, it serves as a general heading 
under which Cassirer can develop complaints about empiricism and defend Kantian perspectives 
on induction.
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the sun to rise to-morrow, or for expecting the bread we shall 
eat at our next meal not to poison us, or for any of the other 
scarcely conscious expectations that control our daily lives. 
(96; Russell’s emphasis)

The inevitable circularity emerges. Russell develops and refines the circu-
larity until it becomes one of justification for what he calls the “principle of 
induction” (103). It is expressed in several cautious clauses. Its overall import, 
however, is that past association of things of sorts A and B  make probable 
that this association will continue. Justification for this principle itself inevit-
ably falls victim to Hume’s circularity. The chapter concludes darkly:

The inductive principle, however, is equally incapable of be-
ing proved by an appeal to experience. Experience might con-
ceivably confirm the inductive principle as regards the cases 
that have been already examined; but as regards unexamined 
cases, it is the inductive principle alone that can justify any 
inference from what has been examined to what has not been 
examined. All arguments which, on the basis of experience, 
argue as to the future or the unexperienced parts of the past 
or present, assume the inductive principle; hence we can never 
use experience to prove the inductive principle without beg-
ging the question. Thus we must either accept the inductive 
principle on the ground of its intrinsic evidence, or forgo all 
justification of our expectations about the future. (106; Rus-
sell’s emphasis)

Hans Reichenbach proved to be a more tenacious and exacting proponent of 
the cogency of Hume’s critique. In his contribution to the first issue of the 
new journal Erkenntnis, Reichenbach argued on Humean grounds that there 
can be no justification for probabilistic forms of inductive inference. It is just 
that we have no choice but to use them:

There is no other justification for our belief in logic than to 
point to the fact that we cannot think at all otherwise. We can 
however give the analogous [justification] for the laws of prob-
ability: we cannot do anything else at all other than to believe 
in the laws of probability. (1930, 187)
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The point is soon given an even stronger form:

It is exactly the same with probabilistic logic [as with deduc-
tive logic]; we cannot justify it, but we can affirm that we just 
cannot think of any alternative. (188)

Reichenbach concluded that

Our reply, then, to the problem of validity does not consist in 
an answer to Hume’s question. Rather, the attempt to find a 
logical foundation for probabilistic assertions seeks an impos-
sible goal, comparable to the squaring of the circle. (188)

The idea that we have no choice but to think probabilistically in inductive 
terms now seems to be unreflective and unimaginative.7 Perhaps Reichenbach 
recognized the weakness of this idea, for he shortly replaced the “no choice 
but” defense of the use of probabilistic induction with a stronger and now 
celebrated pragmatic argument. In Section 38, “The Problem of Induction,” 
of his Experience and Prediction (1938), Reichenbach formulated a “princi-
ple of induction” (340). Loosely speaking, it tells us to expect that the ob-
served frequency of some property in a sequence of events will persist at this 
value, approximately, within error bounds, as the sequence proceeds. Hume, 
Reichenbach continued, had mounted a most significant challenge to the 
principle. He summarized it as follows:

1. We have no logical demonstration for the validity of in-
ductive inference.

2. There is no demonstration a posteriori for the inductive 
inference; any such demonstration would presuppose the very 
principle which it is to demonstrate.

These two pillars of Hume’s criticism of the principle of 
induction have stood unshaken for two centuries, and I think 
they will stand as long as there is a scientific philosophy. (342)

7	 That seems so especially to me after having written several chapters in The Material 
Theory of Induction (Norton 2021b) that explore calculi of inductive inference that are alternatives 
to the probability calculus.
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Reichenbach then roundly chastised the philosophers and logicians of 
the nineteenth century for their failure to recognize the gravity of Hume’s 
challenge:

It is astonishing to see how clear-minded logicians, like John 
Stuart Mill, or Whewell, or Boole, or Venn, in writing about 
the problem of induction, disregarded the bearing of Hume’s 
objections; they did not realize that any logic of science re-
mains a failure so long as we have no theory of induction 
which is not exposed to Hume’s criticism. (342)

Reichenbach’s The Theory of Probability (1949) gave a similar formulation de-
rived from Hume’s original. In Section 91, “The Justification of Induction,” 
citing Hume’s Enquiry, Reichenbach asks Hume’s question. What grounds the 
inference that the same causes will still be followed by the same effects in the 
future? Following Hume, Reichenbach divides the negative answer into two 
parts: there can be no deductive justification and no inductive justification:

1. The conclusion of the inductive inference cannot be in-
ferred a priori, that is, it does not follow with logical necessity 
from the premises; or, in modern terminology, it is not tauto-
logically implied by the premises. Hume based this result on 
the fact that we can at least imagine that the same causes will 
have another effect tomorrow than they had yesterday, though 
we do not believe it. What is logically impossible cannot be 
imagined — this psychological criterion was employed by 
Hume for the establishment of his first thesis.

2. The conclusion of the inductive inference cannot be in-
ferred a posteriori, that is, by an argument from experience. 
Though it is true that the inductive inference has been success-
ful in past experience, we cannot infer that it will be successful 
in future experience. The very inference would be an inductive 
inference, and the argument thus would be circular. Its validi-
ty presupposes the principle that it claims to prove. (470)
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Reichenbach proceeded in both works to his well-known answer to Hume’s 
problem: we are justified in using induction pragmatically. Although we have 
no guarantee that it will work, if anything can work, then it will work.

Wesley Salmon, one of Reichenbach’s most successful students, con-
tinued the Reichenbachian analysis. His Foundations of Scientific Inference 
(1967) gave, in my view, the most incisive development of Hume’s objec-
tion.8 Salmon’s version of Hume’s objection is slightly more general than 
Reichenbach’s version; it proceeds to a systematic and gently ruthless refuta-
tion of each escape proposed in the then present literature; it then concludes 
with Reichenbach’s pragmatic answer.

The inductive inferences of earlier formulations of Hume’s problem are 
replaced by Salmon with the considerably more general notion of “amplia-
tive” inference. Such an inference is defined negatively by Salmon (1967, 8) 
merely as an inference that is not demonstrative — 

. . . an ampliative inference, then, has a conclusion with con-
tent not present either explicitly or implicitly in the premises.

Loose as this definition is, Salmon has no difficulty recreating Hume’s charge 
of circularity against it:

Consider, then, any ampliative inference whatever. . . . We 
cannot show deductively that this inference will have a true 
conclusion given true premises. If we could, we would have 
proved that the conclusion must be true if the premises are. That 
would make it necessarily truth-preserving, hence, demonstra-
tive. This, in turn, would mean that it was nonampliative, con-
trary to our hypothesis. Thus, if an ampliative inference could 
be justified deductively it would not be ampliative. It follows 
that ampliative inference cannot be justified deductively.

At the same time, we cannot justify any sort of amplia-
tive inference inductively. To do so would require the use of 
some sort of nondemonstrative inference. But the question at 

8	 Wes Salmon was highly respected and the kindest senior colleague in my junior years 
on the faculty of the University of Pittsburgh. I regret that time robbed me of the opportunity 
to show him my analysis, for his approval would have meant the world to me. Then again, his 
disapproval would have been devastating.
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issue is the justification of nondemonstrative inference, so the 
procedure would be question begging. Before we can proper-
ly employ a nondemonstrative inference in a justifying argu-
ment, we must already have justified that nondemonstrative 
inference.

Hume’s position can be summarized succinctly: We can-
not justify any kind of ampliative inference. If it could be 
justified deductively it would not be ampliative. It cannot be 
justified nondemonstratively because that would be viciously 
circular. (11)

8. Twentieth-Century Expansion: The Regress 
Formulation
Explicit notions of induction, when Hume wrote, were limited to some ver-
sion of generalization. The simplest was the long-standing form, enumerative 
induction: from some As are B, we infer that all are. Bacon’s method of tables 
provided a more sophisticated, if still limited, version of inductive practice. 
Nonetheless, writing after Bacon, Hume was comfortable reducing all in-
ductive inferences to one simple form: the same causes will continue to have 
the same effects. With similarly limited conceptions of inductive inference, 
Russell and Reichenbach9 worked with comparably simple conceptions of 
inductive inference, as codified in their respective “principles of induction” 
sketched above. The simplicity of these conceptions makes it possible for 
Hume’s critique to be expressed in terms of a circularity. There is one simple 
notion of inductive inference, and the only way to justify it inductively is to 
apply that notion to itself.

As the twentieth century unfolded, this simple conception of inductive 
inference ceased to be viable, if ever it was. It became all too clear that there 
are many forms of ampliative inference in addition to the few considered by 
Hume, Russell, and Reichenbach. By the start of the twenty-first century, the 
variety was so great that I found it a challenge to write a survey of accounts 

9	 I have excluded Salmon’s analysis from the list since his analysis is not limited to the 
narrow conceptions of inductive inference of Russell and Reichenbach. His ampliative inferences 
include all nondemonstrative inferences. However, his formulation of the problem as one of 
circularity omits the possibility of an infinite regress.
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of inductive inference that would capture and usefully systematize them. My 
best effort is Norton (2005).

With many such accounts available, the circularity of Russell’s and 
Reichenbach’s analyses ceased to be sufficiently expansive. What if their 
principles of induction are just not justified by applying the principles to 
themselves? What if they are justified by some other form of ampliative infer-
ence? Harman’s (1965) revival of abductive inference as “inference to the best 
explanation” was offered explicitly as providing a warrant for enumerative 
induction. Justifying one form of inductive inference inductively by another 
does not settle the matter. Now we must ask what inductively justifies this 
second form, Harman’s schema of inference to the best explanation, and 
when another form of inductive inference is invoked we must ask what justi-
fies that further form.

The resulting succession of justifications for inductive inference schemas 
either leads back to a schema already used, in which case we have a circular-
ity, or triggers an infinite regress. This last possibility is the “regress” form of 
the problem of induction.

The earliest clear articulation that I have found of this regress form of 
the problem of induction comes in Karl Popper’s Logik der Forschung (1935), 
translated as Logic of Scientific Discovery ([1959] 2002). Popper formulates the 
problem of induction as the problem of justifying a principle of induction, 
the fact that authorizes inductive inferences. He dismisses the possibility that 
such a principle could be analytic or a tautology: that is, a purely logical truth. 
Rather, it is a proposition whose truth is known from experience by induc-
tion. This immediately leads to the infinite regress:

To justify it [the first principle of induction], we should have 
to employ inductive inferences; and to justify these we should 
have to assume an inductive principle of a higher order; and 
so on. Thus the attempt to base the principle of induction on 
experience breaks down, since it must lead to an infinite re-
gress. (5)10

10	 Popper’s Logik der Forschung is noted for its decisive rejection of inductive inference. 
His deeply skeptical view of induction was not so novel in 1935. We have seen that Reichenbach’s 
Erkenntnis paper in 1930 abandoned the project of justifying induction on Humean grounds. 
Popper cites Reichenbach’s paper, mentions Reichenbach’s endorsement of probabilistic 
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This is a terse but serviceable formulation of the regress version of the prob-
lem. A more developed version can be found in what Popper (2009, pref-
ace) describes as drafts and preparatory writings of 1930–33 for Logik der 
Forschung. They were first published in German in 1979 and then in English 
translation in 2009. In the translation (Book 1, Chapter 3), we find that Popper 
prefers the regress form of the problem of induction because the circularity 
form would be open to the objection that the mere assertion of the circularity 
involves self-reference, which Russell had shown to raise the possibility of 
vicious circularity. Popper continues:

The concept of “infinite regression” is not open to these objec-
tions, but otherwise it accomplishes the same task, namely that 
of demonstrating the existence of an impermissible operation.

Popper continues the chapter, slowly developing the infinite regress and even-
tually providing this summary:

In this way, a hierarchy of types emerges:
Natural laws (these may be understood as statements 

about singular empirical statements, and as of a higher type 
than the latter). The induction of a natural law requires a

First-order principle of induction, which as a statement 
about natural laws is of a higher type than the latter; the induc-
tion of a first-order principle of induction, in turn, requires a

Second-order principle of induction, which as a statement 
about first-order principles of induction is, in turn, of a higher 
type than the latter; and so on.

Every universal empirical statement requires a principle 
of induction of a higher type than the inductum, if it is to pos-
sess any a posteriori validity value at all (either true or false) 
as an inductum.

Therein consists the infinite regression. (Popper’s emphasis)

inferences, but does not note Reichenbach’s deep skepticism about justifying probabilistic 
inferences (5–6).



The Large-Scale Structure of Inductive Inference198

9. Logic of Induction, Not Epistemology of Belief
We saw above that Hume’s formulation of his critique of induction mixed 
logical and psychological notions. Hume identified deductive necessities as 
those discoverable by “the mere operation of thought,” and contingencies are 
characterized as freely conceivable by the mind. As a result, his account leaves 
open whether the problem that he identified arises in inductive logic or in the 
psychological processes of belief formation. The first context, inductive and 
deductive logic, is independent of human thoughts and beliefs. It consists of 
propositions and inferences that arise as relations among propositions. The 
second context resides within the operation of the mind. Its relata are not 
propositions but beliefs, and reasoning11 is a mental process that carries us 
from some beliefs to the formation of other beliefs.

The modern version of the problem of induction, the version that I wish 
to address, resides within the first context, the logic of induction, and not 
within the second context, the epistemology of belief. The problem is for-
mulated in terms of rules governing inductive inferences and what happens 
when these rules are applied to themselves or to other rules. They are defined 
within the context of logic. These rules and the resulting problem of induc-
tion appear only indirectly in the epistemology of beliefs, after the problem 
has been formulated in the logical context. It arises in this second context in 
the specific case in which a reasoner uses these rules to direct reasoning from 
a belief in some propositions to a belief in others.

It is not possible, as far as I can see, to define the problem of induction 
within the epistemology of belief without first formulating it in the logical 
context. There is no problem of induction if a reasoner merely passes from 
one belief to another. The problem arises only when that passage is authorized 
by some rule of inductive inference, and we then ask what justifies that rule.

That the problem of induction is best formulated within the logical con-
text is explicitly part of the twentieth-century revival of the problem. Russell 
makes the point:

11	 It is common to describe this mental process as “inference” in the epistemological 
literature. Here I restrict the term “inference” to the first context, in which it denotes mind- and 
thought-independent relations over propositions. (This strictly logical operation is often called 
“implication” in the epistemological literature.)
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Now in dealing with this question we must, to begin with, 
make an important distinction, without which we should 
soon become involved in hopeless confusions. Experience has 
shown us that, hitherto, the frequent repetition of some uni-
form succession or coexistence has been a cause of our expect-
ing the same succession or coexistence on the next occasion. 
(1912, 96–98; Russell’s emphasis)

He continues with some examples. They include the well-known but dark 
chicken remark.12 Russell concludes that

We have therefore to distinguish the fact that past unifor-
mities cause expectations as to the future, from the question 
whether there is any reasonable ground for giving weight to 
such expectations after the question of their validity has been 
raised. (98; Russell’s emphasis)

Salmon (1967, 6) is similarly explicit. The problem, he stresses, is “a logical 
problem” (Salmon’s emphasis). “It is the problem of understanding the logical 
relationship between evidence and conclusion in logically correct inferences.” 
He then concludes thus:

The fact that people do or do not use a certain type of infer-
ence is irrelevant to its justifiability. Whether people have 
confidence in the correctness of a certain type of inference 
has nothing to do with whether such confidence is justified. 
If we should adopt a logically incorrect method for inferring 
one fact from others, these facts would not actually constitute 
evidence for the conclusion we have drawn. The problem of 
induction is the problem of explicating the very concept of in-
ductive evidence. (Salmon’s emphasis)

12	 “The man who has fed the chicken every day throughout its life at last wrings its neck 
instead, showing that more refined views as to the uniformity of nature would have been useful to 
the chicken” (98).
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10. Epistemology Does Not Solve the Problem of 
Induction
In principle, misidentifying the problem of induction as deriving from the 
epistemology of belief could be troublesome. After a review of the literature on 
epistemology that was not especially diligent, my impression is that the dan-
ger has not been realized. Although the literature has made no special efforts 
to separate the two contexts, the failure seems not to have been troublesome. 
In internalist epistemologies, what justifies a belief is cognitively accessible to 
the reasoner. When a belief is justified by inductive inference, the reasoner 
knows it and knows that a rule of inductive inference was used. Thus, the 
problem that Hume identified can be spelled out in appropriate logical terms. 
In externalist epistemology, cognizers have no access to what justifies some 
beliefs. If they include the justifications for reasoning that corresponds to in-
ductive inferences, then Hume’s problem cannot be set up. We are unaware 
by stipulation of what justifies our reasoning and how it effects the justifica-
tion. It follows that we cannot know whether these external justifications can 
be applied to themselves or even what it is for these external justifications to 
be applied to themselves.

There is only one case that I found of a clear confusion of logical and 
epistemological issues. In a widely known paper,13 van Cleve (1984) sought to 
give an externalist solution to the problem of induction. It is evident from the 
start that the project cannot succeed. The challenge is to provide an explicit 
justification for inductive inference. Such a thing cannot be supplied by an 
epistemology in which the means of justification, by definition, are inaccess-
ible to us.14

Van Cleve is undeterred. In the briefest sketch, he identifies two related 
inductive inference schemas:

x% of the A’s I have examined were B’s. 
Hence, x% of all A’s are B’s.

13	 I learned of this paper through correspondence with Job de Grefte.
14	 For a critique of the capacity of externalist epistemologies to answer a broad range of 

skeptical challenges, see Fumerton (1995, Chapter 6). He notes (163, 171) that philosophers do not 
have the neurophysiological expertise to assess the efficacy of externalist justifications: “If I had 
wanted to go mucking around in the brain trying to figure out the causal mechanisms that hook 
up various stimuli with belief, I would have gone into neurophysiology.”
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and

Most of the A’s I have examined were B’s. 
Hence, The majority of all A’s are B’s. (1984, 555–56; van Cleve’s 
emphasis)

Somehow, through an external process inaccessible to us, we know that these 
are good inference schemas, and we know how to restrict application of these 
rules so that grue-like problems are avoided. This schema is then applied to 
our history of inductive reasoning to form what van Cleve calls “Argument A”:

Most of the inductive inferences I have drawn in the past from true 
premises have had true conclusions. 
Hence, The majority of all inductive inferences with true premises 
have true conclusions. (557; van Cleve’s emphasis)

With the conclusion of Argument A, we have arrived at some form of justifi-
cation for inductive inference.

This analysis cannot withstand scrutiny. There are two problems. The 
first problem is that the analysis is entirely too optimistic about the accur-
acy of our spontaneous human attempts at inductive reasoning. We human 
reasoners are naturally rather poor at it. Our natural inclinations are toward 
inductive fallacies.15 If we could find some way to quantify the “majority of 
all inductive inferences” in the premise of Argument A, then we would likely 
find that the premise is false. That we are disposed to infer in some specific 
way, without any explicit justification for that disposition, is a poor justifica-
tion for the correctness of the argument form implemented.

Indeed, a strong motivation for modern scientific methodology lies in 
the need to correct our natural inclination toward inductive fallacies. We see 
patterns where there is none. We too easily scan some collection of numerical 
data and come to the wrong conclusion. Too many of us judge a chance remis-
sion of some ailment as caused by whatever dubious therapy happened to be 
tried at that moment. Too many find an occasional cold day a basis for deny-
ing our warming climate. These misapprehensions are corrected by explicit 
statistical analysis. Similarly, we are too easily misled by anecdotal reports to 

15	 How is it that we survive? Our natural inductive inclinations are toward safety and the 
exaggeration of threats, not toward accuracy. There is ample redundancy in our interactions with 
the world, so that our many errors are individually correctible and mostly not fatal.
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believe in the efficacy of some faulty treatment. The impulse to believe must 
be reined in by requiring controlled studies.

One can well imagine that an externalist justification is viable for narrow-
ly specific beliefs, such as “Jones believes he has just seen a mountain-goat,” 
to use Goldman’s (1979, 10) example. However, it is much harder to see how 
such external mechanisms could reliably implant within us the sorts of uni-
versal logical schema sought by inductive logicians. Rather, we should expect 
most of the schemas spontaneously occurring to us to be incorrect. We will 
need explicit methods, such as those of science, to separate the few good ones 
from the many bad ones. Since these internal methods decide which schemas 
we should accept, any real advantage that externalist epistemologies could 
provide is lost.

The second problem is more serious. If externalism can solve the prob-
lem of induction, then we should expect the analysis to display a justified 
inductive inference schema. A principal consequence of the material theory 
of induction is that this end is unachievable if the goal is a universal schema 
of the type offered by van Cleve (1984). Inevitably, the particular schemas 
displayed by van Cleve, to put it charitably, are incomplete. That most of the 
As that I have examined are Bs is quite insufficient to authorize the conclusion 
that the vastly greater majority of all As are Bs.

Van Cleve simply avers that “I shall assume that we know how to re-
strict the predicates involved in these inferences so as to avoid Goodman’s 
paradox about the grue emeralds” (1984, 556). That brash display of wishful 
thinking only begins to address the troubles that van Cleve has to suppose 
away. Even without the trickery of grue-ified predicates, inductive inference 
schemas, such as van Cleve displays, most commonly fail unless the As and 
the Bs are chosen very selectively under the guidance of background facts 
specific to the domain. This is the extended lesson drawn in Chapter 1 of 
The Material Theory of Induction (Norton 2021b). Even then additional facts 
might be needed. For example, depending on the case, we might need some 
assurance that the As at issue have been sampled appropriately. That requires 
further background assumptions, such as the specification of a random sam-
pling protocol.

These two concerns leave little of van Cleve’s (1984) analysis intact. With 
the inductive inference schemas so incompletely specified, we have no assur-
ance that they can be applied to our history of inductive reasoning to recover 
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the core Argument A. And there is little motivation to do so since the premise 
of Argument A is likely false.

Papineau (1992, Section 2) gives a briefer analysis, similar to that of van 
Cleve (1984). We carry out an induction, premised on the successes of our 
past history inductions, to conclude that inductions lead to true conclusions. 
The correctness of this larger induction is based on the supposed reliability of 
induction as an inference scheme. It is sufficient here to note that the criticism 
above of van Cleve’s analysis applies equally to it.

De Grefte (2020) has more modest ambitions. He disavows van Cleve’s 
(1984) attempt to justify inductive inference. Rather, he argues that there is no 
problem of induction for a reliabilist externalist epistemologist:

My present aim is only to establish that a reliabilist would not 
be troubled by the problem of induction. And that follows from 
the fact that reliabilists maintain that reliability is sufficient for 
justification, and that inductive inference may be reliable even 
if it is impossible to provide an argument for its inductive va-
lidity. We thus do not need to make the controversial assump-
tion that inductive inference is, in fact, reliable. (102)

Here I agree with de Grefte: the modern problem of induction does not arise 
in a context in which there are no rules of inductive inference. However, he is 
wrong to conclude from this “. . . that externalist epistemologies are generally 
able to dissolve the problem of induction” (100). The problem of induction is 
a problem of inductive logic. It is not solved or dissolved by pointing out that 
the problem does not arise in another context.

There is a related problem that leaves reliabilist externalist epistemolo-
gists in a worse position than inductive logicians. That some epistemic pro-
cess has been reliable in the past is no guarantee that it will continue to be 
reliable. Since these processes are invisible to externalists, they cannot even 
identify the processes justifying beliefs and thus have no means of controlling 
and assessing them.
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11. The Material Dissolution of the Problem of 
Induction
The material theory of induction dissolves the problem of induction. The 
reason is simple and has already been given in the synopsis at the start of 
this chapter: the problem of induction is formulated in terms of universally 
applicable rules or schemas for inductive inference. There are no such rules or 
schemas in the material theory. It follows that the problem of induction cannot 
be set up. That is, there is no problem of induction within the material theory.

The analysis could stop with that. However, a common but mistaken 
reaction to this dissolution is that it is too easy. Surely a recalcitrant prob-
lem like the problem of induction cannot be dispatched so simply. In other 
failed solutions to the problem, the core difficulty remains but is somehow 
sufficiently disguised that it is no longer immediately apparent. Any claim 
of a solution to the problem of induction is then taken as an invitation to dig 
deeper to expose the trick and defeat the solution. It is the default reaction 
of philosophers to any claim of a solution to the problem of induction. This 
understandable intuition, mistaken in this case, directs us to seek a compar-
ably troublesome regress or circularity in the justifications for inductive 
inferences within the material theory. There are both — regresses and circu-
larities — within the material theory of induction. However, they are benign, 
unlike their counterparts in theories of induction with universally applic-
able schemas. Demonstrating this is the goal of the next two sections.

12. Regresses
Consider first the regresses within the material theory of induction. Each in-
ductive inference is warranted by background facts in the applicable domain. 
If they are to provide a warrant, then they must be facts — that is, truths — so 
we expect that in turn they are supported by further inductive inferences. And 
these inductive inferences in turn require further facts to warrant them. And 
so on. What results is a regress of facts of some sort. However, it is a benign 
regress that merely recapitulates the mundane relations of inductive support 
that arise routinely within the sciences. It is unlike those troubling universal-
ly applicable inductive inference schemas of the problem of induction.
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12.1. In the Traditional Problem
To see this, we begin with the troublesome case. For universally applicable 
inductive inference schemas, the traditional starting point of the regress is 
some version of enumerative induction. The regress is already troublesome at 
the outset, for, as we just saw, schemas of enumerative induction are incom-
plete. If applied mechanically, then they lead mostly to false conclusions. All 
too often, when we have some As that are B, it is not the case that all As are B. 
Hence, the first step of the regress, using another rule of inductive inference 
to justify the schema, has been set an impossible task. Still, we might follow 
Harman’s (1965) lead and seek to use inference to the best explanation to 
vindicate enumerative induction. The effect is merely to add another layer of 
trouble. As argued at some length in Chapters 8 and 9 of The Material Theory 
of Induction (Norton 2021b), the schema of inference to the best explanation 
itself is incomplete. We have no agreement in the literature on what counts 
as an explanation, let alone just how to judge which is the best explanation. 
Indeed, I have argued, a distinctive notion of explanation seems to play no 
role in the standard examples of inference to the best explanation in science.

The regress cannot stop, however. We press on. How, as a general mat-
ter, are we to justify inference to the best explanation? Often explanations 
require simplifications that intentionally introduce idealizing falsehoods. 
Explanation and truth need not coincide. Nonetheless, perhaps we can find 
a third rule to justify this second rule. Might we suppose that the general use 
of this argument form has passed some sort of severe test so that it is justified 
by the rule of severe testing? Has the rule of inference to the best explanation 
been tested severely enough to justify its universal use?

Finally, might we tap instead into the unbridled optimism of Bayesians 
that their system can account for everything? Might there be a Bayesian vin-
dication of inference to the best explanation, even if we remain unsure of 
just what an explanation is? Or might a Bayesian vindication succeed for any 
of the other rules that we might seek to justify in the regress? Whatever the 
prospects of success here for Bayesian vindications, we have still only post-
poned the difficulty. We must now ask what justifies the Bayesian system? 
In Chapters 10 and 11 of The Material Theory of Induction (Norton 2021b), I 
argued that all of the many attempts to justify probabilism are circular. This 
does halt the regress but at the cost of circularity.
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We have explored only a few steps of the regress, and our store of dis-
tinct, universally applicable schemas of inductive inference is depleted. The 
prospect of sustaining an infinite sequence of such steps is not just distant but 
also obviously impossible. Our inferences have become as brittle as glass. We 
must feign some grasp of the application of inductive inference schemas in all 
generality, and then pretend to grasp clearly just what it is to apply still fur-
ther inductive inference schema to them, and then more to them. We rightly 
judge this infinite regress of rules applied to rules and to rules as fanciful and 
unsustainable.

12.2. In the Material Theory
The regress of factual warrants in the material theory of induction is differ-
ent. Where the regress of rules applied to rules is incomplete, speculative, and 
dubious, the regress of factual warrants is distinctive precisely because of its 
lack of distinction. It is simply the recapitulation of the grounds given in a 
mature science for its results. In Chapter 2, I described the nonhierarchical, 
massively entangled relations of inductive support within a mature science 
and argued that the totality of these relations is self-supporting. Another ex-
ample can remind us of just how routine the regress of factual warrants is in 
a mature science. In Chapter 2, I used the illustration of the impossibility of a 
perpetual motion machine in the case of the EmDrive.

Consider now the general proposition that a perpetual motion machine 
of any kind is impossible. Our certainty of its impossibility is warranted by 
the fact of the conservation of energy. We can now begin the regress of war-
rants. What supports our confidence in the conservation of energy? I indicat-
ed in Chapter 2 that the totality of support for this fact is so immense that it 
extends well beyond what can be specified here. However, it is sufficient to say 
a little more to make the key point.

The conservation of energy — then commonly known as the “conserva-
tion of forces” — was one of the proud triumphs of mid-nineteenth-century 
physics. The result derived from the joint achievements of many, includ-
ing James Joule, Julius Mayer, and Hermann Helmholtz. It was established 
through the accumulation of many smaller results, for the conservation of 
energy applies to all physical transformations. What needed to be shown 
was that, in each physical transformation, where a capacity was lost in some 
component, it was restored in another, and the restoration was such that a 
quantitative measure of the capacity was preserved.
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When the result was still a scientific novelty, Helmholtz gave a popular 
lecture in Karlsruhe, sometime in the winter of 1862–63, summarizing its 
basis. Helmholtz (1885) proceeded methodically through the various trans-
formation processes that contribute to the general result.

Simple mechanical processes, such as bodies moving under grav-
ity. They include the motion of pendula powering clocks, the 
falling weights that powered such clocks, mills powered by fall-
ing water, and the operation of diverse lever and pulley systems.

Processes involving and powered by elastic bodies. They include 
springs and crossbows, along with bodies moved by the ex-
pansive powers of heated gases, such as those produced in a 
gun barrel by exploding gunpowder or the steam within a 
steam engine.

The many transformations of heat. They include its transmis-
sion among solids, liquids, and gases and by radiative pro-
cesses; its latency in phase transitions such as the melting of 
ice; and its production and absorption in chemical processes. 
Of great historical importance was the novel recognition that 
heat and motive power are intertransformable. Motive power 
can be converted to heat by friction, and heat can be converted 
to motive power in a heat engine.

Chemical transformations. They include all manner of 
heat-generating, combustion reactions and fermentation reac-
tions that produce pressurized gases.

Electrical processes. They include the creation of combustible 
gases by electrolysis, the use of chemicals to generate an elec-
trical current in the cells of a battery, and the interconvertibil-
ity of motive power into electrical currents in electric motors 
and dynamos. These electric currents can then produce chem-
ical changes or, in resistances, create heat.

As Helmholtz worked his way, step by step, through all of these processes, the 
same result was recovered over and over: “Thus, whenever the capacity for 
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work of one natural force is destroyed, it is transformed into another kind of 
activity” (359).

We see here the first steps of the regress of inductive support. Each result 
claimed by Helmholtz required further support. To recover them, he could 
indicate a long history of experimental work preceding his work in each of the 
sciences touched on by his inventory of processes. The best known of them in 
this context was the experimental work of Joule. He painstakingly measured 
the exact conversion between heat and motive power, the mechanical equiva-
lent of heat. His was just one of many experiments touching all of the sciences. 
They include Regnault’s painstaking measurements of the physical properties 
of steam and Faraday’s many researches into electrochemistry. Following this 
path, the regress takes us on a tour of earlier nineteenth-century experiment-
al work in the physical sciences. These next steps of Helmholtz’s regress are 
not limited to experimental work. They also engage with established physical 
sciences. The conservation results pertaining to the motions of bodies under 
gravity could be drawn directly from well-established Newtonian mechanics 
and the conservation of heat itself from results in calorimetry and from what 
could be preserved of the caloric theory of heat.

Helmholtz’s lecture gives an early portrait of the regress of inductive sup-
port shortly after the initial recognition of the conservation of energy. The 
regress continued for decades with ever growing strength. Each item listed in 
Helmholtz’s inventory identified a distinct science: conservative mechanics, 
the mechanics of fluids, thermodynamics, chemistry, and electrical theory. 
As each developed, it affirmed the conservation of energy within the process-
es peculiar to its domain. Might we fear that the mysteries of electricity, mag-
netism, and radiation harbor a violation of the law of energy conservation? 
With the perfection of Maxwell’s electrodynamics as the century progressed, 
the conservation of energy was issued as a simple theorem, a deductive con-
sequence of his equations. There were also interactions among the sciences. 
The joint sciences of electrochemistry and thermochemistry emerged, for 
example. In each, the conservation of energy was maintained. Overall, the 
conservation of energy proves to be affirmed multiply in each of the sciences 
and in many experiments. Its affirmation in one area then provides support 
for its affirmation in another and conversely.

The law found new strength with the arrival of novel physics in the twen-
tieth century. With Einstein’s E = mc2, energy and mass are identified. The law 
of conservation of mass had figured prominently in Lavoisier’s establishment 
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of the oxygen theory of combustion and his tabulation of elements. The law 
of conservation of mass is now merged with the conservation of energy. 
Evidential support for one is also evidential support for the other. As relativ-
istic mechanics developed, a similar merger of conservation laws appeared. 
In the four-dimensional account of special relativity developed by Hermann 
Minkowski, the laws of conservation of energy and of momentum proved to 
be a manifestation of a single law of conservation of energy-momentum. The 
conservation of momentum supports the conservation of energy and con-
versely. The standard Hilbert space formulation of quantum theory emerged 
in the late 1920s and early 1930s. It gave energy conservation a special role. 
Physical systems were routinely represented by conservative Hamiltonian 
operators whose action on quantum states generates their time evolution. The 
resulting temporal dynamics then automatically conserves the energy of a 
system with determinate energy. The success of quantum dynamics depended 
on the conservation of energy and conversely.

This recounting of the evidential support for energy conservation and 
the necessary failure of all perpetual motion machines is likely not a mo-
ment of great excitement for the reader. It reads like a dull recitation of an 
introductory chapter in a dreary science text. That, of course, is precisely the 
point. When we ask what justifies a fact warranting some inference in a ma-
ture science, we begin a regress that recounts relations of inductive support 
upon relations of inductive support. We rapidly find that tracing these rela-
tions takes us on a tour of much science, and we find the relations entangled 
in many mutually reinforcing interactions that give rigidity and strength to 
the structure. At each moment in our tour, we encounter a piece of ordinary, 
unremarkable science. What we do not find is what we found in the regress 
of universal schemas of induction: an accumulation of incompletenesses that 
terminates in dubious speculation after only a few steps of regress.

The justificatory regress of universal schemas of inductive inference is 
almost immediately ruinous and presents a severe challenge to any account 
of such schemas. The regress of inductive support in the material theory of 
induction is merely the recapitulation of mundane science. It just recalls how 
science is done.
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13. Circularities
To recall a theme stressed repeatedly in this volume, the massive tangle of 
relations of inductive support in a mature science includes circularities, both 
large and small in compass. We have just seen several of them. Einstein’s 
E = mc2 merged the conservation of energy and the conservation of mass. 
Through the mediation of this fact of merger, it now follows that the earlier 
establishment of the conservation of mass in chemistry provides support for 
the conservation of energy in physics, and the earlier establishment of the 
conservation of energy in physics provides support for the conservation of 
mass in chemistry. Similar relations of mutual support arise for the laws of 
conservation of energy and conservation of momentum, through the fact that 
these laws are expressed as a single law of conservation of energy-momentum 
in the four-dimensional formulation of special relativity.

I argued at some length in Chapter 3 that the mere presence of a circu-
larity in some system is not an automatic condemnation of the system. Many 
circularities, like the ones just noted, are common in unobjectionable sci-
ence. Rather, if we are to assert that a circularity is troublesome, then we have 
a positive obligation to demonstrate that the specific circularity is so. The 
chapter provided two means for doing this. The most serious case is a vicious 
circularity. In it, the circular relations lead to a contradiction. The less serious 
case is a circularity that leaves the structure indeterminate. If that indeter-
minacy is not transient but ineliminable, then the common resolution is to 
judge the structures involved as not factual. That is, they can be set conven-
tionally, much as we are free to set our units of measurement.

In the circularity forms of the problem of induction, we seek to use a 
universal schema of inductive inference to justify itself. This circularity is 
immediately troublesome, for it forms a tight circle that leaves the schema 
indeterminate. It is easy to show that there are too many dubious univer-
sal schemas of inductive inference that are self-justifying. The trouble is that 
self-justification is too permissive. Salmon’s (1967, 12) preliminary example is 
of a psychic who makes predictions by gazing into a crystal ball:

When we question his claim he says, “Wait a moment; I will 
find out whether the method of crystal gazing is the best 
method for making predictions.” He looks into his crystal ball 
and announces that future cases of crystal gazing will yield 
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predictive success. . . . “By the way, I note by gazing into my 
crystal ball that the scientific method is now in for a very bad 
run of luck.”

Another of Salmon’s examples is a counterinductive rule that is self-justifying. 
It mimics the familiar attempt to allow inductive inference to be self-justifying. 
Salmon defines an inductive rule R3:

To argue from

Most instances of A’s examined in a wide variety of conditions 
have been non-B

to (probably)

The next A to be encountered will be B. (15; Salmon’s emphasis)

Salmon then takes as a premise that most applications of rule R3 (A) have 
been unsuccessful (not-B). Rule R3 then assures us that it will be successful on 
its next application. More formally, Salmon writes that

R3 has usually been unsuccessful in the past.

		  Hence (probably):

R3 will be successful in the next instance. (15; Salmon’s em-
phasis)

Douven (2017, Section 3.2) provides an amusing variant of Salmon’s counter-
inductive rule:

For suppose that some scientific community relied not on ab-
duction but on a rule that we may dub “Inference to the Worst 
Explanation” (IWE), a rule that sanctions inferring to the 
worst explanation of the available data. We may safely assume 
that the use of this rule mostly would lead to the adoption of 
very unsuccessful theories. Nevertheless, the said community 
might justify its use of IWE by dint of the following reason-
ing: “Scientific theories tend to be hugely unsuccessful. These 
theories were arrived at by application of IWE. That IWE is a 
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reliable rule of inference — that is, a rule of inference mostly 
leading from true premises to true conclusions — is surely the 
worst explanation of the fact that our theories are so unsuc-
cessful. Hence, by application of IWE, we may conclude that 
IWE is a reliable rule of inference.”

I stressed above that we have a positive obligation to demonstrate that circu-
larity is troublesome. Salmon’s and Douven’s analyses show just this trouble 
for the self-justifying schema.

That there is no such demonstration of troublesome circularity in the 
material theory of induction I argued in Chapters 3 and 4. Contradictions 
can arise provisionally in the tangle of mutual relations of inductive support 
of a developing theory. They are merely an indication that we have an error 
somewhere in our structure. They are routine and provide a helpful guide to 
finding the error and its subsequent elimination. Indeterminacies can also 
arise. If they are ineliminable, then we have good reason to conclude that 
what is left indeterminate is not factual but something that can be set by con-
vention, for we have found something beyond the reach of evidence. Finally, 
if the indeterminacies admit multiple theories but remain within the reach of 
evidence, then we find that the resulting competition among those theories 
is unstable. An advantage for one strengthens it at the expense of the others. 
Under this instability and the accumulation of further evidence, inductive 
support is driven to favor just one of the competing theories.

The circularities that arise when universal schemas of inductive inference 
seek to justify themselves are self-defeating. The circularities of inductive 
support that arise in the material theory of induction are merely symptoms 
of a massively interconnected network of relations of inductive support. They 
are part of what gives strength and rigidity to the evidential support of ma-
ture sciences.

14. Sober and Okasha
It would be a surprise if a response to Hume’s problem this simple had been 
entirely overlooked in the literature. As far as I know, there are two older 
versions of this escape. Neither is complete since each omits at least one key 
piece, but they have enough for me to characterize them as close to the ma-
terial dissolution.
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Sober (1988) notes that Humean skepticism about our knowledge of the 
future is equally a problem for historical sciences, such as evolutionary biol-
ogy, for they try to discern the past from evidence in the present. In these in-
ferences, invocations of simplicity can play a prominent role. Sober, however, 
understands them materially:

Whenever observations are said to support a hypothesis, or 
are said to support one hypothesis better than another, there 
must be an empirical background theory that mediates this 
connection. It is important to see that this principle does not 
evaporate when a scientist cites simplicity as the ground for 
preferring one hypothesis over another in the light of the data. 
Appeal to simplicity is a surrogate for stating an empirical back-
ground theory. (64; Sober’s emphasis)

Sober then applies this material understanding of induction to Hume’s prob-
lem. According to the problem, as Sober recalls it, inductive inference de-
pends on an inductive principle that cannot be justified by reason alone. In 
place of this failure, he finds a regress:

What we do find in any articulated inductive argument is a 
set of empirical assumptions that allow observations to have 
an evidential bearing on competing hypotheses. These back-
ground assumptions may themselves be scrutinized, and 
further observations and background theory may be offered 
in their support. When asked to say why we take past obser-
vations to support the belief that the sun will rise tomorrow, 
we answer by citing our well-confirmed theory of planetary 
motion, not Hume’s Principle of the Uniformity of Nature. If 
challenged to say why we take this scientific theory seriously, 
we would reply by citing other observations and other back-
ground theories as well. (65–66)

All that is needed for this analysis to coincide with the material dissolution 
is for Sober to affirm a benign termination of the regress. Here he falters. 
Through an obliquely answered rhetorical question, he concludes that there is 
no “stage where an empirical belief that is not strictly about the here and now 
is sufficiently supported by current observations, taken all by themselves” (66). 
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Such a stage is incompatible with his earlier conclusion that observations can 
support a hypothesis only relative to a background theory. Sober concludes 
that

The thesis that confirmation is a three place relation sustains 
Hume’s skeptical thesis, but not the argument he constructed 
on its behalf. (66)

Sober’s objection to a benign termination to the regress, we can now see, de-
pends on a tacit adherence to the hierarchical structure of relations of in-
ductive support denied in Chapter 2 of this volume. Without it, we are freed 
from the requirement that a warranting fact must be drawn from somewhere 
in a later stage of the regress. A benign termination is possible merely using 
warranting propositions supported elsewhere.16

Okasha (2001) recounts the key idea of the material dissolution of the 
problem of induction in a section headed “IV. No Rules of Induction, No 
Humean Argument.” The section ends thus:

To conclude, a Humean sceptical argument will only work 
if our inductive behaviour can be characterized as a process 
of rule-governed ampliation. There is no necessity that our 
inductive behaviour can be so characterized. I have offered 
reasons for thinking that it cannot be. If this is correct, then 
Hume’s argument cannot be converted from a valid one into 
a sound one, and the threat of inductive scepticism is success-
fully parried. (324)

Okasha also recognizes that an inductive rule is applicable only if the back-
ground factual conditions are hospitable. In the material theory, it is inferred 
from this circumstance that rules of inductive inference can be applied only 
locally in suitably hospitable domains. Here, unfortunately, Okasha takes a 
different course that precludes a full dissolution of the problem of induction. 
He treats inductive rules as universally applicable and finds this to require us 
to abandon all rules of inductive inference. That is, he writes,

16	 See Okasha (2005) for an account of Sober’s analysis and the material dissolution as 
presented in Norton (2003).
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To use an inductive rule is to assume that the world is arranged 
in a particular way, as I have stressed. . . . So following any 
particular inductive rule does seem less than fully rational. It 
embodies a fixed commitment to the world’s being in a certain 
state; but qua empiricists we should undertake such commit-
ments only provisionally, not hold on to them at all costs. (321)

The result is that Okasha must seek some other account of the inductive 
practices of science. He explores Bayesianism, understood as the dynamics of 
opinion change, and Popper’s deductivist elimination of induction. Hume’s 
problem is escaped but at the cost of denying that science infers inductively.

15. What Justifies Induction in the Material Theory
Showing that there is no problem of induction in the material theory might 
seem to leave the fundamental question unanswered. What, one might still 
wonder, justifies the practice of inductive inference, according to the material 
theory? Although the answer was implicit in the discussion in the previous 
section, it might be helpful to make it more explicit.

The question can appear to be unanswered if it is accompanied by a false 
presumption. In asking “What justifies . . . ?” the presumption might be that 
we can identify a particular thing that does the justifying. That was the sort 
of answer that Mill tried to give with his principle of uniformity of nature. 
In the material theory of induction, there is no single identifiable thing that 
justifies inductive inference. Rather, the justification for inductive inference 
is distributed over the entirety of the complicated network of relations of in-
ductive support that comprises a mature science. In the early stages of a new 
science, when these networks are not fully in place, justification might be only 
partial. At least some of the justificatory work is done by propositions, intro-
duced hypothetically, without themselves having proper support. The goal, as 
the science develops, is to provide support for each of these hypotheses so that 
no proposition of the resulting mature science is without inductive support.17

Perhaps an analogy will help to illustrate the sufficiency of this answer. 
The vitalists of the eighteenth and nineteenth centuries sought in vain for 

17	 This notion of distributed support has already appeared in variant forms in Chapters 2 
and 5 of this volume.
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the animating spirit that distinguishes living matter from dead matter. As 
biology advanced into the twentieth century and our knowledge of the de-
tails of life processes became increasingly detailed, the futility of the search 
for this élan vital became clear. However, there was no simple answer to the 
question of what makes something alive. A biologist could examine in great 
detail any portion of a living organism and find only inanimate chemical and 
electrochemical processes, even if of great complexity. We can point to no 
single thing that animates matter. The best — in fact the only — answer to the 
question of what makes some organism alive is just this: it is no one piece of 
the organism. Its life derives from the synthesis of all of the many processes 
of its many parts.

16. Critical Responses to the Material Dissolution
Section 6 of my first paper on the material theory of induction (Norton 2003) 
described how that theory eluded the problem of induction. I have described 
in the preface to this volume how this dissolution of the problem of induc-
tion generated a critical response out of proportion to its place in the original 
paper. However, the criticism revealed that I had not developed the details of 
the dissolution well enough. It needed to be sharpened. Here I will recall that 
criticism and show how subsequent refinements have responded to it. There 
were two broad areas of concern, indicated below.

16.1. From Particulars to Generalities
First, I had correctly identified the regress of justifications in the material 
theory as benign and merely recapitulating ordinary relations of support in 
standard science. However, I had not identified the nonhierarchical structure 
of these relations and the role of hypotheses in its erection. Rather, in Norton 
(2003, Section 6), I merely asserted that the regress is benign and gave some 
inconsequential speculation on the possibilities for its termination. They in-
cluded a termination in “brute facts of experience.”

Both John Worrall (2010) and Tom Kelly (2010) found this inadequate. As 
Worrall correctly noted,

However, if we follow this backward direction, we clearly meet 
what seems to be an insuperable problem: the accreditational 
buck has to stop somewhere: it cannot be an infinite chain (or 
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rather tree . . .). . . . [W]e know that nodes in the tree must con-
tain, at some stage, universal claims — and so we would still 
have to account for some initial act (or acts) of generalization. 
And given that we want each node to be justified, we would 
seem to be back at the same old problem. (746)

And then

I am unsure what a “brute fact” of experience is. But presum-
ably brute facts for Norton here had better be singular: if so, 
then the problem has not been solved since the tree needs to go 
universal at some point; . . . (747)

Kelly set up his objection by defining E:

. . . [C]onsider that time immediately before we acquired our 
first piece of inductive knowledge. Let E represent the totality 
of our knowledge at that moment. (760)

Trouble, Kelly continued, then ensues:

Suppose that we try to take a first, minimal step beyond E. 
Again, intuitively, this proposition will be our first piece of in-
ductive knowledge. In that case, we must have recourse to at 
least one known material postulate. Of course, that material 
postulate has to be a part of E, since it has to be known, and 
E represents the totality of our knowledge at the time. . . . My 
worry is that, given that the only empirical knowledge that one 
has at that point is observational knowledge and its deductive 
consequences, there would not be anything suitable around to 
play the role of material postulate. (761)

In brief, the concern is that we start knowing only particular facts. To extend 
our knowledge inductively to generalities of vastly greater scope, we need a 
material postulate of vastly greater scope. By supposition, we have no such 
fact in our starting point.

This is an objection that needs a response, and I am grateful to Worrall 
and Kelly for pressing me on it. The response to these worries came in Norton 
(2014) (and is elaborated in Chapter 2 here). Their objection fails. It neglects 
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the use of hypotheses as a way of extending the inductive reach of evidence 
well beyond its initially limited scope. We can and routinely do take a first 
faltering step in inductive inference by hypothesizing the warranting fact 
needed. This warranting fact can be of generality greater than the facts from 
which we initially proceed. The key is that its use is provisional. We have a 
positive obligation to return to the hypothesis and show in subsequent inves-
tigations how it is supported inductively. When we succeed, we commonly 
end up with cogent but massively entangled relations of inductive support. If 
we do not succeed, then we must concede that the inference has no warrant 
and should be abandoned.

It is a lesson hard won by authors of philosophy papers that their solutions 
to problems can be overlooked. Such has happened with works by Schurz 
(2019) and Schurz and Thorn (2020). They mischaracterize the material ap-
proach to induction as a “uniformity account” (Schurz 2019, 17; Schurz and 
Thorn 2020, 89): that is, an account based on uniformity assumptions. Then 
they assume that the regress of inductive support depends on a sequence of 
uniformity assumptions of increasing generality that cannot terminate satis-
factorily.18 Both texts provide instances of such sequences. Readers should 
be forewarned that these sequences are proposals by Schurz and Thorn and 
not part of my account. Their supposition is based on a mistaken assumption 
about how the warranting facts of an inductive inference themselves are to 
be warranted. The supposition is that the successive warranting facts in this 
process inexorably must become ever more general. In this way, relations of 
inductive support are supposed to be adapted to a hierarchy of increasing 
generality.

That inductive support, materially understood, avoids just such sequen-
ces was an important consequence of my identification (Norton 2014, Section 
10) of the nonhierarchical structure of relations of inductive support, fur-
ther elaborated here in Chapter 2. Rather, relations of inductive support cross 
over one another in a massively entangled structure that respects no such 
hierarchy of generality. Schurz and Thorn (2020) draw their treatment of the 

18	 “A closer look at Norton’s example shows that the uniformity assumptions that justify 
inductive inferences become more and more general” (Schurz 2019, 17); “. . . the uniformity 
assumptions that justify material inductive inferences become unavoidably more and more 
general” (Schurz and Thorn 2020, 90). Independent of any consideration of the material theory, 
Bird (1998, 111) characterizes the regress form of the problem of induction in terms of an 
unsustainable regress of ever more general, justifying facts.



2196 | The Problem of Induction

material escape from Norton (2003), supplemented by references to Worrall 
(2010) and Kelly (2010). They do not cite Norton (2014) and make no accom-
modation for its assertions. My fuller response to them is in Norton (2021a).

16.2. Logic versus Epistemology
Second, I had not separated questions of inductive logic from those of the 
epistemology of beliefs, as I have now done in Section 9 of this chapter. That 
this should have happened in my response (Norton 2014) to Kelly (2010) was 
almost inevitable since his critique mingled the two throughout. Kelly pre-
sented a core claim of the material theory in epistemological terms:

In what sense are inductive inferences “grounded in” mate-
rial facts? . . . [W]hat is required is that the person drawing 
the inference knows (or at least, reasonably believes) that they 
obtain. (759)

This Kelly soon reinforces as the key supposition that will lead to his objec-
tion to the material dissolution:

. . . Norton’s view is that knowledge of the underlying material 
postulate is what is required: “In order to learn a fact by in-
duction, the material theory says that we must already know a 
fact, the material postulate that licenses the induction” (2003, 
666).19

Let us call this commitment of the material theory:

Prior Knowledge: in order to learn a fact by induction, one 
must have prior knowledge of the material fact that licenses 
the induction. (2010, 760; Kelly’s emphasis)

Kelly’s narrative here takes a central claim of the material theory of induction 
from the context of the logic of induction and reconstitutes it as a claim in the 
epistemology of belief. With this revision, as quoted above, Kelly sets up E: 
the totality of our knowledge at the moment immediately before we acquire 

19	 The remark quoted from me (“In order to learn a fact . . . know a fact . . .”) reports a 
consequence of the material logic of induction for the epistemology of belief. The “knowing” is not 
constitutive of inductive inference relations in the material theory. Kelly mistakenly makes it so.
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our first piece of inductive knowledge. He can now pose what appears to be an 
insurmountably difficult problem. How can we proceed from E to make the 
first induction to a generalization of vastly greater scope?

Understood as a problem of inductive logic, it is not so formidable. We 
have some body of particular facts. Which inductive inferences can it sup-
port? As I recounted in Chapter 2, once we abandon the unnecessary hier-
archical restrictions on applicable material postulates, we find that there is no 
barrier to them grounding an extensive science with propositions of general 
scope, as long as the propositions of E themselves are varied enough. We can 
even recover the inductive structure from a sequence of inductive inferences 
that employ hypotheses provisionally.20

If, however, we conceive E epistemologically, as some sort of exhaustive 
specification of the beliefs of a fictional primitive human, then now we have 
posed a new and more difficult problem. We have somehow to imagine the 
unimaginable. What is it to be such a human, fully grasping many particulars 
but no generalities? What would such a human do next? Would such a human 
have any confidence that generalities are somehow within inferential reach? 
What might motivate such a human even to want to try?

This epistemological formulation of the problem led me (Norton 2014, 
Sections 6–7) to give some epistemological analysis of what I called “the 
historical-anthropological objection.” I agreed with John Worrall about the 
spuriousness of the epistemological problem posed. We have no reason to 
believe that our forebears were ever in the cognitive state represented by E. 
Even while objecting that the problem as posed engaged in wild speculation, I 
sought to make the point by responding with more speculation of my own on 
the prospects of primitive cognition in what I called a “counter-fable.”

Looking back, I stand by the content of my analysis. However, I now re-
gret not choosing a more cautious response. The material theory of induc-
tion has no trouble dealing with the inductive logic of the problem. Once the 
problem is enmeshed with fabrications of fictitious primitive humans in the 
epistemology of belief, it can no longer be addressed responsibly by armchair 
philosophers. Even though this was the basic point that I sought to make, it 

20	 One might worry that this use of hypotheses strays into the epistemology of beliefs. The 
use of hypotheses, as described in Chapter 2, is akin to the positing of a hypothesis in ordinary 
deductive logic as part of a reductio ad absurdum. In both cases, the hypotheses figure in explicit 
logical relations over propositions. Beliefs need not enter the analysis.
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was a mistake to engage in any more detail,21 for it invites the misapprehen-
sion that the material theory of induction has some responsibility to make 
sense of primitive humanoid cognition. It does not. Its compass is restricted 
to inductive logic defined over propositions and especially those that enter 
into routine science. It has no responsibility to the inchoate speculations of a 
primitive Adam when he first stumbles out of his cave.

De Grefte (2020) entangles logic and epistemology in a sequence of dubi-
ous arguments. First, he argues that “proponents of the material theory of 
induction are in fact committed to an externalist epistemology.” Here I resist 
all attempts to enmesh the material theory in issues of epistemology and have 
no interest in connecting the material theory of induction with any particular 
epistemology. Lest the point pass, however, I should report that de Grefte’s 
efforts to establish a commitment to an externalist epistemology are weak. As 
far as I can see, internalists can employ the material theory of induction sim-
ply by being aware of the material facts authorizing the inductive inferences 
behind their reasoning.

Second, de Grefte (2020, 100) argues “that externalist epistemologies 
are generally able to dissolve the problem of induction.” In Section 10 of this 
chapter, I argued that this is a mistake. That there is no problem of induction 
in an externalist epistemology does not solve a problem in inductive logic. 
Moreover, reliabilist externalist epistemologies are felled by a problem analo-
gous to the problem of induction.

Hence, finally, with these two failures, there is no foundation for de 
Grefte’s claim:

Like extant forms of externalism, Norton’s material theory of 
induction dissolves the problem of induction. But since the 
material theory entails an externalist epistemology, one may 
suspect it is this externalism that does the epistemological 
work here. (2020, 104; de Grefte’s emphasis)22

Weintraub’s (2016, Section 4) appraisal of the material dissolution 
illustrates again the dangers of mixing logic and epistemology incautiously. 

21	 This regret also applies to remarks in Norton (2003, as in 668n9), in which I assert 
(correctly) that brute facts like “the ball is red” already presupposed universal knowledge.

22	 See also my response in Norton (2021a, Section 6).
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After recounting the much-cited “bismuth” example of Norton (2003, 649),23 
she writes

But it is extremely implausible to suppose that if bismuth is in 
fact an element, but we justifiably believe that it isn’t or have 
no opinion about the matter, our belief that it melts at 271 C 
is justified, our sample of positive instances notwithstanding. 
(72; Weintraub’s emphasis)

That is, Weintraub supposes that we have mistakenly come to believe falsities 
of the background domain or perhaps have no suitable background beliefs. 
Then she correctly notes that we would be unable to justify the appropriate 
conclusion concerning the melting point of bismuth. There is no fault here in 
the inductive logic. The fault lies in the translation of logic into belief states. 
The cognizer proceeds by supposition from false or inadequate beliefs. It is a 
failure outside the compass of the material theory of induction.

Her dismissal of the material dissolution of the problem of induction 
seems to rest on a misreading of the material theory. Weintraub (2016, 72) 
characterizes the material theory as “an attempt to eliminate induction,” 
grouped with Popper’s inductive eliminativism. I understand her to hold 
that the material theory treats inductive inferences as enthymemes. That is, 
they will be rendered deductive with the addition of the material postulate 
as another premise.24 Weintraub reports correctly some truisms of deductive 
logic, such as “that all observed instances of bismuth were elements doesn’t 
entail that all instances of bismuth are elements” (72; italics in the original). 
However, these truisms are insufficient to support her conclusion: “Norton’s 
attempt to dissolve the problem of induction, I conclude, fails (again) because 
its characterization of our practice is erroneous” (72). Weintraub’s critique is 
based on an erroneous characterization of the material theory.

23	 From “some samples of the element bismuth melt at 271C,” we infer that “all samples 
of the element bismuth melt at 271C” using the warranting fact that “all samples of bismuth are 
uniform just in the property that determines their melting point, their elemental nature. . . .”

24	 Here Weintraub overlooked the disclaimer in Norton (2003, 651): “Chemical elements 
are generally uniform in their physical properties, so the conclusion of the above induction is most 
likely true.” A footnote explains the inductive risk taken: “Why ‘generally’? Some elements, such as 
sulfur, have different allotropic forms with different melting points.”
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Finally, Skeels (2020) somehow manages to convince himself that there 
are two “Nortons” who advocate two different material theories. They corres-
pond to the real logical version and Skeel’s invented epistemological version 
of the material theory. In the first, justifications derive from facts and, in the 
second, from knowledge. Skeels then seeks to use his misidentification to im-
pugn the material dissolution of the problem of induction. See Norton (2021a, 
section 14) for my response.

16.3. More Treatments
For completeness, I recall some other treatments of the material dissolution 
of induction in the recent literature.

Livengood and Korman (2020) accept the material dissolution of the 
problem of induction as a matter of inductive logic. However, they urge that 
rational entitlement to future beliefs goes beyond consideration of evidence 
and inductive logic. The entitlement fails in the absence of a suitable explana-
tory relationship between the belief and the fact to be believed. As I indicate 
in my response (Norton 2021a, Section 9), this problem goes beyond the con-
cerns of the material theory of induction. It is an issue of the epistemology of 
belief formation, and I hope that epistemologists can resolve it.

Jackson (2019, 164) disputes the material dissolution of Hume’s problem 
by disputing a key condition of the material theory itself, that warranting 
facts must be facts: that is, truths. He argues, erroneously, that this precludes 
proper warrant for eighteenth-century predictions that employed Newton’s 
laws of motion. There is no problem here. Our best theory of gravity, general 
relativity, returns Newton’s entire theory in the weak gravitational fields per-
tinent to eighteenth-century physics. Jackson also worries that “scientifically 
ignorant people” might no longer have a warrant for inferring that night will 
follow day. Having learned my lesson, I will not be lured again into specu-
lating about the inductive practices of fictitious or vaguely specified “scien-
tifically ignorant” people. If inventions and fictions are to be avoided, then 
Jackson is well advised to do the same.

Peden (2019) offers a friendly amendment to the material dissolution of 
the problem of induction. He argues that it would benefit from supplementa-
tion by the combinatorial justification for induction of Williams and Stove, 
in conjunction with what is sometimes called “direct inference,” “statistical 
syllogisms,” or “proportional syllogisms.” Whether this supplement is helpful 
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is a topic that needs to be dealt with elsewhere. However, I am wary of such 
gifts since my fear is that they create more problems than they solve.

17. Conclusion
Hume’s problem of induction has the reputation of being one of the most 
fearsome and intractable problems of philosophy. In her synoptic article, 
Henderson (2020) reports Russell’s dark warning: “If Hume’s problem cannot 
be solved, [Russell laments, then] ‘there is no intellectual difference between 
sanity and insanity.’” Henderson finds a huge range of solutions in the present 
literature and an enduring belief by many that none succeeds. When such 
diversity persists, we can only conclude that, so far, we are doing a poor job 
of protecting ourselves from the lamentable conclusion that Russell feared.

Of the many solutions currently on offer, in my view, the best is 
Reichenbach’s pragmatic solution. It is a dominance argument. We should 
infer inductively, even if we cannot justify induction as leading to the truth, 
since, pragmatically, if any method can work, then induction will work. The 
pragmatic solution has its best exposition and elaboration in Salmon (1967). 
Over half a century after its publication, I still find it to be one of the best treat-
ments of Hume’s problem. Ingenious as it is, Reichenbach’s pragmatic solution 
is unsatisfying. It puts us in the same position as a drowning man, clutching at 
straws. Both we inductive inferers and the drowning man would like some fur-
ther assurance of the efficacy of our desperate measures. We should like some-
thing a little stronger than “What have you got to lose?!” That this pragmatic 
answer and clever formal elaborations of it should retain a firm position in the 
literature is a sure index of the literature’s failure to treat the problem well.

This despondent view was my view until I began work on the materi-
al theory of induction. It became clear then that even the most intractable 
problems are defined within a framework. What can make them intractable 
is precisely that we seek solutions within the framework. If we can break out 
of that framework, then perhaps the problem can be solved. In the best case, 
the problem can no longer even be set up. That proves to be the case when we 
adopt a material theory of induction. The problem of induction, in its most 
intractable modern form, is a problem for universal rules of induction. Once 
we adopt a material theory of induction, we abandon universal rules of induc-
tion. We break out of the confining framework. The problem of induction can 
no longer be set up. It is dissolved.
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The Recession of the Nebulae

1. Introduction
In 1929, the astronomer Edwin Hubble announced what would become the 
single most important observation of modern cosmology.1 Hubble reported 
that the extragalactic nebulae2  are receding from us with a velocity propor-
tional to their distance, a result that soon came to be known as “Hubble’s 
law.”3 The establishment of this linear relation seems to be one of the sim-
plest of generalizations. Hubble needed only to compare the velocities of 
recession and distances to a selection of nebulae, note their linear relation, 
and declare the result. This is how his affirmation of the linear relationship 
is often reported in summary. McKenzie’s Major Achievements of Science 
describes it thus:

In 1929 Hubble compared Slipher’s determinations of the 
recession of the nebulae with his own determinations of 

1	 I thank Siska De Baerdemaeker for helpful comments on an earlier draft.
2	 Hubble’s “extragalactic nebula” or just “nebula” are the older terms for “galaxy.” In 

1929, the term “galaxy” referred unambiguously only to our star system, the Milky Way. The Latin 
nebula (plural nebulae) means “cloud” and was used by astronomers of Hubble’s time to denote the 
luminous clouds visible in astronomical telescopes. As Hubble explained (1936, 16–17), some of 
these clouds proved to be gas and dust within our Milky Way. These he called “galactic nebulae.” 
Others were more distant star systems in their own right — “extragalactic nebulae” — that he 
would just call “nebulae.” Hubble defended his reluctance to label these other nebulae “galaxies”: 
“The term nebula offers the values of tradition; the term galaxies, the glamour . . . of romance” (18; 
Hubble’s emphasis).

3	 In 2018, the members of the International Astronomical Union voted to rename the law 
the “Hubble-Lemaître law.”



The Large-Scale Structure of Inductive Inference232

distances and he discovered a simple relation now called 
Hubble’s law, that the velocity is proportional to the distance. 
(1960, 333)

This simple determination seems to be a good illustration of a natural hier-
archical structure for inductive support. In it, inductive inferences may pro-
ceed only from a lower, more particular level to a higher, more general level.

Inductive Hierarchy
Lower level: velocity and distance assignments to particular 
nebulae.
Higher level: general relation connecting the velocities and dis-
tances of all nebulae.

Hubble’s inference, it seems, merely proceeds up the hierarchy. The particu-
lars of a few individual nebulae at the lower level provide inductive support 
for the general law at the higher level.

Simple as this inference might seem, Hubble’s celebrated paper of 1929 
showed no respect for this inductive hierarchy. Rather, a multiplicity of induct-
ive inferences moved up and down the hierarchy in an intricate arrangement of 
interlocking parts, much like those of a complicated geometric puzzle.

To begin, in 1929, Hubble had access to measurements of the velocities of 
recession of forty-six extragalactic nebulae, but he had independent distance 
estimates for only twenty-four of them. For these twenty-four, in what initial-
ly appears as a simple generalization, he found a linear velocity-distance rela-
tion within statistical uncertainties. However, the inference was not a simple 
generalization since the determination of most of the distances among these 
twenty-four nebulae depended on assuming hypotheses still needing further 
support. They are the hypotheses of Brightest Star Magnitude and Clustering 
of Nebular Luminosity detailed in Section 3. These hypotheses cannot be lo-
cated uniquely in the inductive hierarchy above. In the inferences, they are 
presumed by the determinations of distance, so they are prior to the lower 
level: that is, still lower. However, the hypotheses accrue support once the 
inferences of the paper of 1929 are complete. That means that they come 
at the end of the inferential chain, so they should be placed higher in the 
inductive hierarchy.

The remaining twenty-two nebulae were more problematic. For them, 
Hubble had measurements of velocities and apparent luminosities but not 
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distances. He was determined somehow to make use of these data. In doing 
so, he introduced relations of support that further cut across the inductive 
hierarchy. This happened in two related ways.

First, Hubble averaged the apparent luminosities of the twenty-two neb-
ulae and computed the average distance associated with them, assuming the 
Clustering of Nebular Luminosity hypothesis and a mean absolute luminosity 
found in his second, inverted inference (described below). The mean velocity 
and the mean distance fell within the expectations of the linear relation that 
he had found for the first twenty-four nebulae, providing further support for 
that relationship.

Second, Hubble inverted the direction of evidential support. He used the 
velocity-distance relation itself, in conjunction with the velocities of recession 
of these twenty-two nebulae, to infer their distances. This inference proceeds 
down the inductive hierarchy from the higher level to the lower level. He then 
used the distances computed to determine the absolute luminosities of the 
twenty-two nebulae. The results provided direct support for the Clustering of 
Nebular Luminosity hypothesis, already used in the earlier analyses.

The overall outcome was a tangle of inductive inferences that failed to re-
spect any simple linear, inductive hierarchy, such as the one indicated above. 
We shall see that Hubble remarked repeatedly on the agreement among 
and later the consistency of the results of the inferences as providing the 
strongest support for his general conclusions. His notion of consistency was 
much stronger than mere logical compatibility. Rather, it reflects the mutual 
agreement among the many entangled relations of support. What might be 
evidence that supports a result in one relation becomes the result supported 
by evidence in another relation. This agreement among relations of mutual 
support gives the structure its inductive solidity.

Hubble’s analysis also illustrates the use of hypotheses in initiating in-
ductive investigations. The two hypotheses above were used provisionally as 
warrants since they themselves were not yet fully supported evidentially. Part 
of Hubble’s overall project became the successful discharging of this induct-
ive debt by providing support for these hypotheses.

In Section 2, I will describe how Hubble came to be concerned with the 
velocities of the nebulae. In Section 3, I will outline the hypotheses that he 
used in his determinations of the distances to the nebulae. In Sections 4 and 
5, I will review the inference to the linear velocity-distance relation for the 
first twenty-four nebulae. In Section 6, I will review the inverted inferences 
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for the remaining twenty-two nebulae. In Section 7, I will reflect briefly on the 
strength of support that Hubble could display in 1929 for the linear relation-
ship. In the concluding Section 8, I will summarize the interwoven relations 
of support in Hubble’s paper of 1929. An appendix to this chapter includes 
technical details of the computations relating absolute and apparent nebular 
luminosities, known tersely as “magnitudes.”

2. Background to Hubble’s Investigations
It is now a commonplace of astronomy that space is filled with many immense 
star systems akin to our own Milky Way. They are the galaxies, as they are 
now called, or the extragalactic nebulae, as Hubble called them. Yet whether 
the stars were so distributed in space remained unsettled in the early 1920s.  
A landmark in the decision was a debate held between the astronomers 
Harlow Shapley and Heber Curtis on April 26, 1920, at the Smithsonian 
Museum of Natural History. Shapley defended the view that our Milky Way 
is the unique great star system of the universe. Curtis, however, argued that 
our Milky Way is just one of many such “island universes,”4 as they were 
then called. The matter was settled fairly quickly. According to Trimble (1995, 
1142), it was Hubble himself who provided a cleaner resolution. Starting with 
observations in 1923,5 he was able to discern Cepheid variable stars in two 
nearby nebulae, most notably Andromeda. As we shall see below, this enabled 
a determination of the distances to these nebulae. They were located outside 
our Milky Way, he found.

Our solar system has a motion within the Milky Way. With the recogni-
tion that our Milky Way is just one of many nebulae, a prosaic question arises: 
what is the motion of our solar system with respect to these other nebulae? In 
his later work, The Realm of the Nebulae, Hubble (1936, 106–18) recalled how 
the answer to this question developed. The velocities of nebulae relative to the 
Earth were known from red shift measurements in the 1910s. The motion of 
the solar system was then estimated as around 420 mi/sec. The expectation 
was that, once this motion was subtracted from the motions of the nebulae, 

4	 The cases each made are published in Shapley and Curtis (1921). See Trimble (1995) for 
further details.

5	 As reported in Hubble (1929b). The results also appeared in a New York Times article 
on December 23, 1924 (Anonymous 1924), and were communicated orally by H.N. Russell at the 
December–January 1924–25 meeting of the American Astronomical Society (Anonymous 1925).
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those motions would be small and random. In particular, there would be as 
many velocities of approach as of recession. Using a statistical analysis to 
average away these random motions, we should recover the motion of our 
solar system with respect to the mean rest state of the nebulae in our vicinity.

As early as 1918, it was already clear that the statistical project was not 
proceeding smoothly. Wirtz (1918) found the need to add a “k term” that cor-
responded to an overall recession of the nebulae. It meant that the motions of 
the nebulae visible to us were not distributed randomly about some nebular 
state of rest. In place of the state of rest was some sort of expansion. The k 
term represented a constant motion of recession from our solar system of 656 
km/sec. The motions of the individual nebulae were distributed randomly 
around that constant motion of recession. Wirtz wrote that,

If we give this value a verbal interpretation, it is that the system 
of spiral nebulae disperses [auseinandertreibt] with a speed of 
656 km [per second] in relation to the momentary position of 
the solar system as a center. (115)

Over the next decade, Wirtz and others refined the correction term, allowing 
it to be a function of distance from our solar system. Hubble’s celebrated 
paper of 1929 was a direct contribution to this literature. Its first paragraph 
identifies the issue to be addressed:

Determinations of the motion of the sun with respect to the 
extra-galactic nebulae have involved a K term of several hun-
dred kilometers [per second] which appears to be variable. Ex-
planations of this paradox have been sought in a correlation 
between apparent radial velocities and distances, but so far 
the results have not been convincing. The present paper is a 
re-examination of the question, based on only those nebular 
distances which are believed to be fairly reliable. (1929a, 168)

The result announced (170–71) was that a statistical fit gave the overall mo-
tion of the nebulae as distributed, with some considerable deviations, around 
a velocity of recession that increases linearly with distance from us. In more 
detail, the best estimate of the motion of our solar system is 280 km/sec, and, 
when this is subtracted from the motions of the nebulae, their motions are 
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scattered around an average recessional velocity of 500 km/sec for each mil-
lion parsec (Mpc) of distance.6

A prosaic question about the motion of our solar system had led Hubble 
to the single most important observational result of modern cosmology.

3. The Determination of Distances
To carry out the analysis of his paper of 1929, Hubble needed determinations 
of both velocities of and distances to the nebulae. For the forty-six nebulae of 
his analysis, the velocity determinations proved to be relatively unproblem-
atic. They were determinable from frequency shifts in the spectra of light from 
the nebulae. The shifts were immediately interpreted as the results of radial 
velocities: that is, motions along the lines of sight to each nebula.7 As Hubble 
(1936, 102–05) recounts, Vesto Slipher, working at the Lowell Observatory, 
had begun the arduous work of measuring these shifts in 1912. By 1925, he 
had provided the velocities of twenty-five nebulae.

The locus of difficulty in the analysis was the determination of distan-
ces. Two means were available for determining these distances. One was the 
angular size of the nebula. Nearby nebulae are large: Andromeda extends 
over 3º in the sky, six times the extent of the full Moon. If we know the ab-
solute size of the nebula in, say, light years, then the distance to the nebula is 
immediately determined by elementary geometry.

This means of determining distance to the nebulae is not mentioned in 
Hubble’s paper (1929a).8 Rather, Hubble explicitly reports only luminosity- 
based determinations. They depend on the fact that the intensity of light 
emitted by a celestial object diminishes with the inverse square of distance. 

6	 This value of 500 km/sec.Mpc of what we now call the Hubble constant proved to be 
about an order of magnitude too large as a result of systematic errors in Hubble’s determinations of 
distances. By 1958, the value had been reduced by Sandage to a more modern value of 75 km/sec. Mpc, 
which corresponded to a Hubble age of the universe of 1.3x10

9
 years.

7	 Slipher (1912, 56) wrote that, “the velocity-like displacement might not be due to some 
other cause, but I believe we have at the present no other interpretation for it. Hence we may 
conclude that the Andromeda Nebula is approaching the solar system with a velocity of about 300 
kilometers per second.” Hubble (1936, 34) held the same view but more cautiously: “Although no 
other plausible explanation of redshifts has been found, the interpretation as velocity-shifts may be 
considered as a theory still to be tested by actual observations.”

8	 Hubble and Humason (1931, 52) recount that the difficulty with the method is that the 
brightnesses of the nebulae fade as we move away from their centers, so that different photographic 
exposures of the same nebula give different sizes.
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Thus, if we know the absolute magnitude of the object’s luminosity, then we 
can determine its distance: we compare this absolute magnitude with the ap-
parent magnitude that we perceive, either visually or photographically.

The weakness of this approach is that the absolute magnitudes are hard to 
determine; direct measurements give us only apparent magnitudes. Without 
some independent means of determining the absolute magnitude, the ap-
proach cannot be applied. In his paper of 1929, Hubble relied on three meth-
ods of determining absolute magnitude.

1.	 Cepheid Variable Stars. Henrietta Leavitt (1912) had reported 
that certain stars in the Magellenic Clouds varied periodically 
in magnitude and that there was a definite relationship 
between the period and the magnitude. Subsequent 
parallax measurements to other Cepheid variable stars 
enabled determinations of their distances and thus their 
absolute magnitudes. Combining these results meant that 
an observation of the period of one of these variable stars 
enabled a determination of its absolute magnitude and thus 
its distance. Hubble himself used this method in 1923 in his 
determination of the distance to the nebula Andromeda. The 
distinctive shape of the curve9 plotting the change of visual 
magnitude with time enabled him to identify the variable stars 
that he found in Andromeda as Cepheid variable stars. This 
was, Hubble (1936, 16) reported, the first reliable method of 
determining distances to nebulae. It was also the most reliable 
of the three methods of the paper of 1929 but could be applied 
only if a Cepheid variable star could be resolved in the nebula.

2.	 Brightest Star Magnitude. It seemed reasonable to assume 
that different nebulae are constituted of the same sorts of 
stars, with the same range of possible magnitudes. That led 
to the expectation that the brightest stars in each nebula have 
the same absolute magnitude.10 Hubble (1929a, 168) offered 

9	 Shown in Hubble (1936, 95).
10	 Hubble footnoted an earlier paper (1926) in which he had already advanced the 

hypothesis (357–61), although only hesitantly, as a “reasonable assumption, supported by such 
evidence as is available” (357).
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an absolute magnitude determined photographically of M = 
–6.3 (see the appendix for a review of the system of units used 
for apparent and absolute magnitudes). This assumption is 
important in untangling the evidential relations displayed in 
Hubble’s paper. So I will display it  
as a hypothesis to which we will return:

Brightest Star Magnitude. The brightest stars in each nebula 
have the same absolute magnitude.

Hubble approached the hypothesis with optimism and caution:

The apparent luminosities of the brightest stars in such nebu-
lae are thus criteria which, although rough and to be applied 
with caution, furnish reasonable estimates of the distances of 
all extra-galactic systems in which even a few stars can be de-
tected. (1929a, 168–69)

Hubble conceded the limitation that the method could be applied 
only to nebulae close enough for individual stars to be resolved 
telescopically. The third method was untroubled by this limitation.

3.	 Clustering of Nebular Luminosity. Drawing from his earlier 
survey of nebulae (Hubble 1926), he suggested that the 
absolute magnitudes of nebulae were similar insofar as they 
were distributed randomly but not too distant from their 
average. The average value offered (1929a, 169) is a visually 
determined magnitude of M = –15.2 (recall from the appendix 
that smaller magnitudes correspond to greater brightnesses. 
A magnitude of –15 is very bright). Actual values, Hubble 
reported, are “exhibiting a range of four or five magnitudes 
about [this] average” (169). Once again, this assumption 
will play an important role in the evidential relations and is 
displayed thus:
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Clustering of Nebular Luminosity. The absolute magnitudes of 
nebulae cluster in a small interval of four or five units of mag-
nitude about a single mean common to all nebulae.

Four to five units of magnitude amount to a considerable error if we are trying 
to estimate the distance to just one nebula. It is shown in the appendix that 
this uncertainty in the absolute magnitude of any particular nebula introdu-
ces an uncertainty in the determination of distance of roughly one order of 
magnitude: that is, the extremes of the full range differ by a factor of 10.

These deviations can be averaged away if we aggregate data from many 
nebulae so that we can recover more reliable distance determinations for aver-
ages. This is especially helpful in getting a more accurate distance estimate to 
a cluster of nebulae whose members are assumed to be grouped around the 
same location in space. Hubble (1929a, 169) explains that he would use this 
averaging technique:

The application of this statistical average [M = –15.2] to indi-
vidual cases can rarely be used to advantage, but where con-
siderable numbers are involved, and especially in the various 
clusters of nebulae, mean apparent luminosities of the nebulae 
themselves offer reliable estimates of the mean distances.

Hubble (1929a) says little more on the use of this technique. Hubble and 
Humason (1931) is a lengthier and more detailed exposition, using consider-
ably more data. There we find how effective the averaging can be. They report 
clusters consisting almost always of several hundred nebulae, up to a max-
imum of 800.11

To determine the distance to some particular nebula in a cluster, they 
would survey the full range of apparent magnitudes of the nebulae in the 
cluster. The aggregation of survey data greatly reduces errors. For example, 
consider a cluster of 400 nebulae whose magnitudes are spread over an inter-
val of 4 or 5 magnitudes around the true mean of –15.2. The spread of the 
average of the magnitudes of the cluster around that true mean is reduced by 

11	 A table in Hubble and Humason (1931, 74) lists the numbers of nebulae in named 
clusters as Virgo-(500), Pegasus-100, Pisces-20, Cancer-150, Perseus-500, Coma-800, Ursa 
Major-300, and Leo-400. Whatever hesitation is flagged by the parentheses for the Virgo cluster, 
Hubble (1936, 54) reports “several hundred” nebulae in it.
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a factor of 400 = 20. We find in the appendix that this reduces the interval to 
0.25 magnitudes and corresponds to an error in distance estimates in which 
the farthest distance is merely 12% greater than the nearest distance. This 
provides a good determination of the absolute magnitude of and distance to a 
nebula whose brightness matches the average.12 That distance is then also the 
estimate of the distance to the particular nebula of interest.

4. From Particulars to Generalities
Although forty-six nebulae were included in Hubble’s (1929a) analysis, 
Hubble was able to estimate individual distances to only twenty-four of them. 
He inferred the linear relation between their distances and velocities by dir-
ectly comparing distances and velocities. He reported the results of two ways 
of arriving at the linear relation.

The first, and most direct, way took the velocities and distances of the 
individual nebulae and used standard statistical methods to find the best fit 
of a relation written in more modern vector notation as

vi = riK + V0

Here vi is the vector velocity of the ith nebula located a vector displacement 
ri from us and V0 is the vector velocity of our solar system. The constant K is 
now known as the “Hubble constant” and is the parameter of greatest interest 
to us now. It converts a scalar distance r to a nebula to its scalar velocity of 
recession v = Kr. The velocity vi is not the velocity observed from the Earth 
through the red shift, for those observations are taken from a vantage point 
itself moving at V0. The velocity that we observe for the ith nebula is the dif-
ference vi – V0. Hubble reported that the best fit gave

K = 465 ± 50 km/sec.Mpc    V0 = 306 km/sec   A = 286o   D = 40o

The second way proceeded by first reducing the data for the twenty-
four nebulae to nine groupings and first averaging within each grouping. 
Hubble indicated only that the groupings were selected “according to prox-
imity in direction and in distance” (1929a, 170). Presumably, the effect of the 

12	 Hubble and Humason (1931, 56) summarize the strategy as “the mean or most 
frequent apparent magnitude of the many members [of a cluster] is a good indication of the 
distance of a cluster, and hence clusters offer the greatest distances that can definitely be assigned 
to individual objects.”
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averaging, once again, was to reduce the effect of random deviations from 
linearity, this time prior to finding the statistical best fit of the above relation. 
The index i would now refer to the ith group. Hubble reported that best fit as

K = 513 ± 60 km/sec.Mpc    V0 = 247 km/sec   A = 269o   D = 33o

For his final result, Hubble selected values intermediate between these two 
sets and rounded them:13

K = 500 km/sec.Mpc    V0 = 280 km/sec   A = 277o   D = 36o

Since the solar velocity V0 is comparable in size to the nebular velocities 
vi, Hubble’s analysis had to pass through the more indirect route of finding 
the best fit of the above relation. Merely computing the ratio of observed vel-
ocity and distance for each nebula would have omitted the essential correc-
tion for the Earth’s motion. Hubble’s figure, redrawn here as Figure 7.1, gives 
a sense of the large size of the residuals that deviate from his best-fit relations. 
It displays the velocities of nebulae, after the velocity of our solar system has 
been subtracted, in relation to their distances.

Figure 7.1. Hubble’s “Velocity-Distance Relation among Extra-Galactic Nebulae”

13	 Hubble converted the celestial coordinates into galactic coordinates: longitude 32º, 
latitude +18º.
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An extended caption explains the data presented. Hubble (1929a, 172) writes 
that

The black discs and full line represent the solution for solar 
motion using the nebulae individually; the circles and broken 
line represent the solution combining the nebulae into groups. 
. . .

There are twenty-four black discs, and they correspond loosely14 to the data in 
Table 7.1 for twenty-four nebulae whose distances can be determined. Hubble 
concluded that

. . . the cross represents the mean velocity corresponding to 
the mean distance of 22 nebulae whose distances could not be 
estimated individually.

I will return to the treatment of these twenty-two nebulae in Section 6.

5. Hubble’s Hypotheses
The appearance of this last inference is of a traditional generalization that 
proceeds from the particulars of the lower level to the covering generality at 
the higher level of the hierarchy indicated in Section 1. The appearance is de-
ceptive, for most of the distance determinations in the particulars depend on 
the hypotheses indicated in Section 3. Since the subsequent generalizations 
depended on them, the generalization was not secure until Hubble provided 
further evidence in support of the hypotheses. This stage of his investigation 
took on an inductive debt. We shall see that Hubble continued the analysis in 
a way intended to discharge some of that debt.

The data for these twenty-four nebulae were presented in Table 1 of 
Hubble’s paper (1929a), reproduced here as Table 7.1.

To arrive at the distances in this table, Hubble used all three of the meth-
ods discussed above. He did not lay out the specifics of the determinations 
in each case. All of the details would be lengthy and not fit into the short 
announcement that he offered. Hubble and Humason (1931) provide a similar 

14	 We should not expect the velocities in the figure to match those of Table 7.1 up to a 
constant subtractive factor. The correction for solar motion is a vector subtraction whose scalar 
effect will vary according to the differences in the directions of the vectors in the subtraction.
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Table 7.1. Hubble’s “Nebulae Whose Distances Have Been Estimated 
from Stars Involved or from Mean Luminosities in a Cluster”

Object ms 
photographic 
magnitude of 
brightest stars

r  
distance* in 
megaparsecs 

v  
velocity 
km/sec

mt  
visual  
magnitude 

Mt 
absolute  
visual 
magnitude 
computed† 
from r, mt

1 Small 
Magellenic

.. 0.032 +170 1.5 –16.0

2 Large 
Magellenic

.. 0.034 +290 0.5 –17.2

3 NGC 6822 .. 0.214 –130 9.0 –12.7

4 NGC 598 .. 0.263 –70 7.0 –15.1

5 NGC 221 .. 0.275 –185 8.8 –13.4

6 NGC 224 .. 0.275 –220 5.0 –17.2

7 NGC 5457 17.0 0.45 +200 9.9 –13.3

8 NGC 4736 17.3 0.5 +290 8.4 –15.1

9 NGC 5194 17.3 0.5 +270 7.4 –16.1

10 NGC 4449 17.8 0.63 +200 9.5 –14.5

11 NGC 4214 18.3 0.8 +300 11.3 –13.2

12 NGC 3031 18.5 0.9 –30 8.3 –16.4

13 NGC 3627 18.5 0.9 +650 9.1 –15.7

14 NGC 4826 18.5 0.9 +150 9.0 –15.7

15 NGC 5236 18.5 0.9 +500 10.4 –14.4

16 NGC 1068 18.7 1.0 +920 9.1 –15.9

17 NGC 5055 19.0 1.1 +450 9.6 –15.6

18 NGC 7331 19.0 1.1 +500 10.4 –14.8

19 NGC 4258 19.5 1.4 +500 8.7 –17.0

20 NGC 4151 20.0 1.7 +960 12.0 –14.2

21 NGC 4382 .. 2.0 +500 10.0 –16.5

22 NGC 4472 .. 2.0 +850 8.8 –17.7

23 NGC 4486 .. 2.0 +800 9.7 –16.8

24 NGC 4649 .. 2.0 +1,090 9.5 –17.0

NGC = nebula 
number in the 
New General 
Catalog

mean
–15.5

* These distances are systematically low. Hubble reports 0.275 Mpc for the distance to nearby 
Andromeda, whereas the more recent estimate is 0.780 Mpc.

† Using formula (A3) of the appendix. The table has distances in units of megaparsecs, whereas 
distance in (A3) are entered in parsecs.



The Large-Scale Structure of Inductive Inference244

analysis, with more data and details, which has to be considerably lengthier 
and more complicated in its reporting. In his report, Hubble (1929a, 170) lim-
ited himself to general statements:

The first seven distances are the most reliable, depending, ex-
cept for M32 [= NGC 221] the companion of M31 [= Androm-
eda, NGC 224], upon extensive investigations of many stars 
involved.

For Andromeda (M31 = NGC 224), we know from Hubble (1929b) that he 
used Cepheid variable stars for the distance determination. Presumably, the 
Brightest Star Magnitude hypothesis was not used in the distance estimates 
for these first seven objects since there are no brightest star magnitude en-
tries for them. Subsequent distance estimates did consider the magnitudes 
of the brightest stars since they are given for rows seven to twenty. Hubble 
continued:

The next thirteen distances,15 depending upon the criterion 
of a uniform upper limit of stellar luminosity, are subject to 
considerable probable errors but are believed to be the most 
reasonable values at present available. (1929a, 170)

The use of mean nebular magnitudes for distance determination is finally 
mentioned for rows twenty-one to twenty-four:

The last four objects appear to be in the Virgo Cluster. The 
distance assigned to the cluster, 2 x 106 parsecs, is derived 
from the distribution of nebular luminosities, together with 
luminosities of stars in some of the later-type spirals, and dif-
fers somewhat from the Harvard estimate of ten million light 
years. (170)

Here the Clustering of Nebular Luminosity hypothesis was employed. That 
it had a larger role is suggested by the title given to the table as a whole: 
“Distances . . . from Mean Luminosities in a Cluster.”

15	 Presumably, he means the “next fourteen,” rows seven to twenty.
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6. From Generalities to Particulars
Hubble then turned to the remaining twenty-two nebulae for which velocities 
were known but not distances. He was intent on recovering some evidential 
import from the data. The data with which he worked are presented in Table 
7.2, which reproduces his Table 2 (1929a). The column v is the velocity deter-
mined by red shifts for the nebula with the indicated NGC number. The next 
column vs indicates the correction that must be subtracted from the observed 
velocity to correct for solar motion.

With these data in hand, Hubble proceeded with two approaches. The 
first was the crudest. It simply worked out the velocity-distance relation for the 
average behavior of all of the twenty-two nebulae. Since the velocity-distance 
relation is presumed to be linear, it should hold for the average of the veloci-
ties and distances. Hubble found an average velocity of 745 km/sec and an 
average distance of 1.4 Mpc. These averaged data then give an estimate for the 
constant K = 745/1.4 ≈ 530 km/sec.Mpc. Given the magnitude of errors likely 
(see below), the agreement was likely well within error limits for the value of 
500 km/sec.Mpc estimated in the earlier part of the paper.

For my purposes, it is interesting to see that even here Hubble’s analysis 
relied on the Clustering of Nebular Luminosity hypothesis. It was not needed 
to recover the average velocity. That was simple arithmetic.16 The hypothesis 
was needed to determine the average distance. According to the hypothesis, 
the absolute magnitudes of the individual nebulae varied at an interval of 4 
to 5 magnitudes around the common mean value. This range would then be 
reflected in the apparent magnitudes reported in the column m

t
 of Table 7.2. 

However, taking the average of the apparent magnitudes reduces the interval 
by a factor of 1/√22 = 1/4.69 to an interval of roughly the size of a single mag-
nitude. We find in the appendix that the farthest distance in the associated 
distance interval is 58% greater than the nearest distance. The average appar-
ent magnitude of 10.5 is far from the absolute magnitude of –15.3 assumed.17 
The diminution is entirely the result of the great distance associated with the 
average. That distance is computed18 from (A3) and is 1.445 Mpc.

16	 (Average v = 748.4) – (average correction vs = 2.95) = 745.4 km/sec.
17	 This absolute magnitude of –15.3 is recovered from the next stage of calculations on 

these twenty-two nebulae.
18	 That is log10 d = 0.2(10.5 + 15.3) + 1 = 6.16, so that d = 106.16 = 1.445 x 106 pc.
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The more elaborate of the two approaches involved using the velocity- 
distance relation in reverse. Starting with the corrected velocity, v – vs , for 
each of the twenty-two nebulae, Hubble computed the distance r that the 
linear velocity-distance relation required, where he assumed a value for the K 
constant of 500 km/sec.Mpc. The results are reported in the r column of Table 
7.2 and conform to the formula r = (v – vs)/500. Since these distances were com-
puted using the very relation under scrutiny, by themselves they could provide 
no evidence for the relation. To extract some useful evidential import, Hubble 
used these distances r to calculate19 the absolute magnitude Mt of each nebula 
from the measured, apparent magnitude, mt. The results are reported in the 
last column of Table 7.2. Hubble computed the mean to be –15.3.

What he found notable was that the mean absolute magnitude computed 
for these twenty-two nebulae matched almost exactly the mean –15.5 com-
puted for the first twenty-four nebulae using their independently known dis-
tances. Similarly, their ranges agreed: 4.9 for the twenty-two nebulae of Table 
7.220 and 5.0 for the twenty-four nebulae of Table 7.1. The most direct reading 
is that the new results from the twenty-two nebulae provide another instance 
of the Clustering of Nebular Luminosity hypothesis, using the same mean and 
range as the earlier analysis. This provides direct support for the hypothesis. 
Hubble was more celebratory and expansive in his assessment:

The two mean magnitudes, –15.3 and –15.5, the ranges, 4.9 
and 5.0 mag., and the frequency distributions are closely sim-
ilar for these two entirely independent sets of data; and even 
the slight difference in mean magnitudes can be attributed 
to the selected, very bright, nebulae in the Virgo Cluster. 
This entirely unforced agreement supports the validity of the  
velocity-distance relation in a very evident matter. Finally, it 
is worth recording that the frequency distribution of absolute 
magnitudes in the two tables combined is comparable with 
those found in the various clusters of nebulae. (1929a, 172–73)

19	 The calculation employed formula (A3) of the appendix. Note that d in that formula is 
in parsecs, whereas r in Table 7.2 is in megaparsecs.

20	 I find the range to be 4.8, extending from –12.8 for NGC 1700 to –17.6 for NGC 4594.
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Table 7.2. Hubble’s “Nebulae Whose Distances Are Estimated from 
Radial Velocities”

NGC 
nebula 
number

v  
Velocity 
km/sec 

vs  
Velocity 
correction 
subtracted 
for solar 
motion

r 
Distance 
Mpc

mt  
Apparent 
magnitude

Mt Absolute 
magnitude 
computed 
from r, mt

278 650 –110 1.52 12.0 –13.9

404 –25 –65  .. 11.1  ..

584 1,800 75 3.45 10.9 –16.8

936 1,300 115 2.37 11.1 –15.7

1023 300 –10 0.62 10.2 –13.8

1700 800 220 1.16 12.5 –12.8

2681 700 –10 1.42 10.7 –15.0

2683 400 65 0.67 9.9 –14.3

2841 600 –20 1.24 9.4 –16.1

3034 290 –105 0.79 9 –15.5

3115 600 105 1 9.5 –15.5

3368 940 70 1.74 10 –16.2

3379 810 65 1.49 9.4 –16.4

3489 600 50 1.1 11.2 –14.0

3521 730 95 1.27 10.1 –15.4

3623 800 35 1.53 9.9 –16.0

4111 800 –95 1.79 10.1 –16.1

4526 580 –20 1.2 11.1 –14.3

4565 1,100 –75 2.35 11 –15.9

4594 1,140 25 2.23 9.1 –17.6

5005 900 –130 2.06 11.1 –15.5

5866 650 –215 1.73 11.7 –14.5

Mean 748.4 2.95 10.5 –15.3
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7. How Strong Was the Evidence for Linearity?
My concern here is the tangled structure of the relations of inductive support. 
Although it is independent of this concern, it is worth noting that Hubble’s 
evidence in 1929 for the linear relation was weak. This was so even though 
his paper of 1929 is routinely celebrated as the origin of the linear relation be-
tween the velocities of recession of the nebulae and their distances. A glance 
at Figure 7.1 shows just how weak was the establishment of the linearity. The 
data points are so broadly scattered about the straight lines fitted that all that 
can be inferred securely is that the velocities are increasing with the distan-
ces. The difficulty is that nebulae close to our Milky Way have particular mo-
tions in random directions of the order of the overall velocity of recession. 
These motions confound the linear motion of recession. To reveal the linear 
relation more clearly requires examination of more distant nebulae for which 
the particular motions become successively smaller in relation to the velocity 
of recession.

As long as Hubble’s interest lay in the original project of determining 
the motion of our solar system, the weakness of the evidence for linearity is 
a smaller concern. We might reasonably expect that other velocity-distance 
relations compatible with the data would have only a minor effect on the esti-
mates of solar motion. The threat is more serious, however, if Hubble’s paper 
is to underwrite the founding empirical observation of modern cosmology: 
the linearity of the velocity-distance relation.

Hubble had a response to this threat in his paper. He allowed that his data 
merely “establish a roughly linear relation” (1929a, 173). The solution lay in 
an extension to more distant nebulae and was already under way. Hubble re-
ported a result for NGC 7619, whose distance he estimated at roughly 7 Mpc. 
That greatly exceeded the distance of 1 or 2 Mpc of nebulae investigated so 
far. Its speed of recession still fit well enough with his K factor of 500. Shortly 
after, in joint work, Hubble and Humason (1931) reported on velocities of 
recession of still more distant nebulae. Their Figure 5 (77) plotted data for 
nebular clusters, one of which is more than 30 Mpc distant. In this plot, the 
linearity of the paper of 1929 survives. Hubble and Humason had become so 
confident of the linear relationship that they proposed its use to determine 
distances. It was, they boasted,
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. . . a new method of determining distances of individual ob-
jects in which the percentage errors actually diminish with 
distance. (76)

This remark foreshadowed the recent practice of identifying the locations of 
distant galaxies merely by citing their red shift factors directly. Red shift has 
become the surrogate for distance.

By the time of his more popular work in 1936, Hubble reasserted his con-
fidence that the linearity of the relation had been vindicated. He wrote of the 
success of the extension of the investigation to more distant nebulae:

The relation is plausible but not unique. The true relation 
might be a curve which was nearly linear within the range 
covered by the observations, but which departed widely from 
a straight line in the regions beyond the faintest nebulae in the 
group. This possibility was investigated by extrapolating the 
adopted relation extending it far out into the hitherto unob-
served regions and testing it by new observations. Such a pro-
cedure often leads to minor, or even to major, revisions in the 
relation first selected: it has been said that research proceeds 
by successive approximations. However, in the investigation of 
red-shifts, no revision was definitely indicated. The linear rela-
tion has survived repeated tests of this nature and is known to 
hold, at least approximately, as far out into space as the obser-
vations can be carried with existing instruments. (3–4)

8. Conclusion and Summary
In the introduction, I sketched the inductive hierarchy to which one might 
assume that Hubble’s inferences of 1929 conformed. We have now seen that 
his inductive inferences did not respect this hierarchy. Rather, his inferences 
are interwoven nonhierarchically through the following sets of propositions.

(a) Sets of velocities of recession assigned to nebulae
(b) Sets of distances assigned to nebulae
(c) Linear relations asserted between their velocities and distances
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(d) Hypothesis of Brightest Star Magnitude
(e) Hypothesis of Clustering of Nebular Luminosity

The inferences were as follows:

(i) 	 In Sections 4 and 5, we saw inferences from the sets of velocity 
(a) and distance (b) assignments to a linear relationship (c), in 
which many of the distance assignments already presumed the 
two hypotheses (d) and (e).

(ii) 	 In Section 6, we saw an inference from the means of the 
velocities (a) and distances (b) to an instance of the linear 
relationship (c). The determination of the mean distance once 
again presumed hypothesis (e) as well as a mean absolute 
magnitude for nebulae determined by the inferences of (iv).

(iii) 	In Section 6, we saw an inference from sets of velocity 
assignments (a) and the linear relationship (c) to sets of 
distance assignments (b).

(iv) 	In Section 6, Hubble proceeded from the distances computed 
in (iii) and inferred to a set of absolute magnitudes that 
affirmed hypothesis (e).

Use of the velocity-distance relation in (iii) to infer back to distances became 
a fixture in astronomy. In his more popular work, Hubble (1936, 115) was 
confident enough of this inference that he wrote

The velocity-distance relation, once established, could evi-
dently be used as a criterion of distance for all nebulae whose 
velocities were known.

This inference appears initially as the mere recovery of a deductive conse-
quence of the velocity-distance relation. It also has an inductive component. 
I have emphasized the “all” since it includes the nebulae originally used to 
establish the velocity-distance relation. We gain inductive support for an in-
dependently determined distance to some nebula if we find that it conforms 
to the velocity-distance relation. Alternatively, if conformity fails, then we 
have a check and a correction for the original distance determination.
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The cogency of Hubble’s inferences required that strong evidential sup-
port be provided for hypotheses (d) and (e), or the distance determinations of 
his analysis would be compromised. Discharging this inductive debt was an 
obligation taken seriously in the later analysis of Hubble and Humason (1931). 
Of its thirty-eight pages, six were devoted to a section on the “Upper Limit of 
Stellar Luminosity as a Criterion of Distance” (46–51), and another five pages 
were devoted to a section on the “Total Luminosity of Nebulae as a Criterion 
of Distance” (52–56). That is, almost 30% of the paper was spent elaborating 
and establishing these two hypotheses.

More generally, Hubble repeatedly offered the agreement among the re-
sults of all of these inferences as giving general support to his analysis. We 
have already seen his remark that “this entirely unforced agreement sup-
ports the validity of the velocity-distance relation in a very evident matter” 
(1929a, 172–73).21 Hubble and Humason (1931, 43) commence their paper by 
defending their methods of determining nebular distance, whose initiating 
assumption is “supported in a general way by the consistency of the results 
to which it leads.” Later they announce that, “since the two investigations 
were based upon different criteria of distance, the close agreement empha-
sizes the internal consistency of our present ideas concerning luminosities 
of nebulae” (76).

In his more popular narrative, Hubble (1936, 101) reflected on the various 
criteria used to determine nebular distances, including the velocity-distance 
relation itself, and he concluded that

The exploration of the realm of the nebulae was carried out 
with the aid of these criteria. The early work was justified 
largely by the internal consistency of the results. The founda-
tions were firmly established, but the superstructure repre-
sented considerable extrapolations. These were tested in every 
way that could be devised, but the tests for the most part con-
cerned internal consistency. The ultimate acceptance of the 

21	 Hubble (1929a) does not provide further evidence explicitly and specifically supporting 
the Brightest Star Magnitude hypothesis. Perhaps this unforced agreement provides independent 
support for the nebular distances determined using this hypothesis and thus, indirectly, support 
for the hypothesis itself.



The Large-Scale Structure of Inductive Inference252

superstructure was due to the steady accumulation of consis-
tent results rather than to critical and definitive experiments.

A few pages later Hubble reflected on the use of distances derived from the 
mean and range of the absolute luminosities in establishing the velocity- 
distance relation:

The consistency of these results was additional evidence of the 
validity of the velocity-distance relation. (115)

The consistency so important to Hubble is not the consistency of deductive 
logic, in which it merely designates a lack of contradiction. This deductive 
sense of consistency by itself provides no inductive support. The Hubble law 
of expansion of the nebulae in our universe is logically consistent with the 
existence of another, parallel universe, isolated from ours, in which nebulae 
approach each other. The fact of logical consistency supplies no inductive 
support for the existence of such a parallel universe.

The consistency alluded to by Hubble was the agreement among the 
many entangled relations of inductive support of his analysis. The Hubble 
law itself in one part is inductively supported by other results and in another 
part is used to provide inductive support. The hypotheses of Brightest Star 
Magnitude and Clustering of Nebular Luminosity are used, in one part, to 
warrant inductive inferences to other results, and in another part the results 
are supported by inductive inferences. The overall import is that no propos-
ition within Hubble’s analysis is left without inductive support, and that fact 
gives his analysis its inductive solidity.

Appendix: Luminosity and Magnitude
Hubble’s accounts above discuss the brightness of stars and nebulae using the 
standard system of magnitudes. His paper of 1929 was written for experts, so 
Hubble had no need there to explain the system. His more popular The Realm 
of the Nebulae (1936, 9–13), however, describes the system. The luminosity 
L of an object is the rate at which it emits luminous energy. Our perception 
of brightness associates equal increments in brightness to equal multiples of 
luminosity. Thus, the brightness of an object is given by a logarithmic func-
tion of the luminosity. That is, the apparent magnitudes m1 and m2 of two ob-
jects at the same distance from us are related to their luminosities L1 and L2 by



2537 | The Recession of the Nebulae

                                           m1 – m2 = –2.5 log10 (L1/L2)                                     (A1)

The minus sign in the relation means that a brighter object has a smaller 
magnitude.

This particular logarithmic relation was chosen to preserve continuity 
with the ancient visual system of reporting star brightnesses, already found 
in Ptolemy’s Almagest. There stars were grouped by their brightnesses into six 
magnitudes. The first magnitude was the brightest and the sixth the dimmest 
visible. If the associated luminosities are L1, L2, . . . L6, then stepping through 
them represents equal increases in apparent brightness as long as

L1/L2 = L2/L3 = L3/L4 = L4/L5 = L5/L6 = 2.5

The ratio of 2.5 arises from the stipulation that the full range of luminosities 
spans 100 to 1: that is, L1/L6 = 100. Thus, each of the five steps corresponds to 
a multiplicative factor of 1001/5 = 2.512, rounded down to 2.5. The magnitudes 
are labeled “visual” or “photographic” according to the media with which 
they are measured. The distinction is important since the two media have 
different sensitivities to different frequencies of light.

The apparent brightness of an object diminishes with the inverse square 
of distance from us. If the two objects in formula (A1) were removed to dis-
tances d1 and d2 respectively, then the ratio (L1/L2) must be replaced by the 
ratio (L1/d1

2) / (L2/d2
2). The relation among apparent magnitudes becomes

                                  m1 – m2 = –2.5 log10 (L1/L2) (d2
2/d1

2)                               (A2)

The absolute magnitude of an object M is stipulated to be the apparent magni-
tude that the object would have were it placed 10 parsecs from us.22 Using only 
the distance dependency in (A2), it follows that the apparent magnitude m of 
an object of absolute magnitude M at a distance of d parsecs is23

                  m = M + 5 log10 d – 5      or     log10 d = 0.2(m – M) + 1               (A3)

Hubble (1929a) supposes that the intrinsic brightnesses of all nebulae are 
within 4 to 5 absolute magnitudes of each other. Assuming a mean absolute 
magnitude for some nebula will lead to errors in distance estimates. To take 

22	 A parsec is the distance at which the mean Earth-Sun distance subtends one second of 
arc. It is a convenient astronomical unit since distances to nearby stars are revealed by their parallax 
during the Earth’s annual motion around the Sun. 1 parsec = 3.258 light years. A megaparsec or  
Mpc is 1 million parsecs.

23	 Set d2 = 10 and d1 = d; note that log10 (d
2/102) = 2 log10 d – 2 log10 10 = 2 log10 d – 2.
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the most extreme case, an apparent magnitude m can derive from an object 
with absolute magnitude M1 at distance d1 or another object with absolute 
magnitude M2 at distance d2, where M1 – M2 = 5. Thus, we have from (A3) that

M1 + 5 log10 d1 = M2 + 5 log10 d2

and then

5 = M1 – M2 = 5 log10 (d2/d1)

It follows that log10 (d2/d1) = 1, so that d2/d1 = 10. That is, the uncertainty in the 
absolute magnitudes of nebulae corresponds to an uncertainty of one order of 
magnitude in their spatial distances.

If, however, we follow Hubble’s technique of averaging, then this uncer-
tainty is greatly reduced in estimating the value of the true mean.24 For a clus-
ter of 400 nebulae, the spread of the mean is reduced by a factor of 1/√400 = 
1/20 = 0.05. So the spread is 5 x 0.05 = 0.25. Thus, we have from (A3) as before

0.25 = M1 – M2 = 5 log10 (d2/d1)

We now have for the corresponding distances that log10 (d2/d1) = 0.05, so that 
d2/d1 = 1.122. That is, the farthest distance of the associated interval of distan-
ces is merely 12% greater than the nearest distance.

For a group of twenty-two nebulae, the spread of the mean reduces by a 
factor of 1/√22 = 1/4.69. If we approximate the spread of 4 to 5 magnitudes to 
be reduced to one order of magnitude, then we have from (A3) that

1 = M1 – M2 = 5 log10 (d2/d1)

We now have log10 (d2/d1) = 0.2, so that d2/d1 = 1.585. That is, the farthest 
distance of the associated interval of distances is 58% greater than the nearest 
distance.

24	 Assume that we have n = 400 independent samples from the same distribution with 
variance s 2. The variance of the mean is s 2/n. Hence, the standard deviation is s/√n.
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8

Newton on Universal Gravitation

1. Introduction
Isaac Newton’s reasoning in his seventeenth-century Mathematical Principles 
of Natural Philosophy ([1726] 1962) remains to this day a model of tight, care-
fully controlled argumentation. Its inductive centerpiece lays out the eviden-
tial case for his theory of universal gravitation with exemplary caution and 
discipline. Within his argumentation, there are two cases of pairs of prop-
ositions in which relations of inductive support cross over each other, in an-
alogy to the relations of structural support in an arch. The first pair comprises 
the two core propositions of Newton’s celebrated “Moon test.” The second 
pair comprises the propositions of an inverse square law of gravity and of the 
elliptical orbits of the planets.

In both cases, the individual relations of support have the following 
structure: the observed evidence supports a proposition by means of a war-
ranting hypothesis. Schematically, this can be written as

Observed evidence

(warrant) Hypothesis

__________________(deduce)

Proposition

The crossing over of relations of support arises in both cases in the following 
way. We have two propositions, proposition1 and proposition2, such that
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Observed evidence			   Observed evidence

(warrant) Proposition1		  (warrant) Proposition2

_______________(deduce)		  _______________(deduce)

Proposition2					    Proposition2

Finally, each of the individual inferences above is deductive. They combine 
to give a totality in which the observed evidence inductively supports both 
propositions. That is, the relations of support are locally deductive but induct-
ive in their combination.

Observed evidence

_______________(induction)

Proposition1 & Proposition2

The two examples are treated in turn in the sections that follow.

2. The Moon Test
One of Newton’s more remarkable discoveries in his theory of universal gravi-
tation is the identity of two forces. The first is the celestial force that deflects 
planets into orbit around the Sun and deflects moons into orbits around their 
planets. The second is the force of gravity that leads to the fall of free bodies 
at the Earth’s surface, such as hurled stones. That these forces are the same 
is now a commonplace. It was a major discovery in the seventeenth century, 
for the ancient tradition had been that the physics of terrestrial bodies differs 
from the physics of celestial matter. Newton needed a strong argument to 
establish the identity.

The identity of the two forces was established early by Newton in Book III 
of his Principia ([1726] 1962). That book presents a sequence of propositions 
laying out his argument for universal gravitation. The first three propositions 
establish that the celestial force of attraction acting on an orbiting body varies 
with the inverse square of distance from the center of the attracting body 
in three cases: the orbits of Jupiter’s moons about the center of Jupiter, the 
orbits of the planets about the Sun’s center, and the orbit of the Moon about 
the Earth’s center. The fourth proposition asserts the identity of terrestrial 
gravity and the celestial force acting on the Earth’s Moon.
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To arrive at this fourth proposition, Newton determined the acceleration 
of the Moon toward the Earth. It is this acceleration that deflects the Moon 
from its linear, inertial motion and brings it into orbit around the Earth. We 
would now represent this acceleration directly as so many feet/second2 or 
meters/second2. Newton proceeded indirectly. A body falling with constant 
acceleration a from rest will cover a distance at2/2 in time t. Newton used this 
distance as the measure of acceleration.

As a result of its orbital motion, Newton noted, the Moon falls 15 Paris 
feet 1 inch 1 4/9 lines (1/12 of an inch) in one minute. That is, it falls 15.0934 
Paris feet in one minute. The Moon is roughly 60 times farther away from 
the center of the Earth than a point on the Earth’s surface. Hence, if the 
celestial force acting on the Moon is governed by an inverse square law all 
the way down to the Earth’s surface, then it would be 602 times greater on the 
Earth’s surface. This means that a body falling under its action at the Earth’s 
surface would fall 15.0934 x 602 Paris feet in one minute. One minute is a 
time unfamiliar in our experience for bodies to fall above the surface of the 
Earth. So Newton scaled the time of fall to one second. Conveniently, one 
second is 1/60th of a minute. Since the distance fallen varies with the square 
of time t, a body falling under the celestial force at the Earth’s surface for 
one second would fall 1/602 of 15.0934 x 602 Paris feet: that is, 15.0934 Paris 
feet. This matches well how bodies fall on the surface of the Earth under 
gravity, as measured by experiments on pendula. Newton ([1726] 1962, 408) 
concluded:

And therefore the force by which the Moon is retained in its 
orbit becomes, at the very surface of the Earth, equal to the 
force of gravity which we observe in heavy bodies there. And 
therefore (by Rule 1 & 2) the force by which the Moon is re-
tained in its orbit is that very same force which we commonly 
call gravity; for were gravity another force different from that, 
then bodies descending to the Earth with the joint impulse of 
both forces would fall with a double velocity. . . .

The case that Newton made here is a powerful one. In recollections recorded 
much later, he asserted that he had found the arguments of these first four 
propositions in 1666. He noted (1888, xviii) of the Moon test that
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At the same year [1666] I began to think of gravity extending 
to the orbit of the Moon, . . . and thereby compared the force 
requisite to keep the Moon in her orb with the force of gravity 
at the surface of the earth and found them answer pretty nearly.

3. The Inferences Summarized
The inference above can be summarized as follows:

Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hinv. square: The celestial force acting on the Moon is 
strengthened by an inverse square law with distance at the 
Earth’s surface.

_________________________________________________________(deduce)

Intermediate conclusion: Equality of accelerations at the Earth’s 
surface due to gravity and the celestial force.

(warrant) Rules 1 and 2 of Newton’s Rules of Reasoning in 
Philosophy

________________________________________________________________

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

The last step might seem to be superfluous. Newton found that the acceler-
ation because of gravity and the celestial force match at the Earth’s surface. 
Is that not enough to show the identity of the two forces? It is very close, but 
there is a loophole. It might just be that the force of gravity does not act on ce-
lestial matter such as comprises the Moon and that the celestial force does not 
act on ordinary, terrestrial matter. Newton closed the gap with the rules of 
reasoning that he had declared earlier in Principia ([1726] 1962). The relevant 
idea is that we are to assign the same cause to the same effect. I will not pursue 
this use of the rules further. In Chapter 6, “Simplicity,” of The Material Theory 
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of Induction (Norton 2021), I described my discomfort with the rules and 
indicated how they can be replaced in this case by a simple material fact: that 
the matter of the Moon would behave like terrestrial matter were it brought 
to the Earth’s surface. What results is the simpler inference:

Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hinv. square: The celestial force acting on the Moon is 
strengthened by an inverse square law with distance at the 
Earth’s surface.

_________________________________________________________(deduce)

Intermediate conclusion: Equality of accelerations at the Earth’s 
surface due to gravity and the celestial force.

(warrant) Terrestrial and lunar matter respond to the same forces.

_________________________________________________________(deduce)

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

For my purposes here, what matters is that the inverse square law, Hinv. square, 
is used as part of the inference to the identity result, Hidentity. This usage forms 
half of the arch shown in Figure 8.1.

There is a second inference here that Newton did not make explicit. He 
inferred that the celestial force is governed by an inverse square law in other 
parts of the solar system. But how did he know that this inverse square de-
pendence on distance would continue to hold when he moved out of the ce-
lestial realm down to the terrestrial realm? It is striking that the inference 
sketched above works so well. That the two forces “answer pretty nearly,” as 
Newton remarked, gives one confidence that the inverse square law, intro-
duced as a hypothesis above, is also supported by the successful outcome. 
Perhaps this was why Newton reported the agreement as a memorable phase 
in his discovery of universal gravitation. Although not given explicitly by 
Newton, we can summarize this naturally suggested argument as follows:
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Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hidentity: Terrestrial gravitation and the lunar celestial force 
are the same.

_________________________________________________________(deduce)

Intermediate conclusion: Celestial/gravitational accelerations at the 
Earth’s surface and the Moon’s orbit are in the ratio of an 
inverse square of distances to the Earth’s center.

(warrant) Terrestrial and lunar matter respond to the same forces.

_________________________________________________________(deduce)

Hinv. square: The celestial force acting on the Moon is strengthened by 
an inverse square law with distance at the Earth’s surface.

This second inference forms the second half of the relations of support dis-
played in Figure 8.1.

For my purposes here, we have two inferences each of whose conclusions 
is used as a warrant in the argument for the other. The corresponding arch 
can be drawn as follows.

Figure 8.1. The arch for the Moon test
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Although the component relations of support are deductive, the combined 
result is that the observed accelerations provide inductive support for the two 
hypotheses:

Observed acceleration of fall of terrestrial bodies and the Moon.

_______________________________________________________(induction)

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

Hinv. square: The celestial force acting on the Moon is strengthened by 
an inverse square law with distance at the Earth’s surface.

4. Elliptical Orbits and the Inverse Square Law
The next pair of mutually supporting propositions asserts that the planets 
move along elliptical orbits and that their motion is governed by an inverse 
square law of gravity. Planetary astronomy poses a curve-fitting problem. We 
have many observed positions of the planets. Which curve do we fit to them 
to recover their orbits? Prior to Newton, Kepler had found that elliptical or-
bits could be fitted to the observed positions of the planets. This result came 
to be known later as “Kepler’s second law.” It is called that, for example, in 
Maxwell’s Matter and Motion (1894, 110). From it, one can infer that each 
planet is attracted to the Sun by a force that varies inversely with the square of 
distance from the Sun as the planet moves through its orbit. That an elliptical 
motion is associated with this inverse square law is an early result proved by 
Newton in Book I of Principia ([1726] 1962, Proposition XI, Problem VI). 
Maxwell uses this result to infer from the elliptical motions of the planets to 
the inverse square law of gravity:

Hence the acceleration of the planet is in the direction of the 
sun, and is inversely as the square of the distance from the sun. 
This, therefore, is the law according to which the attraction of 
the sun on a planet varies as the planet moves in its orbit and 
alters its distance from the sun. (112)

That is, we have the following inference:



The Large-Scale Structure of Inductive Inference264

Observed positions of the planets.

(warrant) Hellipses:  The planets move in their specific elliptical orbits.

_________________________________________________________(deduce)

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.

Newton himself, however, was more circumspect. This relation of support is 
straightforward only insofar as we assume that the fit of an ellipse to the ob-
served motions is exact. Newton knew that it is not exact, so he did not offer 
Maxwell’s inference in his Principia. That an elliptical motion is governed by 
an inverse square law of force is merely reported as a theorem of mathematics.

In its place, Newton ([1726] 1962) offered an inverted relation of sup-
port. The pertinent discussion comes later in Book III in his Proposition XIII, 
Theorem XIII. At this stage in the development, Newton had already inferred 
the inverse square law of gravity from other phenomena. He would now infer 
from the inverse square law to the elliptical motions of the planets. Noting the 
inversion explicitly, he wrote that

Now that we know the principles on which they [the motions 
of the planets] depend, from these principles we deduce the 
motions of the heavens a priori. Because the weights of the 
planets towards the sun are inversely as the squares of their 
distances from the sun’s centre, if the sun were at rest, and the 
other planets did not act one upon another, their orbits would 
be ellipses, having the sun in their common focus. . . . (420–21)

Newton offered here a relation of support that inverts the one given above by 
Maxwell:

Observed positions of the planets.

(warrant) Hinv. square: The planets are attracted to the Sun by a force 
that varies with the inverse square of distance.

_________________________________________________________(deduce)

Hellipses: The planets move in their specific elliptical orbits.
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The observed positions of the planets are still needed as a premise in 
the inference since an inverse square law of attraction from the Sun is also 
compatible with parabolic and hyperbolic trajectories. They are ruled out 
by the periodic motion of the planets. Then specific positions of the planets 
at specific times are needed to recover the specific ellipse that is the orbit of 
each planet.

Newton’s inference, however, is qualified by an idealization indicated in 
his remark above “if the sun were at rest, and the other planets did not act 
one upon another.” The orbits of the planets are not exactly elliptical because 
of perturbations from the gravitational attraction of the other planets. These 
deviations are generally negligible at the level of accuracy of Newton’s analy-
sis. However, a noticeable perturbation was produced by the massive planet 
Jupiter acting on the motion of Saturn.1 It is greatest when the two planets are 
nearest each other: that is, when they are in conjunction. “And hence arises,” 
Newton concluded, “a perturbation of the orbit of Saturn in every conjunc-
tion of this planet so sensible, that astronomers are puzzled with it” ([1726] 
1962, 421).

5. The Exactness of the Inverse Square Law
Newton ([1726] 1962) did not explicitly incorporate the inference from the 
elliptical orbits of the planets to the inverse square law in the carefully de-
veloped sequence of propositions in Book III of Principia. However, an im-
portant step in that sequence was something close to this inference. It con-
cerned the inverse square law of gravity. How did Newton know that the 
correct law is exactly an inverse square law? Might a similar law work as well 
or even better? Does gravity conform to the inverse square law only as an 
approximation? Perhaps the force varies with distance r according to 1/r2+δ, 
where δ is some small number close to zero?

In one of the most brilliant analyses of his Principia, Newton showed 
that we have strong evidence for the force of attraction conforming exactly 
with the inverse square law. Under such a law, Newton had shown, the unper-
turbed planets move along elliptical paths fixed in space. The aphelion of each 

1	 Less noticeable, Newton reported, are the perturbations in Jupiter’s motion because of 
the attraction of Saturn. He reported other perturbations as “yet far less” ([1726] 1962, 422). The 
exception was the sensible disturbance to the orbit of the Earth because of the Moon.
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planet — the point of greatest distance from the Sun — will be fixed in space, 
and the planet will return to it after a complete circuit of 360º around the Sun. 
The major axis of the ellipse, the line of the apsides connecting aphelion and 
perihelion, will be correspondingly fixed.

This fixity would be lost, Newton now showed, if the law differed from an 
inverse XLV square law. In Proposition XLV, Corollary 1, of Book I, he con-
sidered the case of bodies orbiting in near-circular orbits. He showed that, if the 
law of attraction differed from an inverse square law, then a planet would not 
return to its aphelion after a circuit of 360º around the Sun. It would need to 
complete more or less of the circuit according to how much the force deviated 
from an inverse square law. That is, for a 1/r 2+δ force law, the planet would re-
turn to its aphelion after passing 360º/√(1 – δ). The result was remarkably robust, 
holding even when the deviation from the inverse square law δ was not small.

Since the planets do move in near-circular orbits, Newton could apply 
his result to the motions of the planets. If we set aside known perturbations, 
then the planets do trace fixed elliptical orbits, returning to their aphelia after 
a 360º circuit around the Sun. Newton could conclude with satisfaction in 
Book III, Proposition II, Theorem II that

[The inverse square law] is, with great accuracy, demonstrable 
from the quiescence of the aphelion points; for a very small ab-
erration from the proportion according to the inverse square0 
law of the distances would (by Cor. 1, Prop. XLV, Book I) pro-
duce a motion of the apsides sensible enough in every single 
revolution, and in many of them enormously great. ([1726] 
1962, 406)

In summary form, this argument is a version of Maxwell’s argument since it 
infers from a property of the elliptical orbits of the planets to the exact inverse 
square law of gravity:

Observed positions of the planets.

(warrant) Hellipses: The planets move in their specific elliptical orbits.

Newton’s Proposition XLV, Corollary 1, Book I.

_________________________________________________________(deduce)

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.
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The overall structure of the relations of support displayed here is of the two 
hypotheses accruing support from the observed positions of the planets over 
time. Although the two component inferences are deductive, the combined 
relations of support are inductive and can be summarized as

Observed positions of the planets.

________________________________________________________(induction)

Hellipses: The planets move in their specific elliptical orbits.

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.

In broad strokes, the relations of support recounted here in Sections 4 
and 5 are between the two hypotheses Hinv. square and Hellipses. They enter into 
the mutual relations of support pictured in the arch analogy of Figure 8.2.

Figure 8.2. Elliptical orbits and the inverse square law
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6. Conclusion
We have seen here two pairs of propositions in Newton’s Principia ([1726] 
1962) that mutually support one another. A close reading of his text is likely 
to reveal more. A natural candidate is Kepler’s harmonic rule that relates the 
period and mean radii of planetary and lunar orbits: (period)2 is directly pro-
portional to (radius)3. Newton infers from this harmonic rule to his inverse 
square law. We now routinely invert the inference and infer from the inverse 
square law to the harmonic law.

Such inversions are encouraged by a development common in matur-
ing theories. We are inclined initially to infer from the elliptical orbits of the 
planets to the inverse square law of attraction, for the elliptical orbits are clos-
er to observations. As the theory matures, we find multiple supports for the 
inverse square law. We also recognize that Newton’s fully elaborated system 
corrects the simple statement that the planets move in ellipses, for in some 
cases the perturbing effects of other celestial bodies move them away from 
their ellipses. Then it becomes more natural to invert the relation of support 
and see the inverse square law as supporting a corrected version of the origin-
al observations of elliptical orbits.

Another example of this inversion is found in the role of atomic spec-
tra in the foundation of quantum theory, as related in Chapter 9, “Mutually 
Supporting Evidence in Atomic Spectra.” Ritz’s combination principle sup-
ports the discrete energy levels of Bohr’s 1913 theory of the atom and thus 
the quantum theory that developed from it. The developed quantum theory, 
however, entails a version of the Ritz principle, corrected by selection rules. 
This complication indicates the inverted relation of support.
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9

Mutually Supporting Evidence in 
Atomic Spectra

1. Introduction
Gases and vaporized metals, when heated or energized by electric discharges, 
emit light or electromagnetic radiation in the invisible parts of the spectrum. 
In the nineteenth century, spectroscopists began detailed measurements of 
the frequencies emitted by various substances. The most striking result was 
that, commonly, the emitted spectra did not consist of a continuous range 
of frequencies but only specific frequencies organized regularly in series. 
Identifying which frequencies were emitted by each substance under which 
circumstances proved to be a challenge that occupied spectroscopists for dec-
ades. Their efforts required many ingenious approaches. What resulted was 
a complicated network of relations of evidential support that is the subject of 
this chapter. In it, we will see mutual relations of support crossing over each 
other and at two levels.

We will look only at the simplest of the emission spectra, that of hydro-
gen, for itis already sufficient to display this multiplicity of relations of mu-
tual support. We will take as the simplest item of evidence the proposition 
that excited hydrogen produces electromagnetic radiation at such and such 
frequency or wavelength. One such item asserts the fact that a prominent 
line in the hydrogen spectrum, the first “Ha” line of the Balmer series, is at 
wavelength 656.2 Angstroms. Once a spectroscopist has identified some lines 
in the spectrum of a substance, it is possible to identify others by means of 
a device introduced in 1908 by Walther Ritz, his “combination principle.”  
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It asserted that adding or subtracting the frequencies of certain1 known lines 
in a spectrum will yield more lines.

If there are two lines with the frequencies2 ν
12

 and ν
23

 of the right type, 
then there is a third line at the frequency ν

13
 = ν

12
 + ν

23
. These additions are 

easily inverted. If we have lines at the frequencies ν
12

 and ν
13

, then there is a 
third line at the frequency ν

23
 = ν

13
 – ν

12
. And, if we have lines at the frequen-

cies ν
23

 and ν
13

, then there is a third line at the frequency ν
12

 = ν
13

 – ν
23

. Each 
of these applications of the Ritz combination principle expresses a relation 
of support. There are three, and they cross over one another in relations of 
mutual support:

Lines at ν
12

 and ν
23

 support a line at ν
13

.

Lines at ν
12

 and ν
13

 support a line at ν
23

.

Lines at ν
23

 and ν
13

 support a line at ν
12

.

There are more than just a few of these sets of mutually supporting items of 
evidence. Since the emission spectrum of hydrogen contains infinitely many 
lines, there are infinitely many of them.

In Sections 2 and 3, I recall the discovery of the various series of lines of 
the hydrogen spectrum and their systematization by Ritz through his com-
bination principle. In Section 4, I explore how the principle allows a dense 
network of relations of mutual support among the lines. If the Ritz combin-
ation principle is taken as a premise, then these relations of support are ex-
pressed by deductive inferences. They combine to produce a totality in which 
the observed lines of the hydrogen spectrum provide inductive support for 
the series of infinitely many lines.

In Section 5, I ask a further evidential question. What supports the 
Ritz combination principle? Is it merely to be supported as a generalization 
about observed lines in the spectrum? Which fact warrants it? The decisive 
theoretical development came in 1913 when Niels Bohr proposed an atomic 
mechanism capable of producing precisely the spectra observed. It became 
one of the foundations upon which modern quantum theory was built. Bohr’s 
theory, to be outlined in Section 6, proposed that the lines arise when an 

1	 The word certain, meaning “some carefully chosen,” indicates an important restriction. 
The principle does not work for all pairs of lines.

2	 The two indices arise from the simple two parameter formulae (1)–(6) below, found 
empirically to systematize the frequencies of the lines present.
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excited electron drops or jumps down from a higher to a lower energy state. 
Each jump leads to an emission of radiant energy with a frequency propor-
tional to the energy emitted. This mechanism provided a direct explanation of 
the Ritz combination principle. The two frequencies ν

12
 and ν

23
 corresponded 

to two emissions in a two-step jump. If the jump is taken in a single step, then 
the frequency ν

13
 = ν

12
 + ν

23
 comes directly from the requirement that the 

two-step jump or the single-step jump liberate the same quantity of energy.
The Ritz combination principle provides another instance of the cross-

ing over of relations of support but at a more elevated level of the theory. 
On the one hand, as described in Section 7, the combination principle, taken 
as a datum from observational spectroscopy, provides evidential support for 
the Bohr theory, and it was reported as such. Using a few notions from his 
theory, the principle translates directly in the emission mechanism that Bohr 
proposed. On the other hand, as reported in Section 8, the converse relation 
of support also holds. Once quantum theory is established, it entails the Ritz 
combination principle. The converse relation of support is important, for 
what quantum theory eventually provides is a corrected version of the princi-
ple. Some of the lines that the original Ritz principle predicts are “forbidden”: 
that is, they correspond to electron jumps precluded by quantum theory. 
What results is an embellished Ritz combination principle, supplemented by 
“selection rules” that indicate which lines are forbidden.

2. The Discovery of Regularities in Emission Spectra
The emission spectrum of hydrogen contains lines at many frequencies. They 
are called “lines” since the early methods of spectroscopy captured the differ-
ent frequencies present in the light as lines on a photographic plate. The fre-
quency or wavelength of the light was recovered from distance measurements 
on the plate. An example from Fowler (1922, 8) is shown in Figure 9.1.
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The first formula to embrace some of these lines with enduring success 
was posited by Balmer ([1885] 1967) for strong lines in the visible spectrum. 
In modernized form, his formula for the frequencies of lines in the “Balmer 
series” was

                             ν (2, m) = R(1/22 – 1/m2)           (“Balmer”)                          (2)

where R is a constant. The different values of m = 3, 4, 5, . . . gave specific lines 
in the spectrum shown in Figure 9.1.

Ha: ν (2, 3) = R(1/22 – 1/32)

Hb: ν (2, 4) = R(1/22 – 1/42)

Hg: ν (2, 5) = R(1/22 – 1/52)

Hd: ν (2, 6) = R(1/22 – 1/62)

. . .

In the following decades, similar formulae were found for other lines in the 
hydrogen spectrum:

                ν (1, m) = R(1/12 – 1/m2)        m = 2, 3, 4, . . .       (“Lyman”)            (1)

               ν (3, m) = R(1/32 – 1/m2)         m = 4, 5, 6, . . .     (“Paschen”)            (3)

               ν (4, m) = R(1/42 – 1/m2)         m = 5, 6, 7, . . .     (“Brackett”)            (4)

              ν (5, m) = R(1/52 – 1/m2)         m = 6, 7, 8, . . .        (“Pfund”)             (5)

Figure 9.1. A spectrograph of the spectrum of hydrogen
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Each series is named after the spectroscopist responsible for its identification.
This quick recitation of the various formulae masks the magnitude of 

the problems faced by the spectroscopists. Decades separated the recovery 
of these series. Although Balmer’s formula was reported in 1885, the terms 
of the Paschen series began to be verified around 1908, as announced by Ritz 
(1908). Lyman (1914) reported his ultraviolet spectrum in a letter to Nature 
that year. Brackett (1922) reported more lines in the Paschen spectrum and 
the first two members of the newly discovered Brackett series. Pfund (1924) 
reported the first line of the Pfund series.

There were multiple problems to be overcome. The first four lines of the 
Balmer spectrum, Ha to Hd, are easiest to find since they are in the visible 
spectrum. The Lyman series lies in the ultraviolet spectrum, and the remain-
ing series are in the infrared spectrum. These different ranges require differ-
ent instrumentation to separate the frequencies and register them. Controlled 
conditions, such as low pressures, are needed to manifest sharp lines. Then 
some of the lines reported have celestial origins in spectrographs taken of 
stars. Since we have no independent samples of the matter of the stars, how 
do we know just which excited matter produced them? How are they to be 
matched up with spectra produced by excited matter on Earth? The spectro-
graph in Figure 9.1 shows such a case. The upper set of lines arises in light 
from the star Sirius. The lower set comes from light emitted by excited hydro-
gen in a terrestrial laboratory. Fowler (1922, 7) suggests that the celestial lines 
can be identified as an extension of those in a spectrum found terrestrially if 
they fall near enough on a definite curve.  Figure 9.2 shows such a curve from 
Fowler (14). The vertical axis plots the m of (1), (2), and (3), and the horizontal 
axis plots frequency.
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Figure 9.2. Frequencies of series form definite curves

A trace of these different sources appears in Bohr’s (1913a) celebrated paper 
on his theory of the atom. Bohr notes that then only nine lines of the Balmer 
series had been observed terrestrially in vacuum tubes, whereas thirty-three 
had been observed in celestial spectra (9). 

Finally, even when definite series are identified in some spectrum, it is not 
always clear that all of the series derive from the same substance. Sommerfeld 
(1923, 207–08) reports two series originally attributed to hydrogen because of 
the similarity to the Balmer formula (2) for hydrogen. They are

ν  = R(1/1.52 – 1/m2)         m = 2, 3, 4, . . .   (“Principal series”)

ν  = R(1/22 – 1/(m+0.5)2)  m = 2, 3, 4, . . .  (“Second subsidiary series     
                                                                of hydrogen”)

One outcome of Bohr’s atomic theory of 1913 was that these series would 
result from an atom with a nuclear charge twice that of hydrogen, so that the 
constant R in these formulae is four times greater than that for hydrogen. 
That is, they derive from helium and not hydrogen. This conversion is easily 
accomplished by multiplying the above formulae by 4/4. We now have
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ν  = (4R) (1/32 – 1/m2)    m = 4, 5, 6, . . .    (“Principal series”)

ν  = (4R) (1/42 – 1/m2)    m = 5, 6, 7, . . .    (“Second subsidiary series  
                                                               of hydrogen [?]”)

The attribution of the spectra to helium was already made immediately by 
Bohr (1913b) in a letter to Nature.

3. The Ritz Combination Principle
Given the variety and difficulty of the problems facing the spectroscopists in 
locating and grouping spectral lines, any assistance in the heuristics would 
be useful. Such was offered by Ritz (1908). Rydberg (1890, 331) had noted that 
formulae for spectral lines could be simplified if they were written in terms 
of wave number, the inverse of wavelength.3 Then the formulae could be ex-
pressed as a difference of two terms, as done in (1) to (5) above. This fact 
enabled Ritz (1908, 523) to propose what he called his “principle of combin-
ation” (Kombinationsprinzip). Its value, as Ritz noted in the first sentence of 
his paper,4 is that one could use known spectral series to discover new ones. 
He applied it to a range of spectra, including those of hydrogen, helium, and 
the alkali and alkaline earth metals.

A good statement of the principle is provided by Ritz himself in a note 
found posthumously in his papers and published as an appendix to Ritz 
(1908) in his Gesammelte Werke (Collected Works) (1911, 162). Sommerfeld 
(1923, 205) quotes Ritz as giving this formulation:5

By additive or subtractive combination, whether of the series 
formulae themselves, or of the constants that occur in them, 

3	 The spectroscopists preferred to report wavelengths since they were more directly 
measurable than frequency. To convert wavelengths to frequencies required multiplication 
by the speed of light: frequency = (speed of light) / wavelength. Using inverse wavelength as a 
surrogate for frequency avoids systematic errors introduced by errors in the value of the speed of 
light employed.

4	 “In the following, it will be shown that, from known spectral series of an element, one 
can derive new series without introducing any new constants. Through this especially, almost all 
the series and lines recently discovered in the alkalis by Lenard, Konen and Hagenbach, Saunders, 
Moll, Bergman etc. come to be represented exactly” (Ritz, 1908, 523).

5	 Sommerfeld’s (1923) report is abridged. In place of “certain newly discovered lines from 
those known earlier,” Ritz’s (1908, 523) text specifies lines of alkalis then recently discovered by 
Lenard and others, as well as new elements, in particular helium.
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formulae are formed that allow us to calculate certain newly 
discovered lines from those known earlier.

The principle is incomplete since it does not specify which additions and sub-
tractions are those that yield new lines. The necessary supplement is provided 
in each application by a formula that represents the line frequency as a dif-
ference of two terms. Its application to hydrogen assumed that the series of 
hydrogen conforms to a general formula

              ν (n, m) = R(1/n2 – 1/m2)      n = 1, 2, 3, . . .   m = 2, 3, 4, . . .              (6)

in which we always have m > n. It follows that a new line in the spectrum can 
be identified by taking the difference in the frequencies of two known lines, 
as long as the expression (6) for each shares a common term. For example, the 
lines Ha and Hb can be subtracted in this way since they share a 1/22 term 
eliminated by the subtraction:

Hb: ν (2, 4) = R(1/22 – 1/42)

Ha: ν (2, 3) = R(1/22 – 1/32)

__subtract________________

        ν (3, 4) = R(1/32 – 1/42)

What results is the first lineν (3, 4) of the Paschen series (3), not an established 
series in 1908. It led to an immediate affirmation of the correctness of Ritz’s 
proposal. In his paper, Ritz (1908, 522) reported with obvious satisfaction that 
Paschen had informed him by letter (“Nach einer brieflichen Mitteilung”) 
that he had observed just this line in the infrared spectrum.

4. Mutually Supporting Evidence
For Ritz, the combination principle was valuable as a means of discovering 
new lines. At the same time, it was the warrant for an inference from the 
existence of some lines to others. The evidence of the lines Ha and Hb of the 
Balmer series supports the line ν (3, 4) of the Paschen series. This subtraction 
can be reversed into an addition that supplies a different relation of support:
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Ha: –ν (2, 3) = R(1/22 – 1/32)

           ν (3, 4) = R(1/32 – 1/42)

__add______________________

Hb:    ν (2, 4) = R(1/22 – 1/42)

That is, the frequencies of the Ha line and the ν (3, 4) line can be added to 
recover the Hb line. In this addition, the common 1/32 terms cancel. That is, 
the Ha line and the ν (3, 4) line support the Hb line.

These two relations show the crossing over of relations of support. In the 
first, the Hb provides support for the ν (3, 4) line. In the second, the ν (3, 4) 
line provides support for the Hb line. Since the full range of series covered by 
relations (6) has infinitely many lines, there will be infinitely many of these 
relations of support, crossing over in many ways.

These relations can be captured in infinite sets. For example, the Ritz 
combination principle can be applied to the infinitely many lines of the 
Balmer series (2) to support the Paschen (3), Bracket (4), and Pfund (5) series. 
For the first, lines in the Balmer series can be subtracted to cover the entire 
Paschen series:

       ν (2, m) = R(1/22 – 1/m2)    (m > 4)  Balmer

Ha: ν (2, 3) = R(1/22 – 1/32)

__subtract___________________________________

       ν (3, m) = R(1/32 – 1/m2)     (m > 4)  Paschen

Additional lines are needed as supplementary evidence if series in the se-
quence of (1), (2), (3), (4), and (5) are to support those earlier in the sequence. 
For example, we take as an extra datum ν (1, 2), the first line of the Lyman 
series (1), and then the entire Lyman series is recovered by addition from the 
Balmer series:

ν (1, 2) = R(1/12 – 1/22)

ν (2, m) = R(1/22 – 1/m2)  (m > 2)  Balmer

__add_______________________________________ 

ν (1, m) = R(1/12 – 1/m2)   (m > 1)   Lyman

If we take as an extra datum the Ha line of the Balmer series, then the Paschen 
series supports the Balmer series.
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       ν (3, m) = R(1/32 – 1/m2)   (m > 3)    Paschen

Ha: ν (2, 3) = R(1/22 – 1/32)

__add__________________________________________

       ν (2, m) = R(1/22 – 1/m2)    (m > 3)  Balmer

Two of these relations of support cross over one another and can be repre-
sented more compactly as

Ritz combination principle
Balmer series
____deduce_______________
Paschen series

Ritz combination principle
Ha line
Paschen series
____deduce_______________
Balmer series

Similar computations realize many more like-structured relations of mutual 
support that cross over each other, including

the Paschen series supports the Bracket and Pfund series;

the Bracket and Pfund series support the Paschen series;

the Bracket series supports the Pfund series;

the Pfund series supports the Bracket series;

et cetera.

It is noteworthy that all of the individual relations of support just described 
are implemented by deductive inferences. We can infer deductively from some 
subset of lines, via the Ritz combination principle, to the larger portions and 
even the entire set in (6). Nonetheless, accepting the entirety of the series does 
involve inductive risks. Those risks enter in accepting the premises that figure 
in the individual deductions. We take a small inductive risk in accepting the 
correctness of the report of the existence of each line. Most notably, we take 
considerable inductive risk in accepting the combination principle, since it 
has infinite scope. That the risk is considerable is seen most easily from the 
fact that later investigations introduced a small “fine structure” splitting of the 
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lines in the series described above.6 More significantly, as we shall see below, 
the Ritz combination principle itself needed to be modified by selection rules 
that prohibit certain lines when we move beyond the hydrogen spectrum.

Although combining deductive relations to yield inductive support over-
all might appear at first to be paradoxical, it is not so. All that has happened 
is that the inductive risks taken in accepting the premises of the deductions 
are the only inductive risks that we need to take. Once they are taken, we can 
proceed with maximally secure deductive arguments. This type of support is 
inductively more secure than combining inductive relations of support in a 
similar way. No further inductive risk is taken in accepting these component 
deductive inferences, whereas further inductive risk would be taken if they 
were replaced by inductive inferences. In Chapter 2, “Large-Scale Structure: 
Four Claims,” I reflected on other examples of deductive relations of support 
combining to provide overall inductive support.

The massively entangled network of relations of mutual support goes well 
beyond the heuristic guidance of Ritz’s original purpose. For that narrower 
purpose, the most useful are the inferences from readily available lines to 
those not yet discovered. My concern here, however, is not so narrow. It is to 
discern the full structure of the relations of inductive support.

5. Supporting the Ritz Combination Principle
The inferences reported in the previous section all employ the Ritz combin-
ation principle as a premise. None of the inferences in that section provides 
support directly for the Ritz combination principle. Rather, they all merely 
use it. With the qualification noted below, the principle is a standard part of 
atomic spectroscopy.

What evidence supports the Ritz combination principle? One might be 
tempted to answer that we have many instances of the general formula (6) and 
no counterexamples. So we can inductively infer to (6) and from it deduce the 
Ritz combination principle for the hydrogen spectrum. The trouble is that a 
generalization — any generalization — requires a warranting fact. So far, it 
has been unclear what that fact is.

6	 The splitting, reported by Sommerfeld in 1916, resulted from relativistic corrections 
to Bohr’s atomic theory. Sommerfeld found that differences in the eccentricities of the elliptical 
electron orbits of the theory led to slight differences in their energies (1915, 1923, 474).
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We might be tempted to say that, when a general formula this simple fits 
all of the cases at hand, we have a license to infer to it. I developed the familiar 
difficulty at length in Chapter 6 of The Material Theory of Induction (Norton 
2021). We lack both a notion of simplicity precise enough to warrant these in-
ferences, and we lack a factual basis for the inductive powers of such a notion.

As an intermediate attempt to warrant the generalization, we might sug-
gest that a formula as simple as (6) can be as successful as it is only if it is 
part of a larger regularity whose precise character is not currently known 
to us. Something like this is plausible. However, it rests on the supposition 
of further facts not so far produced. That, at least, was the situation in 1908 
when Ritz proposed his principle. In 1913, circumstances would change. Then 
Bohr proposed his novel theory of the atom. That theory used Ritz’s principle 
and the formula (6) as evidential support. Soon the relation of support would 
become mutual when the quantum theory that emerged from Bohr’s theory 
provided support for a modified version of Ritz’s principle.

6. Bohr’s Theory of the Atom
Bohr’s celebrated theory of the atom was based on Rutherford’s nuclear ac-
count of the atom. According to it, a hydrogen atom consists of a massive, 
positively charged nucleus with a light, negatively charged electron orbiting 
it. To this, Bohr added two ideas. Classical electrodynamics requires that this 
orbiting electron must radiate its energy electromagnetically and thus be 
pulled rapidly into the nucleus. Bohr simply posited otherwise:

I. There are stable orbits for the electron.

The energies of these orbits were to be computed by standard electrostatics. 
Bohr further supposed that electrons could jump between these stable orbits. 
Another idea connects these jumps to emission spectra:

II. When an electron drops down from a more energetic stable orbit 
to a less energetic one, closer to the nucleus, the energy E it loses re-
appears as electromagnetic radiation with a frequency ν , according 
to E = hν , where h is Planck’s constant.

We can denote the (negative) energies of two stable orbits as W1 and W2, with 
W1 > W2. When an electron drops from the first to the second orbit, it emits 
electromagnetic radiation of frequency ν 12 whose value, according to II, is
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                                           ν12 = (W1 – W2)/h                                                     (7)

Comparison with the general spectral formula (6) then allows us to identify 
the (negative) energies of the stable orbits as

                                      W (n) = R/n2       n = 1, 2, 3, . . .                                     (8)

The striking outcome here is that, from the spectral formula (6), we infer that 
the energies of the stable orbits do not form a continuous set. Rather, they 
form a discrete set whose members are indexed by n. Bohr’s posits I and II 
do not presume discreteness. It is inferred from the evidence of the spectra.

The Bohr theory clarified Ritz’s combination principle. In its original 
form, the principle was the recognition of a bare numerical regularity. It was 
a kind of scientifically useful numerology. Bohr’s theory gave it a physical 
basis. Consider the case shown in Figure 9.3. An electron in an excited hydro-
gen atom drops to a lower energy orbit, emitting radiation of frequency ν12 
with energy E12 = hν12. In a second jump, it drops to a still lower energy orbit, 
emitting radiation of frequency ν23 with energy E23 = hν23. Had the electron 
jumped directly from the first orbit to the final orbit, it would have emitted 
radiation of frequency ν13 with energy E13 = hν13.

We have two cases, one with two successive jumps and the other with 
a single jump. They are between the same initial and final orbits. Thus, the 
energy radiated in each must be the same:

E13 = E12 + E23

Applying E = hν to each of these three energies, we recover

ν13 = ν12 + ν23

This last sum is the Ritz combination principle applied to the hydrogen spec-
trum. Its physical foundation is now displayed.
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Figure 9.3. Physical basis of the Ritz combination principle

There is much more in Bohr’s theory, and these details have been elabor-
ated frequently elsewhere.7 Using further conditions, Bohr concluded that the 
constant R in (6) and (8) is given by R = 2p2me4/h3, where m is the mass of an 
electron and e its charge. The value of R, computed from this formula using the 
best-known values of m, e, and h, Bohr reported, was 3.1 x 1015. It matches close-
ly enough to the value that he reported from spectral observations, 3.290 x 1015.

Bohr also showed that the stable orbits of (8) coincided with the orbit-
al angular momentum of the electron taking on integer values in units of 
h/2p. This formulation of the discreteness of the stable states of (8) became 
increasingly important as Bohr’s theory evolved. In more elaborate versions 
of his theory, the “old quantum theory,” this result was the simplest case of 
the quantization of action. In the “new quantum theory” that emerged in the 
mid-1920s, this result coincided with the fact that stable electron orbitals are 
eigenstates of the angular momentum operator.

7. The Ritz Combination Principle Supports Quantum 
Theory
The first half of the mutual relations of support is that the newly emerging 
quantum theory was supported by the Ritz combination principle. This sup-
port has been evident from the start. In a much-quoted remark, reported 
by Bohr’s assistant and confidant, Léon Rosenfeld, Bohr remarked that, “as 
soon as I saw Balmer’s formula, the whole thing was immediately clear to me” 
(quoted in Duncan and Janssen 2019, 14).

7	 For an early authoritative textbook account, see Sommerfeld (1923, 211–18). Norton 
(2000) develops these details with special focus on the evidential relations.
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The evidential support that the Ritz principle gave to Bohr’s emerging 
theory was widely recognized. Max Born (1935, 85) was forthright about it: 
“A direct confirmation of this [Bohr’s 1913a] theory can be seen in the fol-
lowing fact. . . .” He proceeded to explain in detail and with a figure similar 
to Figure 9.3 how Ritz’s combination principle (identified by this name) is a 
consequence of the cascade of emissions described in the preceding section.

Sommerfeld (1923), in his early, authoritative volume on the old quantum 
theory, was similarly forthright. He introduced the Ritz combination prin-
ciple by name, along with the quotation given above, and then explained its 
application in detail. He then characterized its significance:

The principle of combination has maintained itself in the 
whole region of spectroscopy from infra-red to X-ray spec-
tra as an exact physical law with the degree of accuracy that 
characterises spectroscopic measurement. It constitutes the 
foundation on which Bohr’s theory of spectra rests, and is, 
in essence, identical with Bohr’s law . . . [equation (7) above], 
which likewise taught us to regard the frequency of a spectral 
emission as the difference between two energy-levels. (205–06; 
Sommerfeld’s emphasis)

If we approach the support relations materially, then we can be more precise 
in just what Ritz’s combination principle provides to Bohr’s theory. Bohr’s 
posit II above associates spectral lines with electron jumps between stable 
orbits of different energy. Using the posit as a warranting fact, we infer from 
each spectral line to the existence of an electron jump in the hydrogen atom 
between stable energy states.

The Ritz combination principle adds something very important to this 
last inference. All that this inference gives us is the energy differences between 
the energies of the stable orbits. Posit II does not specify how these stable 
energy states are related. It might just be that each line derives from its own 
unique set of energy states and that no other line derives from electron jumps 
to or from them. The principle assures us that it is possible to find a single 
set of energies of stable orbits such that all of these orbits are accessible to 
the electron in a hydrogen atom. More precisely, it follows from the spectral 
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formula (6) that such a set of energies is given by the relation (8) of the Bohr 
theory,8 W(n) = R/n2.

If we follow Sommerfeld (1923) and take the Ritz combination princi-
ple as holding universally for all spectral lines, including those not observed, 
then the relation of support is deductive. All of the inductive risk is taken in 
accepting posit II provisionally as a hypothesis.

8. Quantum Theory Confirms the Ritz Combination 
Principle
In the early years of quantum theory, it was natural to focus on the support 
that the Ritz combination principle provided for the developing theory. The 
principle itself was rightly judged to be more securely supported by spectro-
scopic evidence. The developing quantum theory was speculative and even 
required physicists to overlook a glaring contradiction with classical elec-
trodynamics. As quantum theory developed, became more established, and 
evolved into the later “new quantum theory,” this orientation reversed. A more 
secure quantum theory provided support for the Ritz combination principle 
directly. The principle is a deductive consequence of the account given by 
quantum theory of the origin of the spectra. It also became more congenial 
to see support for the Ritz combination principle in quantum theory, for that 
support derived from a definite physical ontology and replaced what I called 
“numerology” above.

What further strengthens the inverted relation of support is that the de-
velopment of quantum theory showed that the full Ritz combination princi-
ple, when applied to spectra beyond those of hydrogen, needed corrections.9 It 
turned out that not all of the lines predicted by the principle occurred. Some 
transitions turned out to be “forbidden,” and the determination of which ones 
are allowed was governed by “selection rules.” The jumps allowed in Bohr’s 

8	 The formula is determined only up to an additive constant that plays no role in energies 
and frequencies of the radiation emitted. The inference is only to the possibility of the single set of 
energies described. It does not preclude a more complicated set that simulates the behavior of the 
simpler set, even though in practice this complication would be dismissed as contrived.

9	 Another example of this type of correction is seen in the previous chapter on Newton 
and the inverse square law of gravity. Kepler’s elliptical orbits of the planets support the inverse 
square law. Yet that law, when developed systematically by Newton, leads to corrections to the 
elliptical orbits due to perturbations from other celestial bodies.
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original theory were constrained only by energy conservation. Such jumps 
must also conform to the conservation of angular momentum. The emitting 
electron must lose just the angular momentum carried off by the emitted 
radiation.10 In the case of the simple hydrogen spectrum, the additional con-
dition does not further limit the spectra beyond the limitations of energy 
conservation. However, that is only a special case. Spectra of other elements 
do have forbidden lines.

Through these considerations, the reverse direction of support, from 
quantum theory to Ritz’s combination principle, becomes more secure. The 
observation of spectra can give us direct evidence of only a finite subset of the 
infinity of lines possible. That finite evidence can support Ritz’s combination 
principle among the lines observed. When we move past hydrogen spectra, 
this finite evidence can indicate when the principle fails. If, however, we de-
rive the principle from a fully developed quantum theory, then we recover 
the principle in its most general form as it applies to the infinity of lines in 
some spectrum. We also recover a way of determining when certain lines are 
forbidden and a principled physical account of why they are forbidden.

This inversion had already occurred under the old quantum theory. As 
the theory developed, new quantum numbers were added, beyond the single 
quantum number n of Bohr’s theory of 1913. Sommerfeld (1923) introduced 
the “azimuthal quantum number” among other numbers. His authoritative 
treatment of the old quantum theory included an extensive account of a selec-
tion rule for atomic spectra. He states it as follows:

The principle of selection states: the azimuthal quantum number 
can at the most alter by one unit at a time in changes of configuration 
of the atom. (266; Sommerfeld’s emphasis)

This selection rule was carried over11 and vindicated by the wave mechanics of 
the new quantum theory. It was rapidly absorbed into textbook expositions, 
such as Pauling and Bright (1935, Section 40f).

In his article for Review of Modern Physics, Gibbs (1932, 307) reflects on 
the need to qualify the Ritz combination principle:

10	 In the full quantum electrodynamic analysis, an emitted photon carries off h/2p of 
angular momentum. It follows that the emitting electron can only jump to a state whose angular 
momentum differs from its starting state by h/2p.

11	 Sommerfeld’s “at most one unit” is replaced by exactly one unit for the quantum 
numbers l and m in the case of hydrogen. See Slater (1960, 183).
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The later development of the quantum theory has shown that 
for certain types of radiation some of the Ritz combination 
lines are “forbidden” or perhaps better are extremely improb-
able under ordinary circumstances. The degree of probability 
for these “forbidden” lines varies widely for different combi-
nations and accordingly under certain conditions of pressure, 
electric field, and mode of excitation some of the more proba-
ble of these improbable or “forbidden” lines are observed.

After reporting the discovery of the Brackett and Pfund series, Gibbs record-
ed what amounts to the inversion of the relations of support:

These series, both of which lie well out in the infrared, were 
discovered sometime after the theoretical basis for the combi-
nation principle had been completely changed and elaborated 
by the introduction of the quantum theory. Indeed the theo-
retical arguments advanced by Ritz in proposing this principle 
were quite unsound even in terms of the older classical theory. 
It is an excellent example of how a fundamentally correct idea 
is envisioned through false reasoning, to be later explained on 
an entirely new basis, the theoretical development of which 
was encouraged and assisted to some extent by the very idea 
itself. (307–08) 

9. Conclusion
The investigation of atomic spectra and their relation to quantum theory 
illustrates the nonhierarchical structure of relations of evidential support. 
There is a massively entangled set of relations of support among the infinitely 
many propositions that assert the existence of specific spectral lines. The fact 
that warrants these relations of support is the Ritz combination principle. It 
too enters into nonhierarchical relations of support, for initially the princi-
ple provided important evidential support for the newly emerging quantum 
theory. As that theory developed and became better established, this relation 
of support was inverted. The quantum theory was seen as providing eviden-
tial support for the Ritz combination principle. This inversion is appropriate 
since quantum theory indicated that the Ritz combination principle had to be 



2879 | Mutually Supporting Evidence in Atomic Spectra

supplemented or corrected to accommodate “forbidden lines.” The quantum 
theory could provide both a systematic means of identifying these forbidden 
lines and a physical basis for forbidding them.
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10

Mutually Supporting Evidence in 
Radiocarbon Dating

1. Introduction
Consider two ways that we can date artifacts and samples. First, traditional 
methods of historical analysis and archaeology enable us to date artifacts, 
and the counting of tree rings enables us to date wood from ancient trees. 
Second, radiocarbon dating provides another means of dating these samples. 
What results are two sets of propositions concerning the age of specific arti-
facts. In Section 4, the first are called H (historical), and the second are called 
R (radiocarbon).

Each type of dating can provide evidence for the other type. That is, rela-
tions of support between these two sets of propositions proceed in both dir-
ections, analogously to the relations of support between the stones on either 
side of an arch.

The second type R can support the first type H: if we are interested in 
checking the historical dating of some artifact, then we can send a sample to 
a radiocarbon laboratory for dating.

The first type H can support the second type R: radiocarbon dating it-
self requires empirical calibration to correct for many confounding variables, 
such as changes in levels of atmospheric carbon 14. Historically dated arti-
facts and wood dated by tree ring counting can be used in this calibration 
process. In it, the evidence of these other methods of dating provides support 
for the recalibrated radiocarbon dating of the samples.
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When the two methods agree for some sample, we have support relations 
passing in both directions. However, the circumstances of the sample might 
incline us to emphasize only one direction.

In Section 2, I will review briefly how radiocarbon dating works, and in 
Section 3 I will describe the need for and methods of independent calibration 
of radiocarbon dating. Finally, in Section 4, I will review how relations of evi-
dential support cross over among the type H and type R propositions, using the 
example of the dating of the shroud of Turin and associated control samples.

To speak of just two mutually supporting methods oversimplifies greatly 
in the interests of brevity. An appreciation of the richness of the interactions 
of many lines of evidence employed in radiocarbon dating has been provided 
by Alison Wylie in several works, including Wylie (2016). For a related analy-
sis of radiometric dating in geology, see Alisa Bokulich (2020).

2. How Radiocarbon Dating Works
Consider some ancient artifact such as a scrap of linen from an Egyptian 
mummy’s wrapping or a thread from a medieval cloak. How are we to know 
its age? In the 1940s, William Libby hit upon a method so ingenious and 
important that it earned him the Nobel Prize in chemistry in 1960.1 These 
artifacts are all derived from carbon-based plants. These plants derived their 
carbon from the CO2 in the atmosphere. Virtually all of the atmospheric 
carbon is the stable isotope 12C, “carbon 12.” However, a tiny portion is a 
radioactively unstable 14C. This tiny portion is decaying exponentially, with 
clocklike regularity, with a half-life of about 5,730 years. That means that, 
after 5,730 years, only half of the original amount of 14C remains; after 2 x 
5,730 = 11,460 years, only a quarter remains; and so on. Wait long enough 
and nearly none remains. Coal, formed from living plants several hundred 
million years ago, contains virtually no 14C. By these simple calculations, we 
can determine the age of an artifact from two numbers: the amount of 14C in 
the artifact at its formation and the amount of 14C in the artifact now.

The second of these numbers can be determined by laboratory analysis. 
The first, however, presents a greater challenge. The amount of 14C in the arti-
fact at the time of its formation is fixed by the level of 14C in the atmosphere at 

1	 An early mention of the method appears in the journal literature in brief closing 
remarks in Anderson et al. (1947).
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that time. The isotope 14C occurs in atmospheric carbon in roughly the ratio 
of 1 atom of 14C to 1012 atoms of 12C.2 Although atmospheric 14C is decaying 
with the half-life of 5,730 years, the atmospheric levels are maintained at 
roughly constant levels through a process that creates new 14C atoms. Cosmic 
rays strike nitrogen atoms in the atmosphere and convert them to 14C atoms. 
Since the rate of replenishment rises and falls with the intensity of the cosmic 
rays impinging on the atmosphere, there is a corresponding movement in 
the levels of 14C. The ratio of 1 to 1012 is a rough estimate of a ratio that varies 
over time. Many other processes affect this ratio. Some have a large effect. 
The ratio dropped significantly after 1880 because of the large amounts of 
carbon-based fossil fuels burned in the industrial revolution. The 14C in the 
atmosphere was diluted by essentially 14C free carbon from the fossil fuels. 
This and other factors have sufficiently disrupted the rate of replenishment 
that radiocarbon dating of artifacts is practicable only to artifacts older than 
300 years.3

3. The Need for Calibration
For artifacts older than 300 years, the variability in the atmospheric 14C levels 
and other factors lead to incorrect dating, commonly an underestimate of the 
age of the artifact. In the early years of radiocarbon dating, when there were 
fewer means available to check it, a thorough analysis of the errors was not 
possible. Arnold and Libby (1951, 111) collected eighteen months of radio-
carbon dating in a report presented as “an overall-check of the method which 
was the main purpose of the research.” As a part of these efforts, they pre-
sented the historically known and radiocarbon ages of samples from ancient 
Egypt (wooden beams from tombs, wood from a funerary ship, wood from 
a mummiform coffin, ancient wheat and barley grains). They reported the 
radiocarbon ages of samples from many other locations but generally without 
historically determined ages.

By the 1960s, discrepancies between the radiocarbon and true dates of 
historical artifacts were becoming apparent. Stuiver and Suess (1966) re-
ported on the accumulation of evidence of the discrepancies. The relationship 

2	 As cited by Key (2001, 2338).
3	 These other effects include seventeenth-century rapid changes in solar magnetic 

intensity and the artificial production of 14C as a result of atmospheric testing in the twentieth 
century. For more details and more general background, see Taylor (1997, 69).



The Large-Scale Structure of Inductive Inference292

between the two ages, they stressed, depends on so many potentially variable 
factors that it requires an approach other than the theoretical analysis that 
then gave radiocarbon ages:

This relationship cannot be determined theoretically, but can 
be derived empirically by determination of the radiocarbon 
contents of samples of known age. (534)

They reported the existence of samples of known age from old wood whose 
age could be determined by the counting of tree rings. They expressed high 
hopes for samples that would soon be available of bristlecone pine wood more 
that 6,000 years old. These samples did meet their expectations and now play 
a central role in determining the relationship that they sought.

The corrections needed came to be summarized in calibration curves 
that map the radiocarbon age of a sample against that sample’s true calendar 
age. The term “radiocarbon age” is precisely defined in the radiocarbon dat-
ing literature. It designates the age indicated by depletion of 14C in the artifact 
if we make a series of convenient but false stipulations. They include the as-
sumption of the constancy of reservoir 14C levels, an incorrect but formerly 
used half-life of 5,568 years, the counting of time from 1950 AD as the zero 
point, and more.4 Recent calibration data and curves have been provided by 
Reimer et al. (2013). Figure 10.1 is a calibration curve plotted from their data 
for samples created in the northern hemisphere.

4	 For more details, see Taylor (1997, 67–68).
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Figure 10.1. Northern hemisphere calibration curve, IntCal13; from data in Reimer et 
al. (2013) and reproduced in conformity with a Creative Commons CC BY-SA 3.0 license granted 
by the copyright holder at https://en.wikipedia.org/wiki/File:Intcal_13_calibration_curve.png

The curve shows that radiocarbon age might underestimate the true calendar 
age by as much as 20%. Once the curve has been used to correct the radio-
carbon age, I call the new age the “recalibrated radiocarbon age.”

4. Relations of Evidential Support
The relations of evidential support to be considered here are between two 
types of propositions:

H: The historically determined age of a designated sample is the 
true age.

R: The recalibrated radiocarbon age of a designated sample is the 
true age.
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Here “historically determined” indicates that dating was carried out by the 
traditional methods of history, archaeology, and dendrochronology (tree ring 
dating), excluding radiocarbon methods.

So far, we have seen that propositions of type H are used to give evidential 
support to propositions of type R. Indeed, propositions of type H are used to 
construct the calibration curves that recalibrate the propositions of type R. 
Thus, they provide the evidential support for the correctness of the recali-
brated ages.

However, the relations of evidential support can be reversed. Propositions 
of type R can support those of type H. We might become uncertain about the 
dating ascribed to some sample in a proposition of type H. Perhaps we might 
become unsure of the archaeological dating of 4,650 +/– 75 years of the acacia 
wood beam from the tomb of Zoser at Sakkara, listed in Arnold and Libby 
(1951, 111). We can use the recalibrated radiocarbon dating of samples from it 
to reaffirm its archaeological dating.

An interesting, concrete example of the crossing over of relations of sup-
port between the two types of propositions is provided by the radiocarbon 
dating of the shroud of Turin. As most people know, the shroud bears front 
and rear impressions of someone with injuries compatible with crucifixion. 
It is purported to be the burial shroud of Jesus. However, it did not appear on 
public display until the 1350s. In a careful series of tests reported in Damon 
et al. (1989), samples of the shroud were sent to three laboratories. In a failed 
effort to blind the tests, three control samples were also sent to each labora-
tory. The results showed agreement among the three laboratories for dating 
of all the samples. They concluded with 95% confidence that the linen of the 
shroud was created from flax grown sometime between 1260 and 1390 AD.

The crossing over of relations of inductive support arose in the context of 
the three control samples:

Sample 2. Linen from a tomb excavated at Qasr Ibrîm. Dated by em-
broidery pattern and Christian ink inscription to the eleventh and 
twelfth centuries.
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Sample 3. Linen from an early-second-century AD mummy of 
Cleopatra from Thebes. Radiocarbon dated to 110 BC–75 AD at 
68% confidence.5

Sample 4. Threads from the cope of St. Louis d’Anjou. Dated by 
stylistic and historical evidence to 1290–1310 AD.

These three samples are dated by H-type propositions and then by R-type 
propositions from the three independent laboratories. Since the dating of all 
of the samples agrees in both types of propositions, we can read the relations 
of support in each case as passing in both directions.

The intended direction of the calibration of the laboratories is that the 
H-proposition dating of the samples provides evidential support for the lab-
oratories’ R-proposition dating. However, we can choose equally to read the 
evidential support as proceeding in the opposite direction: if there was any 
doubt about the dating of the three control samples, then their radiocarbon 
dating by the three independent laboratories affirms their correctness. That 
is, the R propositions provide evidential support for the H propositions.
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11

The Determination of Atomic Weights

1. Introduction
A table of the weights of the atoms of the elements of chemistry is common-
ly on display in high school science classrooms. Figure 11.1 shows an early 
example of the table, drawn from the work of Dmitri Mendeleev, the chem-
ist most associated with the introduction of the table. We read familiar facts 
from it. A hydrogen atom has a weight of 1, near enough. An atom of carbon 
has a weight of 12. An atom of oxygen has a weight of 16. And so on. We 
then easily compute the weight of a molecule of water, whose composition 
is specified by the familiar formula H2O. A water molecule has two atoms of 
hydrogen and one atom of oxygen. Its weight is 2 x 1 + 16 = 18.

Familiar as these facts are now, they did not spring into our textbooks the 
moment that Dalton (1808) proposed that ordinary matter consists of atoms 
of the elements hydrogen, carbon, oxygen, and so on. Rather, these were de-
tails that Dalton’s theory failed to specify adequately. The omission was no 
oversight. The evidence that Dalton marshaled for his theory was too weak 
to pin down the relative weights of his atoms and the molecular formulae of 
simple substances such as water. These facts were hidden behind an evidential 
circle. Dalton could not know the correct molecular formulae until he had de-
termined the correct atomic weights. But he could not determine the correct 
atomic weights until he had found the correct molecular formulae. He had no 
means adequate to break the evidential circle.

The determination of the weights of his atoms proved to be a recalcitrant 
problem whose solution required half a century of concerted efforts by chem-
ists. That half century provides us with an illuminating study of a tangle of 
mutual relations of inductive support. Because of the great complexity of the 
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facts of chemistry with its many elements, we shall see that these relations 
of support are far more complicated than, in the architectural analogy, two 
sides of an arch supporting each other. They are closer to the multiplicity of 
mutual support relations of an intricate vaulted ceiling, such as displayed 
in Chapter 2. We shall also see that higher-level hypotheses proved to be 
essential in the efforts to break the circularity that defeated Dalton. The most 
familiar of them is Avogadro’s hypothesis. Its content is now taught to high 
school students, who memorize it as they did the lines of nursery rhymes. 
It already merited only a perfunctory statement in the 1911 eleventh edi-
tion of the Encyclopaedia Britannica, buried in the short entry for “Amedeo 
Avogadro”: “. . . [U]nder the same conditions of temperature and pressure 
equal volumes of all gases contain the same number of smallest particles or 
molecules. . . .” In its time, however, it was an adventurous speculation, in-
dulged only cautiously since it allowed chemists to determine atomic weights 
and molecular formulae. Adopting hypotheses such as Avogadro’s incurred 
an evidential debt. We shall see that this debt was discharged through still 
more entangled relations of mutual inductive support at the corresponding 
higher levels of generalization.

Figure 11.1. A periodic table of the elements; from Mendeleev (1904, 26)
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In Sections 2 and 3 of this chapter, I will review Dalton’s “new system” 
of 1808 and how it is troubled by an evidential circularity in atomic weights 
and molecular formulae. Such circularities can be broken by an aptly chosen 
hypothesis. In Section 4, I review Dalton’s failed attempt, guided by notions 
of simplicity, to select such a hypothesis. In Section 5, I review three hypoth-
eses that came to guide work on atomic weights and molecular formulae 
over the next half century: Avogadro’s hypothesis, Dulong and Petit’s law 
of specific heats, and Mitscherlich’s law of isomorphism. The ensuing an-
alysis culminated in a celebrated synthesis of the chemical evidence and the 
support relations among them by Stanislao Cannizzaro (1858). In Sections 
6–8, I review the evidential case presented by Cannizzaro. It emphasizes the 
interconnectedness of the relations at multiple levels. In Section 9, I review 
another relation of mutual support, this time between two sciences. For the 
chemists, Avogadro’s hypothesis was supported by the equipartition theorem 
of the new physics of the kinetic theory of gases. For the physicists, the direc-
tion of the support was reversed. Finally, in Section 10, I record the transition 
of Avogadro’s hypothesis from a useful speculation to an established rule. 
Dulong and Petit’s law of specific heats was similarly established but with a 
crucial amendment that quantum effects lead it to fail at low temperatures.

2. Dalton’s Atomic Theory
The atomic theory of matter has a venerable history, extending back to an-
tiquity. Although it is easy to praise the early atomists as far-sighted vision-
aries, struggling to free themselves from the prejudices of their eras, a better 
assessment is less celebratory. Alan Chalmers (2009) has documented thor-
oughly how, for most of its life, the atomic theory was highly speculative. It 
had little empirical grounding and was thus rightly regarded with reserve or 
suspicion by those who practiced empirical science.

The turning point came in the early nineteenth century with Dalton’s 
(1808) new proposal of a specific atomic constitution for matter in his New 
System of Chemical Philosophy. Curiously, though, his proposal was not the 
decisive factor in turning atomism from potentially fertile speculation to suc-
cessful empirical science. The success of his proposal depended essentially 
on Antoine Lavoisier’s work in chemistry a few decades earlier. Before it, just 
which were the elements of chemistry was unsettled. Was it to be the an-
cient choice of earth, air, fire, or water? Or was it the tria prima of the three 
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principles of mercury, sulfur, and salt of Paracelsus? Or should we follow 
Boyle and discard the notion of elements entirely? Lavoisier had settled the 
matter when he collected his table of elements, as presented in his Elements of 
Chemistry ([1789] 1965). There he gave a subset of the familiar modern table 
of elements (175). It included hydrogen, oxygen, “azote” (nitrogen), sulfur, 
phosphorus, charcoal (carbon), and many more. Air and water, it was now 
found, are not elements after all. Air is a mixture of oxygen and azote. Water 
is a compound of oxygen and hydrogen. Combustion is not the release of 
phlogiston but the consumption of oxygen.1

Prior to Lavoisier’s discoveries, an atomic theory had little hope of bridg-
ing the gap between specific properties attributed to atoms and the chemical 
properties of matter seen in the laboratory. One could speculate ad nauseam 
about the properties and behaviors of the most fundamental atoms or (break-
able) corpuscles of matter. However, as long as these were atoms or corpuscles 
of air, water, fire, or earth, recovering the rich repertoire of chemical change 
then known to the chemists was precluded.

After Lavoisier, the prospects were quite different. Speculate that the 
simple bodies of Lavoisier’s system are constituted of atoms peculiar to each 
and the pieces fall rapidly and easily into place. Dalton’s good fortune was 
that his was the first prominent attempt at this speculation. Dalton associat-
ed a definite atom with each of Lavoisier’s elements. The theory of chemical 
composition then became beautifully simple. The elements form compounds 
when their atoms combine in simple ratios. One carbon atom combines with 
one oxygen atom to make “carbonic oxide” (modern carbon monoxide CO). 
One carbon atom combines with two atoms of oxygen to make “carbonic 
acid” (modern carbon dioxide CO2) (Dalton 1808, 215). We now take this 
simple idea for granted. However, its use with Lavoisier’s table of elements 
is profound; the constancy of proportions in chemical composition is now 
explained at the atomic level.

Dalton was dependent on Lavoisier’s proclamations of which are the ele-
ments. This dependence is shown by Dalton’s retention of Lavoisier’s identi-
fication of heat as a material substance. For Dalton, gases, liquids, and solids 

1	 There are also a few unexpected entries in Lavoisier’s ([1789] 1965) table of “simple 
substances.” It includes light and caloric, in which caloric is a material substance comprising heat. A 
“gas” for Lavoisier is defined as a body fully saturated with caloric (50). The oxygen that he prepared 
in his laboratory was for him really “oxygen gas” (52), elemental oxygen saturated with caloric.
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were all quiescent at the atomic level. He had no kinetic conception of heat 
as atomic or molecular motion. Rather, the fundamental particles of matter 
were surrounded by atmospheres of heat. The expansion and contraction of 
matter with heating and cooling were explained by the addition to or subtrac-
tion of the substance of heat in these atmospheres, which would then enlarge 
or diminish.

3. A Circularity: Atomic Weights and Molecular 
Formulae
I now turn to the awkwardness that will govern the discussion to follow. 
Dalton’s theory required atoms to combine in simple ratios when forming 
compounds: 1:1, 1:2, et cetera. However, Dalton had real difficulty in deter-
mining just which of those ratios should be for specific compounds. Famously, 
he decided that water is formed from one atom of hydrogen and one atom of 
oxygen, so that we would now write its molecular formula as HO rather than 
the familiar H2O. This was just one of many molecular formulae that would 
require subsequent correction. Ammonia, for example, is NH in his account, 
not the modern NH3.

I should note, as a matter of historical fidelity, that neither the term 
“molecular formula” nor the notation “HO” is Dalton’s. I use them here for 
descriptive continuity with later work. Dalton drew circles representing each 
element and its compounds. The representation from his New System shown 
in Figure 11.2 is much reproduced and has near-iconic status. In it, hydrogen 
is “simple” 1 and drawn as a circle with a dot. Oxygen is “simple” 4 and drawn 
as a plain circle. The first “binary” (compound) 21 is water and represented by 
the two circles, one each for hydrogen and oxygen, side by side.
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Figure 11.2. Dalton’s illustration of the atomic elements and their compounds; 
from Dalton (1808, Plate 4, near 219)
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The misidentification of the molecular formula of water and other com-
pounds lay in no oversight or inattentiveness by Dalton. It lay in a serious 
incompleteness in his theory. One might know that 1g of hydrogen combines 
with exactly 8g of oxygen to produce water.2 But how is one to know that this 
reaction involves two hydrogen atoms for each oxygen atom? That is, how can 
one know the correct molecular formula for water from the ratios of weights 
of the elements in it?

The problem would be solved by knowledge of the ratio of the weights of 
individual atoms. If we set the atomic weight of a hydrogen atom as the unit, 
then what would result if an oxygen atom has atomic weight 8? From the fact 
that 1g of hydrogen combines with 8g of oxygen to make water, we might 
propose that one atom of hydrogen has combined with one atom of oxygen to 
make water. That is, we find that water is HO.

However, what if the atomic weight of oxygen is really 16? Then, from the 
fact that 1g of hydrogen combines with 8g of oxygen to make water, we might 
propose that water forms by combining two atoms of hydrogen with one atom 
of oxygen. That is, water is H2O. These possibilities can be multiplied indefin-
itely, and Table 11.1 shows some of them.

Table 11.1. Underdetermination of molecular formulae by combining 
weights

Combining weights to 
make water

Atomic weights Molecular formula for 
water*

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 1 HO8

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 2 HO4

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 4 HO2

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 8 HO

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 16 H2O

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 32 H4O

1g hydrogen : 8g oxygen hydrogen = 1; oxygen = 64 H8O

* More generally, each of these formulae belongs to an infinite class with the same ratio of atoms. If 
hydrogen has atomic weight 1 and oxygen has atomic weight 8, then the compound molecule could 
be HO, H2O2, H3O3, H4O4, et cetera.

2	 This is the modern figure. Dalton (1808, 215) reports the ratio as “1:7, nearly.”
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The molecular formula for water is left underdetermined by the observed 
combining weights. Rather, these weights merely give us an infinite set of 
possible pairings of component atomic weights and molecular formulae. If 
we knew one member of the pair, then we would know the other. If we knew 
the atomic weights, then we would know the molecular formulae. If we knew 
the molecular formulae, then we would know the atomic weights. There is a 
tight circularity in these pairings. To know one, we need to know the other. 
But we cannot know the second unless we already know the first. Because of 
this circularity, the molecular formula for water and the atomic weights of its 
constituent atoms remain underdetermined.

4. A Failed Hypothesis of Simplicity
This circularity can be broken by an aptly chosen hypothesis. We shall soon 
investigate cases of hypotheses that were introduced speculatively and even-
tually found solid inductive support. They are the success stories. Hypotheses 
do not always fare well. A clear instance is the hypothesis that Dalton himself 
introduced to solve the problem of determining “the number of simple ele-
mentary particles which constitute one compound particle” (1808, 213) or the 
correct molecular formulae (to use the more modern expression). He defined 
compounds as binary, ternary, and so on by equations (213).

1 atom of A + 1 atom of B = 1 atom of C, binary.

1 atom of A + 2 atoms of B = 1 atom of D, ternary.

2 atoms of A + 1 atom of B = 1 atom of E, ternary.

1 atom of A + 3 atoms of B = 1 atom of F, quaternary.

3 atoms of A + 1 atom of B = 1 atom of G, quaternary.

&c., &c.

With these terms in place, Dalton made the elaborate, multi-part hypothesis 
that would enable him to determine molecular formulae independently of the 
relative atomic weights.

The following general rules may be adopted as guides in all 
our investigations respecting chemical synthesis.
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1st. When only one combination of two bodies can be ob-
tained, it must be presumed to be a binary one, unless some cause 
appear to the contrary.

2nd. When two combinations are observed, they must be 
presumed to be a binary and a ternary.

3rd. When three combinations are obtained, we may expect 
one to be a binary, and the other two ternary.

4th. When four combinations are observed, we should ex-
pect one binary, two ternary, and one quaternary, &c.

5th. A binary compound should always be specifically heavi-
er than the mere mixture of its two ingredients.

6th. A ternary compound should be specifically heavier 
than the mixture of a binary and a simple, which would, if com-
bined, constitute it; &c.

7th. The above rules and observations equally apply, when 
two bodies, such as C and D, D and E, &c., are combined. (214; Dal-
ton’s emphasis)

In the briefest terms, this compound hypothesis amounted to the assertion 
that one should choose the simplest molecular formula or formulae available. 
These rules were not entirely arbitrary. They fit comfortably with the mech-
anical picture that Dalton had developed of how compounds form. (It would 
take us too far afield for me to explain how.)

For my purposes here, it was a hypothesis nonetheless and introduced 
provisionally. To remain in chemistry, eventually it had to accrue inductive 
support. This is a story of failure, not success. It did not find this support. The 
hypothesis led Dalton to incorrect molecular formulae, such as that water is 
HO. Thus, it proved to be incompatible with the other hypotheses introduced 
to determine the molecular formulae. These other hypotheses mutually sup-
ported one another and survived into standard chemistry. Dalton’s hypoth-
esis did not find support and was discarded.
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5. Breaking the Circularity
Dalton was trapped in a circularity. To know the correct molecular formu-
lae, he needed to know the correct, relative atomic weights. Yet to know the 
correct, relative atomic weights, he needed to know the correct molecular for-
mulae. This circularity presented a serious challenge to chemists in the first 
half of the nineteenth century. It was broken and decisively so by the efforts 
of some of the greatest chemists of the era. They found other means for ascer-
taining molecular formulae or atomic weights. No one of them was decisive, 
but their accumulated import was.

Following are three of the most important.3

5.1. Avogadro’s Hypothesis
When compounds form from elements, their weights combine in fixed ratios. 
One gram of hydrogen combines with exactly 8g of oxygen to produce water. 
This fact is explained elegantly in Dalton’s atomic theory by his supposition 
that compounds form when elemental atoms combine in simple, whole num-
ber ratios.

Gay-Lussac had remarked in a memoir read in 1808 on a second fixed 
ratio that proved to be just as important. When gaseous elements combine, 
they also do so in fixed volume ratios.4 Two volumes of hydrogen (under the 
same conditions of temperature and pressure) always combine with just one 
volume of oxygen to make water. An appealing explanation of this fixity of 
volume ratios is that each of the volumes contains the same number of atoms. 
We could then read directly from the 2:1 ratio of volumes that water forms 
when two atoms of hydrogen combine with one atom of oxygen to make 
water. The circularity is broken. Water is H2O and not HO.

There is an initial plausibility to the idea. Although atoms of different 
elements might have different weights, we would be merely supposing that 
each atom occupies the same space.5 It is natural to extend the hypothesis 

3	 They are selected since they play major roles in standard accounts of the determination 
of atomic weights written around the end of the nineteenth century: Meyer (1888, Part I, 1892), 
Pattison Muir (1890), and Wurtz (1881).

4	 For a convenient compendium of Gay-Lussac’s, Dalton’s, and Avogadro’s writings on 
the topic, see Dalton, Gay-Lussac, and Avogadro (1893).

5	 At this time, prior to the kinetic theory of gases, the discussion proceeded with Dalton’s 
model of gases as quiescent piles of atoms. Each atom was surrounded by a halo of caloric or heat. 
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to molecules compounded of atoms: a fixed volume of gas or vapor holds 
the same number of free atoms (if atomic) or molecules (if a molecular com-
pound). However, the hypothesis then runs immediately into serious diffi-
culties. Using modern notation not then in use, we represent the formation 
of water as

2H + O  H2O

2 vol. hydrogen + 1 vol. oxygen  1 vol. water vapor

This contradicts laboratory observations. Two volumes of hydrogen combine 
with one volume of oxygen to make two volumes of water vapor.

The solution to the puzzle was given by Avogadro (1811).6 One had to give 
up the assumption that hydrogen gas and oxygen gas consist simply of free 
atoms of hydrogen and oxygen. Rather, both gases consist of molecules that, 
in this case, contain two atoms of hydrogen and two atoms of oxygen.7 Using 
modern notation, the formation of water is represented by

2H2 + O2  2H2O

2 vol. hydrogen + 1 vol. oxygen  2 vol. water vapor

What resulted was a powerful new principle for the determination of molecu-
lar formulae. It is given a complete and canonical formulation by Cannizzaro 
(1858, 1):

I believe that the progress of science made in these last years 
has confirmed the hypothesis of Avogadro, of Ampere, and of 
Dumas on the similar constitution of substances in the gaseous 
state; that is, that equal volumes of these substances, whether 

Heating the gas increased the size of the halo, and that explained why heating a gas leads it to 
expand.

6	 Translated as “Essay on a Manner of Determining the Relative Masses of the 
Elementary Molecules of Bodies, and the Proportions in Which They Enter into These 
Compounds” in Dalton, Gay-Lussac, and Avogadro (1893). An editor, “J. W.,” remarks in the 
preface that “the English version of the French original will probably be found more faithful than 
elegant, especially so in the case of Avogadro’s paper, where the French is always clumsy and 
occasionally obscure.”

7	 Avogadro’s use of the term “molecule” in 1811 did not match modern usage. Avogadro 
used the term for what we would now label either an atom or a molecule. What we now distinguish 
as an atom he labeled molecule élémentaire (“elementary molecule”).
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simple or compound, contain an equal number of molecules: 
not however an equal number of atoms, since the molecules 
of the different substances, or those of the same substance in 
its different states, may contain a different number of atoms, 
whether of the same or of diverse nature.

Powerful as this hypothesis would prove to be, its early history was troubled. 
It did not gain ready acceptance for decades. Dalton himself had come out 
early against the hypothesis. An appendix to Part II of his New System con-
tained a survey of some experiments on the combining volumes of gases. He 
found the results to contradict Gay-Lussac’s claim that gas volumes combine 
chemically in simple, whole number ratios. Dalton concluded that

The truth is, I believe, that gases do not unite in equal or exact 
measures in any one instance; when they appear to do so, it 
is owing to the inaccuracy of our experiments. . . . (1810, 559)

If Gay-Lussac’s claim fails, then so must the stronger hypothesis of Avogadro.

5.2. Dulong and Petit’s Law of Specific Heats
Avogadro’s hypothesis provided independent access to atomic and molecular 
weights of gaseous substances. It also indirectly opened access to the atomic 
weights of nongaseous elements as long as they enter into compounds with 
elements that elsewhere take the gaseous state. However, the scope of this 
indirect access is limited.

Dulong and Petit (1819) reported quite a different method of determining 
the atomic weights of solid elements. In his atomic theory, Dalton had repre-
sented solid elements as consisting of quiescent atoms surrounded by halos 
of caloric (heat). Dulong and Petit reported that Dalton had supposed that 
the quantity of heat associated with each atom was the same, no matter the 
element. It would then follow that the atomic heat capacity — the amount of 
heat needed to raise each atom by one degree of temperature — would be the 
same for all elements. However, Dulong and Petit continued to note that the 
results that Dalton had derived from this hypothesis were “so inconsistent 
with experiment that it is impossible for us not to reject the principle upon 
which such determinations are founded” (190). They attributed the difficulty 
to the inaccuracy in data then available to Dalton. They proceeded to show 
that more careful measurements led to vindication of the law. It is asserted as
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The atoms of all simple bodies have exactly the same capacity for heat.

In other words, the atomic heat capacity is the same for all elements.
The expression of the law in measurable quantities was not so simple. We 

cannot measure the atomic heat capacity directly. What we can measure is 
the specific heat. It is the heat needed to raise a unit weight (1g) of a body by 
one degree of temperature. It must be multiplied by the true atomic weight, 
expressed as grams per atom, to recover the atomic heat capacity.

(specific heat) x (true atomic weight) = (atomic heat capacity)

However, we do not know the atomic weights in grams per atom. All that we 
know is the relative atomic weights, taking some atom as an arbitrary unit. 
That is, we have

(relative atomic weight) = (unknown conversion factor) x (true atomic 
weight)

So the best quantitative expression for the law is that

(specific heat) x (relative atomic weight) = constant

where the constant must come out the same for all elements. Using the best 
values that they could find for both specific heats and relative atomic weights, 
Dulong and Petit (1819) proceeded to show that this relation returns the same 
constant for a list of elements. Table 11.2 shows the data that they reported.
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Table 11.2. Dulong and Petit’s data

Specific heats Relative weights of the 
atoms*

Products of the 
weight of each atom 
by the corresponding 
capacity

bismuth 0.0288 13.30 0.3830

lead 0.0293 12.95 0.3794

gold 0.0298 12.43 0.3704

platinum 0.0314 11.16 0.3740

tin 0.0514 7.35 0.3779

silver 0.0557 6.75 0.3759

zinc 0.0927 4.03 0.3736

tellurium 0.0912 4.03 0.3675

copper 0.0949 3.957 0.3755

nickel 0.1035 3.69 0.3819

iron 0.1100 3.392 0.3731

cobalt 0.1498 2.46 0.3685

sulfur 0.1880 2.011 0.3780
 
* The weights are relative to the atomic weight of oxygen. Multiplying them by 16 gives roughly the 
modern values, except for tellurium and cobalt.

The near constancy of the product in the final column indicates that the rela-
tive atomic weights are correct, at least relative to the elements in the table.

This constant is the atomic heat capacity of all atoms but expressed in 
some arbitrary system of units dependent on the unknown conversion factor 
mentioned above.

5.3. Mitscherlich’s Law of Isomorphism
These two methods seem to have been the most important in breaking the 
circularity of atomic weights and molecular formulae. Other methods were 
also brought to bear. Mitscherlich’s 1821 “law of isomorphism” is routine-
ly mentioned in contemporary accounts (Meyer 1888, Part I, Section IV; 
Pattison Muir 1890, 345–47; Wurtz 1881, 55–60). In Mitscherlich’s formula-
tion, it asserts that

Equal numbers of atoms similarly combined exhibit the same 
crystalline form; identity of crystalline form is independent of 
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the chemical nature of the atoms, and is conditioned only by 
the number and configuration of the atoms. (quoted in Patti-
son Muir 1890, 345)

The law connects crystalline form with molecular formula so that a similarity 
of crystalline form suggests a similarity of molecular formula. A celebrated 
case — mentioned in both Pattison Muir (1890, 346) and Ramsay (1900, 17–
18) — is gallium alum. So-called alums are sulfates of two metals. Potassium 
alum or potash alum, otherwise common alum, is a sulfate of potassium and 
aluminum. Gallium also forms an alum-like compound of sulfates of gallium 
and potassium and has a crystalline form similar to common alum. By in-
voking Mitscherlich’s law of isomorphism, one can assume that the gallium 
merely replaced the potassium in the crystalline structure, and one can then 
determine gallium’s atomic weight.

Despite its virtues, accounts of Mitscherlich’s law are notable for 
their qualifications and warnings of the law’s limited scope and fragility. 
Cannizzaro (1858) did not use it, as far as I can see.

6. The Vaulted Inductive Structure of Atomic Weights 
and Molecular Formulae
The methods just described are powerful and enable a complete determina-
tion of the atomic weights of the elements and thus the correct molecular for-
mulae. Nevertheless, half a century after Dalton proposed his atomic theory, 
there was still a chaos of competing proposals. The Karlsruhe Congress of 
1860 gathered about 140 of the leading chemists of Europe with the purpose 
of resolving the problem. The events of the congress have become a matter of 
legend in the history of chemistry.8 Two years earlier Stanislao Cannizzaro had 
already published a solution to the problem. Relying heavily on Avogadro’s 
hypothesis, he had successfully pieced together all of the parts of the puz-
zle and found a consistent set of atomic weights and molecular formulae. He 
had reported his success to Il nuovo cimento (Cannizzaro 1858), in which he 
sketched how he had led his students through his solution.

8	 See Hartley (1966) and Ihde (1961) for accounts.
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That set Cannizzaro outside the mainstream of work in chemistry, 
which remained skeptical of Avogadro’s hypothesis.9 He needed to mount 
a sustained defense of Avogadro’s hypothesis even in 1860 at the Karlsruhe 
Congress. In spite of his efforts and the earlier publication of his solution, no 
agreement was reached at the congress. Rather, the decisive moment came at 
its close when Angelo Pavesi distributed copies of Cannizzaro’s paper. When 
key participants, including Lothar Meyer and Dmitri Mendeleev, later stud-
ied Cannizzaro’s paper, they were convinced, and his system was established 
as the standard.

This, at least, is the standard history. Chalmers (2009, Chapter 10) has 
argued that Cannizzaro’s achievement is overrated. What is not acknow-
ledged is his debt to the successes in prior work by organic chemists able to 
arrive at structural formulae for organic substances. Cannizzaro’s methods, 
however, could yield atomic weights and molecular formulae but not the 
structural formulae.

My concern here, however, is narrower. It is the inductive structure of the 
case that Cannizzaro laid out for his values of atomic weights and molecu-
lar formulae and its later development. In short, that case exemplifies the 
massively complex interconnections suggested by the analogy with a vaulted 
ceiling. In the sections that follow, we shall see just a small portion of these 
interconnections.

•	 Section 7 will review relations of mutual support at the 
level of finest detail: that is, interrelations among the atomic 
weights and molecular formulae of specific substances.

•	 Section 8 will review relations of mutual support among 
the methods used. Specifically, there are relations of mutual 
support between Avogadro’s hypothesis and the law of 
Dulong and Petit.

•	 Section 9 will review relations of support at the level of 
theory. That is, Avogadro’s hypothesis in chemistry lends 

9	 Thorpe (1910, 64–65) recalls the situation:

By the middle of the nineteenth century the hypothesis of Avogadro was practically 
forgotten and the law of volumes ignored. The atomic weights of the elements and 
the system of notation universally employed in England and Germany were based 
wholly upon equivalents.
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support to an analogous hypothesis in statistical physics and 
conversely.

7. Mutual Support of Atomic Weights and Molecular 
Formulae
Cannizzaro’s (1858) analysis depends heavily on Avogadro’s hypothesis and 
the associated notion that elemental gases have molecular compositions, 
such as H2, O2, et cetera. The hypothesis requires that equal volumes of gases 
contain the same number of molecules. As a result, the mass density of a 
gas is directly proportional to the molecular weight of its constituent mol-
ecules. This observation provided the starting point for Cannizzaro’s analy-
sis. Cannizzaro prepared a large table of the densities of many gases of both 
elements and compounds. Table 11.3 lists just some of the densities from his 
large table (9). The units for mass density are selected so that molecular hy-
drogen gas has a density of 2.

The third column of the table includes further information of great im-
portance. It divides the gas densities of compounds in proportion to the mass 
ratios of the constituent elements. For example, hydrochloric acid — hydro-
gen chloride HCl — forms from chlorine and hydrogen in the mass ratio of 
35.5:1. Thus, the gas density of 36.5 for hydrochloric acid is broken up as de-
riving from a density of 35.5 of chlorine and 1 of hydrogen.
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Table 11.3. Some of Cannizzaro’s gas density data

Substance Density Component densities

hydrogen (H2) 2 2 hydrogen

oxygen (O2) 32 32 oxygen

chlorine (Cl2) 71 71 chlorine

bromine (Br2) 160 160 bromine

iodine (I2) 254 254 iodine

mercury (Hg) 200 200 mercury

hydrochloric acid (HCl) 36.6 35.5 chlorine + 1 hydrogen

hydrobromic acid (HBr) 81 80 bromine + 1 hydrogen

hydroiodic acid (HI) 128 127 iodine + 1 hydrogen

water (H2O) 18 16 oxygen + 2 hydrogen

calomel (mercurous chloride HgCl)* 235.5 35.5 chlorine + 200 mercury

corrosive sublimate (mercuric chloride 
HgCl2)

271 70 chlorine + 200 mercury

 
* The modern formula is Hg2Cl2. However, above 400ºC, calomel yields a vapor with the density 
that Cannizzaro indicated, now understood to result from a mixture of Hg and HgCl2. See 
Selwood and Preckel (1940).

The table (unlike Cannizzaro’s) includes the resulting molecular formulae for 
ease of reference. It is straightforward to arrive at them. A brief inspection of 
the table shows that the atomic weights of the elements present are overdeter-
mined as the values of Table 11.4.

Table 11.4. Atomic weights inferred

Element Atomic weight

hydrogen 1

oxygen 8

chlorine 35.5

bromine 80

iodine 127

mercury 200

To recapitulate Cannizzaro’s analysis, recall that Avogadro’s hypothesis tells 
us that the gas density is a surrogate for the molecular weight. Cannizzaro 
had conveniently chosen the unit for the gas density so that the gas density 
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numerically equals the molecular weight. All that remains now is to find the 
combination of molecular formulae and atomic weights that returns the gas 
densities of Table 11.3.

Cannizzaro arrived at these combinations by noting how the component 
density of each element always appears as a multiple of some smallest unit. 
This smallest unit is the atomic weight. The simplest case is hydrogen, whose 
component densities are all multiples of 1. So we infer that the atomic weight 
of hydrogen is 1. We now read directly from the densities of Table 11.3 that 
the molecular formulae for hydrochloric, hydrobromic, and hydroiodic acids 
each have just one hydrogen atom. So their molecular formulae are HClx, HBry, 
and HIz, where x, y, and z are unknown whole numbers. We also see that gas-
eous hydrogen is composed of molecules of two atoms, H2. Water also has two 
atoms of hydrogen, so it is H2Ow where w is some unknown whole number.

Proceeding in this way for the remaining elements completes the entries 
in Table 11.4 for the atomic weights and justifies the molecular formulae add-
ed to Table 11.3. Chlorine’s component densities are multiples of 35.5, so that 
is its atomic weight. Chlorine gas is diatomic, Cl2, and hydrochloric acid is 
HCl. Oxygen’s component densities are multiples of 16, so that is its atomic 
weight. And so on.

For my purposes here, the important point is that the results are over-
determined. That means that only a portion of the data is needed to arrive 
at the full results. For example, the results for the remaining elements would 
remain the same if we dropped iodine and its compounds from the analysis. 
It would then follow that, if we reintroduce the data for iodine, the resulting 
assessment must agree with the earlier results. The atomic weight of hydrogen 
in iodine compounds must be the same as in water and hydrochloric and 
hydrobromic acids.

This overdetermination leads to multiple relations of mutual support. It 
means that we can take some subset of the results and find that it supports 
other parts of the results, and there is support in the converse direction.10 For 
example, take the propositions that hydrogen gas and the halogen gases are 
diatomic: H2, Cl2, Br2, and I2. Using Avogadro’s hypothesis and the gas density 
data, we now infer the atomic weights of these elements and from them that 
the hydro-halogenic acids have monovalent formulae, HCl, HBr, and HI. Or 

10	 An analogy to the overdetermination of two agreeing eyewitness accounts of some 
event might make this clearer. Each account provides support for the veracity of the other.
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we can reverse the inference. From the monovalent formulae for the acids, 
we arrive at the diatomic molecular formulae of hydrogen and the halogens. 
These inferences can be represented as follows.

Hydrogen  
and the  

halogens are 
diatomic.

Hydro-
halogenic  
acids are 

monovalent.

gas density data gas density data
____________ (Avogadro’s 

hypothesis)
____________ (Avogadro’s 

hypothesis)
Hydro-halogenic 

acids are 
monovalent.

Hydrogen and 
the halogens are 

diatomic.

As before, we can depict these relations of support as an arch (shown in 
Figure 11.3).

Figure 11.3. Mutual support of molecular formulae

Hydro-halogenic
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Hydrogen and
 the halogens
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Avogadro‛s hypoth.
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The examples of mutual support are readily multiplied. For example, the dia-
tomic composition of hydrogen and oxygen supports the molecular formula 
H2O for water, and that formula supports the diatomic composition of hydro-
gen and oxygen. That is, we have the following inferences.

Hydrogen and 
oxygen are 
diatomic.

Water is H2O.

gas density data gas density data
____________ (Avogadro’s 

hypothesis)
____________ (Avogadro’s 

hypothesis)
Water is H2O. Hydrogen and 

oxygen are 
diatomic.

These further relations of mutual support, and many more of greater complex-
ity, combine to form a vaulted structure of many entangled relations of support.

These two sets of inferences illustrate how hypotheses function at this 
fine-grained level. Avogadro assumed that hydrogen gas is diatomic as a 
provisional hypothesis while he pursued his main hypothesis concerning 
gas density. It followed that water is H2O. However, the diatomic hypotheses 
need further support from elsewhere before their provisional status can be 
discharged. That is now provided by the other inferences concerning the  
hydro-halogenic acids.

This support for the diatomic hypothesis was already included in 
Avogadro’s original essay. There Avogadro11 noted the essential fact that 
hydrochloric acid gas (then still called “muriatic acid gas”) is formed by 
combining unit volumes of hydrogen and chlorine to form two volumes of 
hydrochloric acid gas. This is incompatible with a monatomic constitution for 
hydrogen and chlorine, for then we have

H + Cl  HCl

1 vol. hydrogen + 1 vol. chlorine  1 vol. hydrochloric acid gas

11	 Avogadro (1811), as translated in Dalton, Gay-Lussac, and Avogadro (1893, 45).
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If both hydrogen and chlorine are diatomic, however, then compatibility with 
the observed volumes is restored:

H2 + Cl2  2HCl

1 vol. hydrogen + 1 vol. chlorine  2 vol. hydrochloric acid gas

Hydrogen enters into many more compounds. As the molecular formu-
lae of these further compounds are found, the original hypothesis of the dia-
tomic character of hydrogen receives correspondingly more support. What 
was a provisional hypothesis initially becomes a fixed part of a much larger 
network of relations of mutual support. Eventually, the diatomic hypothesis 
cannot be discarded without also having to discard the full set of atomic 
weights and molecular formulae developed in modern chemistry.

The density of the relations of mutual support is greater than can be seen 
in the above analysis. Table 11.3 reports only some of Cannizzaro’s density 
data. His full set is larger, and as a result the number of compounds is still 
larger,12 which in turn provides many more relations of mutual support.

8. Mutual Support of Avogadro’s Hypothesis and the 
Law of Dulong and Petit
The inferences of the previous section depend on Avogadro’s hypothesis. 
It is the material fact that warrants them. What grounds do we have for 
Avogadro’s hypothesis? When it was introduced, its support in background 
theory was meager. His original suggestion was dependent on rather fragile 
suppositions about the nature of Daltonian atoms: the hypothesis follows 
from the assumption that the volume of caloric associated with each atom is 
independent of the type of element.

Cannizzaro had urged much more convincingly that the very success 
of the inferences of the previous section is already strong support for the 
hypotheses:

Now, since all chemical reactions take place between equal 
volumes, or integral multiples of them, it is possible to express 

12	 Crudely, if one has n elements, then the number of binary pairings of elements increases 
as n2. Although not all pairing will produce a new compound, the possibilities are still growing 
faster than n.
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all chemical reactions by means of the same numerical values 
and integral coefficients. The law enunciated in the form just 
indicated is a direct deduction from the facts: but who is not 
led to assume from this same law that the weights of equal vol-
umes represent the molecular weights, although other proofs 
are wanting? I thus prefer to substitute in the expression of the 
law the word molecule instead of volume. (1858, 13)

However, other proofs were not wanting. They could be found both in other 
parts of Cannizzaro’s sketch (as we shall see in this section) and in relations 
to physical theories of gases (as we shall see in the next section).

His earlier analysis had suggested an atomic weight of 200 for mercury. 
However, Cannizzaro reported (1858, 22) that an incorrect atomic weight 
of 100 had been supposed elsewhere. To show the error, he now turned to a 
second method of determining atomic weights, by means of their elemental 
specific heats. The method is that of Dulong and Petit (1819), although they 
are not mentioned by name. To begin, Cannizzaro showed that the atomic 
weights found earlier for mercury, bromine, and iodine yield the constant 
atomic heat capacity required by Dulong and Petit. His data and computation 
are shown in Table 11.5.

Table 11.5. Cannizzaro’s specific heat calculations for elements

Substance Atomic weight Specific heat Atomic heat capacity*

solid bromine 80 0.08432 6.74560

iodine 127 0.05412 6.87324

solid mercury 200 0.03241 6.48200
 
* This atomic heat capacity of roughly 6.8 differs from that of Dulong and Petit (1819) of roughly 
0.38 since Cannizzaro’s atomic weights are taken in units in which the atomic weight of hydrogen 
is 1, whereas Dulong and Petit’s Table 2 takes the atomic weight of oxygen to be 1. They both 
measure specific heat with the same units, however.

Cannizzaro (1858, 22–24) then extended the method to compounds. He 
supposed that the heat capacity of each atom remained the same, even when 
the atom is in a compound. That meant that the atomic heat capacity of each 
atom in some molecule was to be calculated by the new formula
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specific  
heat of 

compound
×

compound 
molecular 

weight
/

number of 
atoms per 
molecule

= constant

where the constant was once again the atomic heat capacity in the same sys-
tem of units as used in Table 11.5.

Using that assumption, Cannizzaro (1858) sought the atomic weight of 
mercury from the measured heat capacities of four halides of mercury: HgCl, 
HgCl2, HgI, and HgI2. Assuming that these were the correct molecular for-
mulae and using the atomic weights already determined, Cannizzaro arrived 
at the results presented in Table 11.6.

Table 11.6. Cannizzaro’s specific heat computation for some 
mercury halides

Formula Molecular 
weight

Specific 
heat

Number of atoms per 
molecules

Atomic heat capacity

HgCl 235.5 0.05205 2 6.128872

HgI 327 0.03949 2 6.45661

HgCl2 271 0.06889 3 6.22306

HgI2 454 0.04197 3 6.35146

Once again the computed atomic heat capacities of the elements in the 
compounds come out to be almost the same constant. They are also not too 
distant from the atomic heat capacity for the elements computed in Table 
11.5. This affirms the correctness of the formula and atomic weights of Tables 
11.5 and 11.6.

For my purposes here, the important point is that the two principal 
methods employed — Avogadro’s hypothesis and the constancy of atomic 
heat capacity — agree in the atomic weights and molecular formulae that they 
deliver for the subset of the substances to which they both apply.

Atomic and molecular 
weights and molecular 
formulae for mercury, 
chlorine, and mercury 

chlorides determined by 
Avogadro’s hypothesis

=
Atomic and molecular 
weights and molecular 
formulae for mercury, 
chlorine, and mercury 
chlorides determined by 
atomic specific heats
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This agreement is another manifestation of the overdetermination of 
Cannizzaro’s results. However, as before, it can be expressed in terms of re-
lations of mutual support. The correctness of the results delivered by atomic 
heat capacities for mercury chlorides is supported by the results of applying 
Avogadro’s hypotheses to the same substances. The converse relation of sup-
port holds as well. These mutual relations of support can be represented in the 
arch analogy shown in Figure 11.4.

Figure 11.4. Mutual relations of support among Avogadro’s hypothesis and 
Dulong and Petit’s law
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9. Mutual Support of Avogadro’s Hypothesis in 
Chemistry and the Kinetic Theory of Gases
At the same time as Cannizzaro was using Avogadro’s hypothesis to deter-
mine the correct atomic weights, a new science was emerging that would 
provide support for Avogadro’s hypothesis. This was the kinetic theory of 
gases. It was advancing rapidly in the mid-1850s through the work of Krönig 
(1856), Clausius (1857), and Maxwell (1860). The theory sought to recover the 
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mechanical properties of gases from the assumption that a gas consists of 
many molecules in rapid motion. In that theory, the pressure exerted by a 
gas on the walls of a containing vessel results from many collisions of the gas 
molecules with the wall. The heat energy of the gas corresponds to the kinetic 
energy of its molecules, and its temperature is proportional to the kinetic 
energy of each of its molecules.

An early and important achievement of kinetic theory was the recovery 
of the ideal gas law. According to it, the pressure P exerted by a volume V of 
gas at temperature T is given by

PV = nmRT = nkT

The gas consists of nm moles, that is, n = nm N molecules, where N is Avogadro’s 
number, R is the ideal gas constant, k is Boltzmann’s constant, and R = Nk.

This law already contains Avogadro’s hypothesis. To see this, we merely 
rewrite the law as

n = PV/kT

It follows immediately that, if two samples of a gas have the same pressure 
P, volume V, and temperature T, then they contain the same number of mol-
ecules n.

It is possible, following Maxwell’s later (1871, 295–96) development,13 
to isolate the assumptions used to arrive at Avogadro’s hypothesis. First is 
a purely mechanical result about the pressure P exerted by n molecules of 
weight m:

(2/3) P = (1/2) nmvrms
2

where vrms is the square root of the mean of the squared molecular velocities 
(rms = “root-mean-square”). Second is a result that Maxwell sought to prove 
in 1860: if two gases are at thermal equilibrium — that is, at the same temper-
ature — then the mean kinetic energy of their molecules is the same. That is, 
they agree in the quantity (1/2) mvrms

2.
These two results are now applied to two volumes of gases of the same 

pressure, volume, and temperature. Respectively, they consist of n1 and n2 
molecules, of molecular weight m1 and m2, and have rms velocities vrms1 and 
vrms2. The condition of sameness of pressure entails

13	 Curiously, Maxwell misattributes the hypothesis as the “Law of Gay-Lussac.”
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       (pressure)                       (1/2) n1m1vrms1
2  =  (1/2) n2m2vrms2

2                         (1)

The condition of thermal equilibrium entails that their kinetic energies are 
equal:

       (thermal equilibrium)             (1/2) m1vrms1
2  =  (1/2) m2vrms2

2                     (2)

It follows immediately from (1) and (2) that

       (Avogadro’s hypothesis)                                 n1 = n2                                     (3)

asserts that the two volumes of gases hold the same number of molecules. I have 
labeled the three equations so that we can summarize this last inference as

(pressure)

(thermal equilibrium)

______________________

(Avogadro’s hypothesis)

Needless to say, chemists such as Cannizzaro were delighted with this af-
firmation of a core assumption of their analysis by physicists, especially given 
the doubts still prevailing about Avogadro’s hypothesis. Cannizzaro (1858, 4) 
mentions confirmation by Clausius (1857). He was far more buoyant, however, 
about the significance of this independent support for Avogadro’s hypothesis 
when he gave the Faraday Lecture at the Chemical Society on May 30, 1872:

. . . [A]t the same time physicists, by considering the constitu-
tion of gases under a new point of view, have been brought, in-
dependently of chemical considerations, to the supposition of 
equal numbers of molecules in equal volumes of perfect gases, 
to which Avogadro and Ampère had previously been led by 
different modes of interpreting physical phenomena.

Who can fail to see in this long and unconscious march 
of the science, around and towards a fixed point, the decisive 
proof of the theory of Avogadro and Ampère? A theory to 
which we have been led by setting out from different and even 
opposite points — a theory which has enabled us to forsee sev-
eral facts which experience has confirmed, must be something 
more than a mere scientific fiction. It must indeed be either the 
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actual truth, or the image of that truth, seen through media 
interposed between our intelligence and the reality. (947–48)

Lothar Meyer was one of the chemists who turned to Cannizzaro’s views after 
the congress in 1860. He also reported with enthusiasm that the physicists 
had found independent support for Avogadro’s hypothesis. In his more popu-
lar Outlines of Theoretical Chemistry (1892, 32–33), he noted that “this idea of 
Avogadro has received decisive confirmation as a result of the new develop-
ment of the mechanical theory of heat.” After a qualitative review of how 
the confirmation arises, he concluded that “this is one of the most powerful 
arguments in support of Avogadro’s hypothesis. Its truth is now no longer 
disputed.”14

The chemists were eager to show that Avogadro’s hypothesis gains sup-
port from the kinetic theory of gases. The physicists, however, were happy to 
display the relation of support proceeding in the other direction: that is, from 
the chemists’ establishment of Avogadro’s hypothesis by chemical means to 
key results in the kinetic theory. Since Avogadro’s hypothesis in physics had 
neither the central role nor the controversial history that it had in chemistry, 
the display of this reverse inference was less prominent in physics. However, 
it was present.

In its simplest form, it is as follows. The chemists were eager to report 
that (1) (“pressure”) and (2) (“thermal equilibrium”) entailed (3) (Avogadro’s 
hypothesis). However, a quick inspection of the algebra relating (1), (2), and 
(3) shows that (2) could be inferred from (1) and (3). That is,

(pressure)

(Avogadro’s hypothesis)

_______________________

(thermal equilibrium)

This inversion of the chemists’ inference was actually the one first reported 
by Clausius in his paper in 1857 on the kinetic theory of gases. Clausius first 

14	 Meyer’s more technical text (1888, 23) gives more details of the reasoning sketched 
in equations (1)–(3) and concludes that “. . . Avogadro’s hypothesis attains the same degree of 
probability which the kinetic theory of gases has obtained.”
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reported Krönig’s (1856) derivation of the pressure formula (1) and then con-
tinued that

If we apply this [(1) (pressure)] to simple gases, and assume 
that, when pressure and temperature are the same, equal 
volumes contain the same number of atoms — a hypothesis 
which for other reasons is very probable, — it follows that, in 
reference to their translatory motion, the atoms of different 
gases must have the same vis viva [kinetic energy]. (Section 11)

One might wonder why Clausius wanted to proceed in this reverse direction. 
The reason is that the result (2) (“thermal equilibrium”) is not easy to at-
tain by purely dynamic arguments concerning the collisions of molecules. 
Maxwell’s (1860) paper offered a demonstration of it in conjunction with his 
derivation of the Maxwell velocity distribution for the gas molecules.

However, even Maxwell was happy to claim independent support for the 
results of the kinetic theory of gases from the research of the chemists. In his 
Encyclopaedia Britannica article “Atom,” Maxwell (1875, 455–56) reviewed 
briefly the inference to Avogadro’s hypothesis (3) from the assumptions (1) 
(pressure) and (2) (thermal equilibrium). He then noted that the same hy-
pothesis15 had been recovered by the chemists in their investigations of chem-
ical combinations. He continued that

This kind of reasoning, when presented in a proper form 
and sustained by proper evidence, has a high degree of cogen-
cy. But it is purely chemical reasoning; it is not dynamical rea-
soning. It is founded on chemical experience, not on the laws 
of motion.

Our definition of a molecule is purely dynamical. A mole-
cule is that minute portion of a substance which moves about 
as a whole, so that its parts, if it has any, do not part com-
pany during the motion of agitation of the gas. The result of 
the kinetic theory, therefore, is to give us information about 
the relative masses of molecules considered as moving bod-
ies. The consistency of this information with the deductions 

15	 Once again misattributed to Gay-Lussac.
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of chemists from the phenomena of combination, greatly 
strengthens the evidence in favour of the actual existence and 
motion of gaseous molecules. (456)

These relations of mutual support are made possible by the logical inter-
dependence of the relations (1), (2), and (3). Hence, Andrew Meldrum (1904, 
24), adopting a skeptical stance, could review the logic of the demonstration 
of Avogadro’s hypothesis in the kinetic theory and conclude that

This puts the proof of Avogadro’s hypothesis from the kinetic 
theory of gases in its true light. The hypothesis is but one out 
of two hypotheses which are contingent on one another. Either 
granted, the other can be proved.

10. Hypothesis No More
The appeal of Avogadro’s hypothesis was that it provided an independent 
way to determine molecular weights and thereby defeat the circularity that 
had trapped Dalton. It was introduced provisionally in 1811 and faced what 
amounted to Dalton’s claim of incompatibility with experiment. It languished 
for decades until Cannizzaro found it to be just the vehicle that he needed to 
determine the true molecular formulae and atomic weights.

At this point, Avogadro’s hypothesis was being used as just the sort of pro-
visional warrant for inference described in Chapter 2. It was indulged because 
of its great utility. Starting with the ratio of the densities of two gases, the 
hypothesis warranted an inference to the ratios of their molecular weights. It 
is the analog of the stone supported by scaffolding while the remaining stones 
of the arch are put in place.

The provisional status of the hypothesis had to be discharged, however, 
just as the scaffolding supporting the stones of an arch or vault eventual-
ly has to be removed. This burden was taken seriously. We have seen above 
how support for the hypothesis gradually accrued through the success of the 
overall project. Its results are overdetermined. That means that a part can 
become support for another part and conversely. Just this happened with the 
agreement of the results derived through Avogadro’s hypothesis and through 
Dulong and Petit’s law of specific heats. That allowed each to support the 
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other. For Cannizzaro, the derivation of Avogadro’s hypothesis from the kin-
etic theory of gases supplied what he called above the “decisive proof.”

As the supports mounted, Avogadro’s hypothesis lost its hypothetical 
character. It became a rule, a certainty of textbook chemistry. In his Theoretical 
Chemistry from the Standpoint of Avogadro’s Rule and Thermodynamics,16 
Nernst (1904, 39–40) reported that “. . .  Avogadro (1811) advanced a hypoth-
esis which, after much opposition, has come to be recognized as an important 
foundation of molecular physics, as well as of all chemical investigations.” 
Nernst proceeded to list four types of support. The hypothesis explains Gay-
Lussac’s result about combining volumes. It supplies molecular weights that 
agree with those derived from purely chemical investigations. It is derived 
independently from the kinetic theory of gases. It is able to deal successfully 
with a challenge from abnormal vapor densities.

In this chapter, I have traced the development and use of Avogadro’s hy-
pothesis as an illustration of how hypotheses are used in inductive inference 
in science. A second illustration could be provided by Dulong and Petit’s law 
of specific heats. In brief, it warrants an inference from observed properties 
(specific heats of solids) to relative atomic weights. The law had a provisional 
status originally. One serious problem was that the constancy of the atomic 
heat capacity of the law was found to hold only in certain temperature ranges, 
notably failing for low temperatures. However, it gained support through its 
successful application. It also gained support from the new statistical physics 
that developed from the kinetic theory of gases. In brief, a simple model for 
a crystalline solid is a lattice of atoms held in place with spring-like forces. 
Statistical physics entails a constant molar heat capacity for such a system.17 
Perhaps the greatest triumph of the analysis came when Einstein (1907) ex-
plained the deviations from constancy of the molar heat capacity at low tem-
peratures as deriving from the quantization of energy.

16	 The German word is Regel: Theoretische Chemie vom Standpunkte der Avogadro’schen 
Regel und der Thermodynamik.

17	 Each atom has three translational degrees of freedom and three position degrees of 
freedom associated with the conservative forces holding it in place in the lattice. The equipartition 
theorem assigns mean energy kT/2 to each degree of freedom so that there is a mean energy 6kT/2 
= 3kT per molecule or 3RT per mole. It follows immediately that the atomic heat capacity is the 
constant 3k and that the molar heat capacity is the constant 3R.
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12

The Use of Hypotheses in Determining 
Distances in Our Planetary System

1. Introduction
How distant from us are our nearest neighbors in space: the Moon, the Sun, 
and the planets?1 This basic problem of astronomy proved to be a most chal-
lenging one that exercised astronomers from antiquity to as late as the nine-
teenth century. It provides a revealing case study of how hypotheses are used 
to extend the otherwise limited inductive reach of evidence.

One might expect that these distances could be determined by simple 
measurement, much as a terrestrial surveyor can determine the location and 
height of an inaccessible mountain peak. However, distances even to our 
closest body, the Moon, are so great that they present formidable challenges. 
Accurate triangulation of great distances requires extremely accurate angular 
measurements that were mostly beyond ancient astronomers, except perhaps 
for the closest body, the Moon. Even then, the ancient astronomers needed to 
await the opportunities provided by solar and lunar eclipses to break other-
wise fatal evidential circles. The difficulty of making precise enough meas-
urements meant that these methods were able to estimate distances only to 
the Moon and, so some extent, the Sun. These early efforts are described in 
Sections 2, 3, and 4 below.

The introduction of telescopes to astronomy in the seventeenth century 
made possible more accurate angular measurements. However, measure-
ments of distance by means of triangulation, or parallax, as it is called in the 

1	 I thank Bernard Goldstein for helpful comments on an earlier draft.
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astronomical literature, were limited at best to our closest planets, Mars and 
Venus. In Section 5, I recount the seventeenth-century measurement of the 
parallax of Mars, and in Section 6 I recount the eighteenth-century observa-
tions of the transits of Venus across the face of the Sun.

We find from all of these efforts that triangulation by itself is unable to 
provide much. This remains true even with careful telescopic measurements 
and a willingness to sail to distant parts of the globe to make them. The  
eighteenth-century measurements of the transits of Venus, by themselves, 
gave only angular displacements. Something more was needed if they were to 
deliver the distances to Venus and the Sun.

That essential extra was provided by hypotheses about the configuration 
of these celestial bodies. These hypotheses could extend the inductive reach of 
the few measurements available, and determinations of the distances to all 
of the celestial bodies mentioned became possible. This approach had been 
used from the first moments of ancient Greek astronomy and remained the 
primary approach used to the end of the nineteenth century. In the following 
sections, I review three different types of hypotheses used: Pythagorean and 
Platonic harmonies (Section 8), Ptolemy’s Planetary Hypotheses (Section 9), 
and Copernicus’ hypothesis of a heliocentric planetary system (Sections 10 
and 11).

Examination of these three different hypothetical supplements gives us 
an opportunity to see how the hypotheses were used and should be used. The 
use of a hypothetical supplement takes on an evidential debt that must be 
discharged by finding independent evidence for the hypotheses. Only then 
have the results of the investigation been given proper inductive support. The 
need to discharge this debt is underscored by the fact that each hypothetical 
supplement reviewed leads to a different system of distances. Further evi-
dence for the harmonic and Ptolemaic hypotheses was not secured, and they 
were discarded. The Copernican hypothesis, however, accrued considerable 
support. The most important was Newton’s discovery of a mechanics that 
gave a dynamical foundation for the motions hypothesized in heliocentric 
astronomy.

What resulted was the edifice of classical mechanics. It combined astron-
omy and celestial and terrestrial mechanics in a single system, in which each 
part provided evidential support for the others. This crossing over of relations 
of inductive support is illustrated in the particular case of Kepler’s third law 
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and the inverse square law of gravity. Each, as I show in Section 12, provides 
inductive support for the other.

This reliance on hypotheses to enable the determination of distances 
within the planetary system persisted up to the nineteenth century, the latest 
extent of the history reviewed here. With the twentieth century, direct meas-
urements of distances to celestial bodies became possible through laser and 
radar ranging.

2. An Evidential Circle: The Distances and Sizes of the 
Moon and Sun
How distant from us is the Moon? To appreciate just how formidable a ques-
tion it was for ancient astronomers to answer, consider the majestic splendor 
of a full Moon rising over the eastern horizon at sunset. It is easy to imagine 
that the Moon is small and rises from a nearby place just over the horizon. 
That misapprehension is soon dispelled.2 A house on a distant hill becomes 
larger as we approach it. But the Moon does not. No matter how far east we 
might venture, we see the Moon of the same size rising. Our eastward trav-
els, from horizon to horizon, do not perceptibly diminish the distance to the 
Moon. We then realize that it is much more distant than we first thought. 
That means that it must be much larger than we first thought. How much 
larger is it?

That question leads to the first evidential circle. The disk of the full Moon 
fills about half a degree in our visual field. If we knew the size of the Moon, 
then we could calculate its distance by simple geometry. But if it were two, 
three, or four times larger, then it must be two, three, or four times more dis-
tant. As Figure 12.1 shows, many pairs of distances and sizes yield the same 
angular size in our visual field of half a degree. We cannot know the distance 
to the Moon until we know its size. But we cannot know its size until we know 
its distance.

2	 This misapprehension is compounded by the “Moon illusion,” in which it appears larger 
when near the horizon, although its measurable angular size is unchanged.
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Figure 12.1. Many size-distance pairs for the Moon yield half a degree of 
angular size

All that these simple observations tell us is that the distance to the Moon 
must be large but otherwise leave it undetermined.

What of the relative distances of the Sun and Moon? We observe that the 
Sun has about the same angular size as the Moon of about half a degree. This 
equality is most easily learned from eclipses of the Sun. Then the Moon aligns 
with the Sun and almost perfectly obstructs it. Sometimes the Moon blocks 
out the Sun completely. Sometimes there is an “annular” eclipse in which the 
Moon blocks out the Sun, except for a thin annular ring of the Sun’s surface 
encircling the Moon.

That the Moon eclipses the Sun shows that the Moon must be closer to 
us than the Sun. Are they roughly the same distance from us? If they are 
the same size, then they must be roughly the same distance from us. But if 
the Sun is two, three, or four times larger than the Moon, then by simple 
geometry the Sun must be two, three, or four times more distant from us 
than the Moon. As Figure 12.2 shows, we cannot know which until we know 
the true size ratio of the Sun to the Moon. But we cannot know that ratio 
until we know the ratio of the distances. We are trapped once again in an 
evidential circle.
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Figure 12.2. Many possible ratios of distances to the Sun and Moon

3. Aristarchus: Breaking the Evidential Circles
Both circles can be broken if we expand the evidence considered and are in-
genious enough to do it in just the right way. This was the principal content of 
a remarkable document authored by Aristarchus of Samos, who lived roughly 
from 310 to 230 BCE. The work is presented in Greek and English translation 
in Heath (1913) under the title “Aristarchus on the Sizes and Distances of the 
Sun and Moon.” Aristarchus breaks the evidential circle with two expansions 
of the evidence brought to bear. First, he introduces the angular positions of 
the Sun and Moon when the latter is precisely half illuminated: that is, at “di-
chotomy.” Second, he introduces the behavior of the Moon during an eclipse 
of it, when it passes through the Earth’s shadow.

When the Moon is exactly half full, the Sun, Earth, and Moon form a 
right-angled triangle, with the right angle at the Moon. The angle at the Earth 
is recoverable as the observable angular separation of the Sun and Moon. The 
shape of the triangle, shown in Figure 12.3, is thereby fixed, and the ratio of 
the Earth-Sun to Earth-Moon distance can be read from it.
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Figure 12.3. The Earth, Moon, and Sun at lunar dichotomy (not drawn to scale)

All that is needed is the angular separation of the Sun and Moon at dichot-
omy, as seen from the Earth. That is provided by the fourth of six hypotheses 
announced by Aristarchus (as given in Heath 1913, 353):

That, when the moon appears to us halved, its distance from 
the sun is then less than a quadrant by one-thirtieth of a 
quadrant.

Since a quadrant is 90º, Aristarchus reports here that the angular separation 
of the Sun and Moon is 87º. After some analysis, he arrives at a ratio for the 
Earth-Sun to Earth-Moon distance that lies between 18:1 and 20:1.3

The method is ingenious and correct. However, it required the unattain-
able: an accurate measurement of the angular separation of the Sun and 
Moon at the moment of dichotomy. Aristarchus greatly underestimated the 
true ratio of 389:1.4

As far as the ratios of distances were concerned, Aristarchus had broken 
the evidential circle. He had established, he believed, the ratio of distances 

3	 Aristarchus did not have tables of tangents to consult, which now makes our 
computation trivial. The exact result is tan 87 = 19.08.

4	 Dreyer (1953, 136) diagnoses the error as follows: “The method, though theoretically 
correct, is not practical, as the moment when the moon is half illuminated cannot be determined 
accurately. The angle of ‘dichotomy’ is in reality 89º 50' instead of 87º.”
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to the Sun and Moon. He could then infer directly to the ratio of the diam-
eters of the Sun and Moon. It must be the same. It must also lie between 
18:1 and 20:1.

Aristarchus then turned to determine not just the ratios of the distances 
to the Sun and Moon but also their individual values. They were expressed 
as ratios with the diameter of the Earth, whose value was then known well 
enough. Heath (1913, 399) presumes that Aristarchus did as Archimedes did 
and accepted Dicaearchus’ estimate of a circumference of 300,000 stades. 
Eratosthenes’ famous measurement of the Earth’s size came later. Aristarchus 
realized that these individual distances could be recovered from phenomena 
observable at the time of an eclipse of the Moon. To determine these individ-
ual distances, he introduced a decisive new datum concerning an eclipse of 
the Moon (Heath 1913, 353):

That the breadth of the [Earth’s] shadow is [that] of two moons.

That is, as the Moon passes through the umbra, the conically shaped, full 
shadow of the Earth, the Moon’s diameter is just half that of the umbra, as 
Figure 12.4 shows. What results is a complicated geometric figure that has 
been reproduced in many old manuscripts and modern treatises and is not 
drawn to scale in Figure 12.4. The lower figure depicts the essential geometry 
and is reproduced from Heath’s (1913, 330) analysis.5

5	 This work is in the public domain.
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Figure 12.4. Aristarchus’ figure for determining the distances to the Sun and Moon

Since the ratio of the diameters of the Sun s and Moon l are known, as 
are the ratios of the distances from the Earth to Sun S and Earth to Moon L, 
it turns out that the geometry of Aristarchus’ figure is fixed. This might not 
be obvious from inspection of the figure, and it takes some calculations to 
determine it. Since they are tedious and not especially illuminating, I refer 
the reader to Heath’s (1913, 330–31) reconstruction. Aristarchus arrived at a 
diameter for the Sun as a ratio of the Earth’s diameter that lies between 19/3 
and 43/6 and a diameter for the Moon as a ratio of the Earth’s diameter that 
lies between 19/60 and 43/108. Once again, with the diameters of the Sun and 
Moon determined, it was a simple matter to determine the distances to the 
Sun and Moon from the known angular size of each as seen from the Earth.
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The actual numbers reported by Aristarchus are quite far from the actual 
ratios in our Sun-Moon-Earth system.6 His calculations depended on his ear-
lier underestimate of the ratio S/L of the Earth-Sun and Moon-Sun distances. 
They were compounded by his taking erroneously that the angular size of 
the Moon is 2º, whereas Archimedes in the Sand-Reckoner had attributed the 
correct 1/2º to Aristarchus.7

Although Aristarchus’ final numbers differ greatly from the actual val-
ues, his methods were correct and ingenious, marred only by the need for an 
impractical datum and a curious error in estimating the Moon’s size. Van 
Helden (1985, 7) singles out Aristarchus’ second Moon eclipse technique as

. . . a method that, when fully developed by Hipparchus and 
Ptolemy, was to be the centerpiece of all determinations of ab-
solute celestial distances until the seventeenth century.

4. Measurements of Parallax
The methods reviewed so far require that the disks of the Sun and Moon be 
discernible. As long as astronomers use only naked-eye methods, they can-
not determine distances to the planets, for optical instruments are needed to 
resolve their disks. There is a general method that, in principle, is capable of 
determining the distance to any celestial object visible from the Earth. That is 
the measurement of its parallax. It is the difference in direction of some object 
as seen from different places on the Earth. Measuring it requires observations 
to be taken at two different places at the same time. For the case of a rotating 
Earth, parallax can also be measured from one position on the Earth when 
the rotation moves that position to another location in space.

Horizontal parallax uses the Earth’s radius as the baseline for measure-
ment.8 Figure 12.5 shows an observer at A on the Earth’s surface who finds 
the object at P to be at its zenith: that is, directly overhead. A second observer 
at B, located at a distance of one-quarter of the Earth’s circumference, finds 

6	 Aristarchus’ ratio for the Sun is 6.3 to 7.2, where the modern figure is 109. His ratio for 
the Moon is 0.31 to 0.40, where the modern figure is 0.27.

7	 See Heath (1913, 311–14) for an analysis of this curious error.
8	 It is distinguished from annual parallax, in which the radius of the Earth’s annual orbit 

around the Sun is used as the baseline for measurement. It is applied when considering distances 
to stars.
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the object to have just dipped below the horizon. If we draw BC parallel to AP, 
then the bearings of the object at P differ for these two observers by the angle 
of parallax, CBP. This angle is equal to the angle BPA, the angle subtended by 
the Earth’s radius from P.

Figure 12.5. Horizontal parallax

This angle is called “horizontal parallax” since the name reflects B’s observing 
P on the horizon. For a distant object, the angle is small9 and related inversely 
to the distance to the object by

distance = radius of the Earth / horizontal parallax in radians

In practice, horizontal parallax is not measured directly. A smaller displace-
ment on the Earth’s surface is used and horizontal parallax inferred from it.

Once again, eclipses provided opportunities for potentially informative 
measurements. An eclipse of the Sun will be total when seen from one part 
of the Earth’s surface yet only partial when seen from another part. Encoded 
in this difference is a measure of the parallax of the Moon. Hipparchus and 
Ptolemy after him applied this approach to records of lunar eclipses to esti-
mate lunar parallax.10 Although the method is correct in principle, its suc-
cessful application is difficult because of the need to measure angles precisely. 
The Moon’s parallax of about 1º is the largest for celestial objects. Others are 

9	 The figure greatly exaggerates the angle. For the Moon, the horizontal parallax varies 
about roughly a degree. For the Sun, it is about 8.8 seconds of arc: that is, 2.4 thousandths of a degree.

10	 For details, see Van Helden (1985, 10–19).
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dauntingly smaller. Measurement of the tiny solar parallax of 8.8 seconds of 
arc was beyond the reach of the ancient astronomers.

5. The Parallax of Mars
The difficulty of measuring tiny parallactic angles was only overcome centur-
ies later when telescopic observations were possible. Even then, the approach 
was indirect. The Earth-Sun distance was the most sought once heliocentric 
Copernican astronomy became established. It determined, as we shall see 
below, all of the other distances. However, direct measurement of the paral-
lax of the Sun remained beyond the astronomers’ reach, if only because the 
brilliance of the Sun precluded direct observations locating it against the stel-
lar background. Instead, it proved to be feasible to determine the parallax of 
Mars and, using the known ratio of sizes of the orbits of Mars and the Earth, 
then compute the Earth-Sun distance.

The best known of these measurements of parallax from the seventeenth 
century is Cassini and Richer’s measurement of the parallax of Mars in 1672 
using simultaneous measurements of the position of Mars from France and 
Cayenne in South America. The opportunity for the measurements was an 
opposition of Mars to the Sun. That meant that Mars was making one of its 
closest approaches to the Earth and thus susceptible to the most accurate 
measurements. Their efforts yielded the parallax of Mars at this time in its 
orbit and thus its distance from the Earth. Using the then known ratio of 
the sizes of the orbits of the Earth and Mars, the crucial Earth-Sun distance 
could be estimated. Cassini and Richer arrived at an Earth-Sun distance of 
87,000,000 miles, comfortably close to the modern value of about 93,000,000 
miles.11 Both Berry (1898, 205–09) and Van Helden (1985, Chapter 12) em-
phasize that the closeness of these numbers is less impressive once one recog-
nizes the large margin of error associated with the Cassini and Richer result.

6. The Transits of Venus
The ancient astronomers had found solar eclipses to afford opportunities to 
determine the parallax of the Moon. These eclipses arise when the Moon 
passes exactly between the Earth and the Sun. An analogous circumstance 

11	 See Long (1742, 290, 292) for an early account.
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arises when the planet Venus passes exactly between the Earth and the Sun. 
Since Venus is so much farther away from the Earth than the Moon, the effect 
is much less dramatic. Venus appears telescopically as a tiny dot migrating 
over the surface of the Sun. If this “transit of Venus” is observed from differ-
ent locations on the Earth’s surface, then Venus will be seen to transit across 
the disk of the Sun in different locations on the disk.

The path of Venus traces a chord across the circular disk of the sun. 
Determining the length of the chord fixes its location on the disk. The longest 
chords are diameters of the circle; the shorter the chord, the farther it is from 
a diameter. The most accurate way to estimate the difference in chord lengths 
was to time how long the transit took, when viewed from different locations. 
Since a transit requires about six hours, accurate times of transit were well 
within the grasp of measurement of early clocks. The transit times reflect dir-
ectly the chord lengths and thus reveal differences of location of the transits 
against the Sun’s disk.

Observing a transit of Venus from different places on the Earth enabled 
the parallax of Venus and the Sun to be determined. Of the expeditions to 
observe the transit of Venus, the best known, especially to Australians, is that 
of Captain Cook, who sailed to Tahiti for this purpose in 1769. The measure-
ments of the Cook expedition were compared with those taken in other loca-
tions, notably Lapland. The resulting parallax of the Sun was determined to 
be in the range of eight to nine seconds of arc, in agreement with the modern 
value of about 8.8 seconds of arc.12 Subsequent transits were observed in 1874, 
1882, and more recently in 2004 and 2012.

The calculation of the parallax of Venus and the Sun from these observa-
tions must correct for many factors. The highly simplified analysis in Figure 
12.6 brings out the element most important for my purposes here.

12	 For accounts of the transits, associated measurements, and calculations, see Airy 
(1881, 144–60) and Newcomb (1892, 177–92). That these expeditions and measurements were of 
considerable popular interest in the nineteenth century is suggested by the publication of popular 
works such as Forbes (1874).
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Figure 12.6. Transit of Venus; redrawn from Airy (1881, 153)

Points A and B are the locations of two observers on the Earth’s surface. They 
are as widely separated as possible. A might be in the northern hemisphere. 
B might be in the southern hemisphere. The lines of sight AVD and BVC pass 
through Venus at V to different locations D and C on the Sun’s disk. The 
distance CD is the separation between the two transit paths observed. If the 
absolute distance of CD can be determined, then it can be scaled up to give 
the absolute diameter of the Sun. Since the angular size of the Sun as seen 
from the Earth is readily measured, the distance to the Sun can be recovered.

Triangle ABV and DCV are similar. Thus, the distance sought, CD, can 
be found from the formula

CD = (DV / AV) . AB

The distance AB is the known distance between the two observers on the 
Earth. The ratio DV/AV is determined by the ratios of the sizes of the planet-
ary orbits. These last ratios were given by Copernican astronomy, as we shall 
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see below.13 Without knowledge of this ratio, we would be trapped once again 
in the familiar evidential circle. A small ratio DV/AV would lead to a small 
distance CD and a small Earth-Sun distance. A large ratio DV/AV would lead 
to a large distance CD and a large Earth-Sun distance. Some further datum, 
such as the absolute length CD itself, would be needed to break the circle.

7. The Need for Hypotheses
The efforts recounted above reveal the limits of simple geometric triangula-
tion as a means of determining distances to bodies in our planetary system. 
This approach was able to arrive at a distance to the Moon and, when pressed 
to the extreme in the seventeenth century, a distance to Mars at its closest ap-
proach to the Earth. Even as late as the eighteenth and nineteenth centuries, 
these methods of triangulation had to be supplemented by further knowledge 
of the planetary system if their results were to be extended to a determina-
tion of the Earth-Sun distance. The seventeenth-century determination of the 
distance to Mars could be extended only to an estimate of the distance to the 
Sun by drawing from the known ratio of the sizes of the orbits of the Earth 
and Mars. The eighteenth-century and nineteenth-century observations of 
the transits of Venus were unable to return any absolute planetary distances 
until they were augmented by the known ratio of the sizes of the orbits of the 
Earth and Venus.

At the close of the nineteenth century, observations of the transit of Venus 
remained the best way to determine distances within the solar system. After 
a lengthy treatment of the transits of Venus, Simon Newcomb (1892, 192–99), 
then a leading authority in astronomy, added a discussion entitled “Other 
Methods of Determining the Sun’s Distance, and Their Results.” The promise 
of these “other methods” went unfulfilled. Newcomb could only say of them 
that “. . . at least two of which [methods] we may hope, ultimately, to attain a 
greater degree of accuracy than we can by measuring parallaxes” (192).14

13	 Hipparchus’ analogous determination of the parallax of the Moon at the time of a solar 
eclipse avoided the need for a corresponding ratio. Hipparchus could assume that the Sun was so 
much farther from us than the Moon that the Sun’s rays arrived in parallel lines on the Earth.

14	 How things change! Lasers, reflected off mirrors left on the Moon by manned and 
unmanned missions in the 1960s and early 1970s, now determine the distance to the Moon to 
within a few centimeters. We can now also use radar echoes to measure distances to the planets.
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From the earliest times, the sort of supplement needed was already 
present as hypotheses of various types. Our histories of astronomy treat the 
early ones dismissively since most of these early supplements were in error. 
Since my concern here is not the correctness of the results but the appropri-
ateness of the inductive strategies, we can arrive at a more favorable apprais-
al. Direct evidence, such as distance measurements by triangulation, can fail 
to give us the extent of the results sought, such as the distances to the Sun 
and distant planets. We can then conjecture or hypothesize those facts that 
would extend the inductive reach of the evidence available to us. This is an 
entirely responsible epistemic strategy as long as we remember that adopting 
a hypothesis takes on an inductive debt. It has to be discharged by further 
investigation that will provide independent inductive support for the hypoth-
esis. Only then have we given the new results a solid foundation inductively 
in evidence.

8. Pythagorean and Platonic Harmonies
The Pythagorean and Platonic tradition in antiquity provided a rich if chaotic 
set of hypotheses concerning the distances to the celestial bodies. Their basis 
was a combination of ideas in musical harmony and simple arithmetic rela-
tions. In his creation myth, Timaeus, for example, Plato offers the following 
relative distances:

Moon          1

Sun              2

Venus          3

Mercury      4

Mars            8

Jupiter         9

Saturn       27

These ratios arise from interleaving the numbers of two geometric progres-
sions: 1, 2, 4, 8 and 1, 3, 9, 27. They are just a small part of a rich collection of 
proposals.15

15	 For a terse review, see Dreyer (1953, 62, 178–82).
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If Plato’s ratios are correct, then the inductive benefit is immediate. We 
need only determine the absolute distance to any one of these celestial bodies. 
Then the absolute distances to all of the others can be determined from the 
ratios. What would suffice is just one of the later determinations of the dis-
tance to the Moon by Aristarchus or Hipparchus.

It is easy for us now to dismiss these harmonic hypotheses as wild specu-
lations.16 They were indeed highly speculative. That they were likely incorrect 
would have been apparent to Aristarchus and Hipparchus. Plato located the 
Sun at twice the distance from the Earth as the Moon, but both Aristarchus 
and Hipparchus determined that the Sun is much more distant. That does 
not make Plato’s conjectures epistemically irresponsible. Conjectures of some 
sort were the only way then available to advance the project of determining 
distances to celestial bodies beyond the distances accessible to measurement 
by triangulation. Might it just be that this particular implementation of the 
harmonic idea is flawed? Might further refinement produce a proposal that 
can survive independent scrutiny?

Johannes Kepler has unchallengeable credentials in astronomy. He be-
lieved that these harmonic ideas found their proper expression in the new 
heliocentric Copernican astronomy. His Mysterium cosmographicum of 1596 
accounted for the number of planets and the ratios of planetary orbits by a 
celebrated geometric construction involving the five Platonic solids, nestled 
between spheres. The image from that work, shown here as Figure 12.7, has 
been widely reproduced.

16	 Dreyer (1953, 181) writes that “in reality therefore we ought hardly to take the planetary 
intervals, as determined by the sphere-harmony, seriously; the whole doctrine is quite analogous 
to that of astrology, but is vastly more exalted in its conception than the latter, and it deserves 
honourable mention in the history of human progress.”
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Figure 12.7. Kepler’s construction

Kepler’s Harmonices mundi of 1619 proceeded to find musical harmonies 
in planetary motions. Although we now dismiss these parts of Kepler’s work 
as mistaken, they were part of a serious investigation. They were hypotheses 
that failed to find independent evidential support. Had they found such sup-
port, we would now be celebrating Kepler’s prescience.
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The tradition of seeking mathematical harmonies persists. In his Herbert 
Spencer lecture in 1933, an older Einstein revealed his conversion to a form of 
mathematical Platonism.17 He wrote that

Our experience hitherto justifies us in believing that nature is 
the realisation of the simplest conceivable mathematical ideas. 
I am convinced that we can discover by means of purely math-
ematical constructions the concepts and the laws connecting 
them with each other, which furnish the key to the under-
standing of natural phenomena. (1933, 274)

Lest there be any doubt that Einstein saw his formulation of these ideas as 
fulfilling the program initiated millennia ago in ancient Greece, he added

But the creative principle resides in mathematics. In a certain 
sense, therefore, I hold it true that pure thought can grasp re-
ality, as the ancients dreamed. (1933, 274)

9. Ptolemy’s Planetary Hypotheses
The supreme expression of geocentric astronomy in antiquity was Ptolemy’s 
second-century AD Almagest. It provides elaborate geometric constructions of 
the motions of the celestial bodies: the Moon, the Sun, and the planets. The con-
structions, however, were independent of the absolute size of the orbit of each 
body. Take, for example, the construction for Venus. This planet moves roughly 
with the Sun in its annual course around the heavens. But Venus is sometimes 
ahead of the Sun and sometimes behind it. This direct and retrograde motion 
was accounted for in Ptolemy’s construction by attaching the planet to a ro-
tating epicycle, as shown in Figure 12.8. The epicycle’s center moves along a 
deferent circle such that this center remains aligned with the mean Sun. (The 
actual motion of the Sun deviates slightly from the mean motion.)

17	 See Norton (2000) for an account of Einstein’s conversion.
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Figure 12.8. The Ptolemaic epicycle for Venus

The figure shows the motion of Venus drawn within that of the Sun. That is 
not needed to recover the retrograde motion of Venus. As long as the align-
ment of the center of the epicycle and the Sun is retained, the construction for 
Venus could be expanded so that its motion would be outside that of the Sun, 
Mars, Jupiter, or Saturn. The construction for each celestial body in Ptolemy’s 
Almagest could be scaled up or down so that any order of the Sun and planets 
was possible.

The determination of the absolute sizes of these trajectories was taken up 
in a later work by Ptolemy, Planetary Hypotheses. The portions of it dealing 
with these distances have been lost in the extant Greek texts. Goldstein (1967) 
found them in a later Arabic translation, and his paper presents an English 
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translation of the Arabic along with the original Arabic text.18 In addition to 
the geocentric supposition, Ptolemy’s analysis depended on two hypotheses:

Order. The celestial bodies increase in distance from the Earth in 
the order Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn.

Packing. The celestial bodies are packed together as closely as their 
geometrical constructions allow.

These hypotheses provided Ptolemy with the ratios of the distances to the celes-
tial bodies. He could then combine these ratios with his estimate of the absolute 
distance to the Moon to recover the distances to all of the celestial bodies.

These hypotheses did not derive from considerations of musical and 
mathematical harmony. Rather, they rested on prosaic, physical considera-
tions. To recover Order, we know that the Moon is closer to the Earth than the 
Sun and stars since the Moon eclipses them. The rest of the order was harder 
to pin down. The stars have the fastest motion in the Ptolemaic system, with 
Saturn, then Jupiter, and then Mars lagging successively more behind them. 
Assuming that proximity in speed reflects proximity in space, Ptolemy could 
conclude that Saturn is the closest to the stars; then comes Jupiter and then 
Mars. By this criterion, the Sun, Venus, and Mercury come next. However, 
the criterion could not give an order for them since their average motion 
against the stars was the same. Ptolemy settled on the order the Sun, then 
Venus closer to the Earth, and then Mercury closer still. He reasoned that 
the closeness of Mercury to the Moon was justified by the similarity of their 
eccentric motions and since the frequent retrograde motion of Mercury re-
sembled the turbulent motions of the air above the Earth’s surface. Similar 
reasoning placed Venus at the next distant position.

To establish the absolute distances to these celestial bodies, Ptolemy em-
ployed the fact that his constructions would take each body nearer to and 
farther from the Earth. The epicycle shown in Figure 12.8 does this, as does 
Ptolemy’s use of eccentric circles: that is, circles whose centers are slightly 
displaced from the Earth. Ptolemy could determine from these constructions 
the ratio of the distances of closest approach to the Earth (perigee) and the 
farthest displacement (apogee). He now assumed (Packing) that all of the con-
structions were packed together as closely as the geometry allowed, without 

18	 For further analysis, see Van Helden (1985, 21–27).
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the danger of any of the trajectories intersecting. That is, the apogee of the 
Moon will coincide with the perigee of Mercury, the apogee of Mercury will 
coincide with the perigee of Venus, and so on.

Ptolemy could only offer the physical plausibility of this packing assump-
tion: “This arrangement,” he wrote, “is most plausible, for it is not conceiv-
able that there be in Nature a vacuum, or any meaningless and useless thing” 
(quoted in Goldstein, 1967, 8). He could not have been so certain of the as-
sumption, for he proceeded to allow that, if there are empty spaces, then the 
distances cannot be smaller than those that he had determined.

Starting with his value of 64 Earth radii for the apogee of the Moon, 
Ptolemy used the ratios of perigee to apogee to determine stepwise the dis-
tances to all of the celestial bodies. The perigee of Mercury is then 64 Earth 
radii. The ratio of perigee to apogee for Mercury is 34:88, so its apogee is at 64 
x (88/34) = 166 Earth radii. Continuing these calculations leads to the results 
summarized in Table 12.1.19

Table 12.1. Ptolemy’s distances in units of Earth radii

Perigee Apogee Ratio

Moon 33 64 33:64

Mercury 64 166 34:88

Venus 166 1,079 16:104

Sun 1,160 1,260 57.5:62.5

Mars 1,260 8,820 1:7

Jupiter 8,820 14,187 23:37

Saturn 14,187 19,865 5:7

Ptolemy encountered one discrepancy. His independent estimate of the 
perigee of the Sun is 1,160, which does not match the computed apogee of 
Venus of 1,079. He suggested that the discrepancy might derive merely from 
slight errors in the underlying observations. To continue, Ptolemy used the 
independently derived figure of 1,160 for the Sun’s perigee.

19	 Ptolemy’s text delivers these results in a continuous narrative. This convenient tabular 
summary is provided by Van Helden (1985, 27). He notes that the value of the apogee of Jupiter of 
14,187 is a small error of calculation and should be 14,189.
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Figure 12.9. Kepler’s drawing of the Ptolemaic system
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Kepler’s Mysterium cosmographicum of 1596 has a figure (Figure 12.9 
here) that includes all of these celestial bodies in Ptolemy’s system, with their 
epicycles, drawn approximately to the scale set by the distances of Table 12.1.

In assuming the geocentric configuration of celestial bodies and in mak-
ing the assumptions of order and packing, Ptolemy took on an inductive 
debt. Until it was discharged — that is, until independent evidence for the 
assumptions was found — the evidential case for his distances was incom-
plete. Ptolemy counted as evidence for his packing hypothesis the closeness 
of the two estimates of the distance to the Sun’s perigee: the packing-derived 
estimate of 1,079 and the independent estimate of 1,160. Although encour-
aging, that closeness was not enough to discharge the inductive debt. Further 
independent support was needed. Although Ptolemy’s system remained the 
authoritative system for over a millennium, that further independent support 
never came. His system was abandoned in favor of another whose inductive 
debts were discharged and with spectacular success.20

10. The Copernican Hypothesis
Nicolaus Copernicus’ On the Revolutions of the Heavenly Spheres of 1543 
is somewhat tame in purely astronomical terms. In the simplest concept, it 
merely rearranges the circles of Ptolemy’s geocentric system in a more ap-
posite way. It is in another sense Earth moving. That rearrangement sets the 
Earth into twofold motion: spinning on its axis and orbiting the sun.

This basic supposition of Copernican heliocentric astronomy was rou-
tinely known as the “Copernican hypothesis” or “hypotheses” in the sixteenth 
and seventeenth centuries. Moxon’s (1665) Tutor offered the reader on its title 
page an Explanation of the Copernican Hypothesis and Spheres. Hooke (1674) 
uses the expression liberally. In the sixteenth century, the term “hypothesis” 
was tainted by Osiander’s surreptitious insertion of an anonymous preface 
into Copernicus’ 1543 work. Osiander reduced Copernicus’ proposal to a 
mere convenience of calculation that did not reveal true causes. He wrote that 
“these hypotheses need not be true nor even probable. On the contrary, if they 
provide a calculus consistent with the observations, that alone is enough” 
(Dobrzycki 1978, xvi).

20	 For a survey of the persistence of Ptolemy’s packing hypothesis through to the time of 
Kepler in the sixteenth century, see Goldstein and Hon (2018).
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Copernicus himself made little use of the term but did not seem to be 
averse to it. Conveniently, he did equate the term in its usage by the Greeks 
with “principles and assumptions” (Dobrzycki 1978, 7).21 As far as I can 
see, the term “hypothesis” does not appear in his earlier draft manuscript 
“Commentariolus.” However, the main proposals of his heliocentric astron-
omy are called “assumptions” (Rosen 1971, 58). Rheticus uses the term 
“hypothesis” freely in his preliminary accounting of Copernicus’ proposal, 
Narratio prima, written prior to 1543.22 He goes to some pains to defend the 
truth of the hypotheses that he identifies in Copernicus’ system. His defense 
foreshadows the present notion of hypothetico-deductive confirmation: it is a 
mark of truth if a hypothesis has true consequences. Rheticus puts it this way: 
“Aristotle says: ‘That which causes derivative truths to be true is most true’” 
(Rosen 1971, 142).23 In this context, then, common use of the term “hypoth-
esis” referred to an adventurous proposal. Contrary to Osiander’s pessimism, 
its truth could be secured through argument and evidence, and it was thus 
secured as we moved from the sixteenth century to the seventeenth century.

For my purposes here, what matters is that adoption of Copernicus’ 
heliocentric system proved to be the key step in expanding astronomers’ cap-
acity to determine the distances to celestial bodies. Ptolemy needed to add 
hypotheses, Order and Packing, to his geocentric constructions in order to 
fix the ratios of these distances. Copernicus needed no such additions to de-
termine the ratios of the orbital sizes. His heliocentric constructions already 
fixed them.

The recovery of these ratios followed from how Copernicus’ system re-
duced the number of independent assumptions needed compared with those 
required by Ptolemy. Consider, for example, Ptolemy’s construction for Venus 
as shown in Figure 12.8. Copernicus realized that two motions in Ptolemy’s 
system were really just one. That is, the annual motion of the center of the 
epicycle of Venus along the deferent and the annual motion of the Sun were 
not real motions at all. Rather, there was just the single annual motion of the 
Earth around a central point near the Sun and then around the Sun itself in 

21	 Copernicus writes that astronomy’s “principles and assumptions” were “called 
‘hypotheses’ by the Greeks.”

22	 Reproduced in translation in Rosen (1971).
23	 There is an extensive secondary literature on Copernicus’ attitude to hypotheses; see 

Rosen (1971, 22–33).
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later developments of heliocentrism, such as by Kepler. If an observer on the 
Earth was unaware of its motion, then it would appear that both the Sun and 
Venus were orbiting the Earth. These two circles were just apparent motions 
arising from displacing the true motion of the Earth to Venus and the Sun.

To accommodate this realization, Copernicus rearranged the circles in 
Figure 12.8 to recover those in Figure 12.10. As shown at the top of the latter 
figure, the two circles of the deferent of Venus and the Sun were collapsed into 
a single circle, and that circle was transposed to become the orbit of the Earth 
around the Sun. The epicycle of Venus now became its true orbit, centered on 
the Sun.

This new heliocentric construction for Venus no longer admitted the 
arbitrary rescaling of planetary distances that troubled Ptolemy’s system. 
The maximum elongation of Venus — the maximum angular distance that it 
strayed from the Sun — was about 45º. That fact of observation immediately 
fixed the ratio of the sizes of the orbits of Venus and the Earth. The line EV 
in Figure 12.11 traces the line of sight to Venus at its maximum elongation. 
Since EV is tangent to the circle of the orbit of Venus, EVS is a right angle. 
If we take the simplest case of the angle EVS equal to 45º, then the triangle 
EVS is right-angled, with equal sides EV and VS adjacent to the right angle of 
triangle EVS. Using Pythagoras’ theorem, it follows that the ratio of the size 
of the orbit of Venus to that of the orbit of the Earth, SV to SE, is 1 to 2 : 
that is, 0.71 to 1.

This last calculation is simplified by assuming that the orbit of Venus is 
a perfect circle centered on the Sun. The deviations from this simplification 
complicate the determination only slightly.24 A similar rearrangement gives the 
Copernican construction for Mercury and the determination of its orbital size.

The outer planets — Mars, Jupiter, and Saturn — required slightly dif-
ferent rearrangements. Their epicycles were not the representations of their 
true motions, merely the superposition of the Earth’s motion onto their true 
motions. A similar analysis within the circles of the Copernican rearrange-
ment gives the ratios of the sizes of these outer planetary orbits to that of 
the Earth. The analysis is a little more complicated. A greatly oversimplified 
version conveys the basic geometry of the analysis. Contrary to the reality, we 
assume that an outer planet is not moving. Then we can determine the ratio 

24	 For details, see Van Helden (1985, 43–44).
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Figure 12.10. Venus in the Copernican system
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Figure 12.11. Fixing the size of the orbit of Venus

Figure 12.12. Distance to an outer planet
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of the sizes of the orbits by checking how far the Earth progresses in its orbit 
between two orientations. First, the distant planet P is in direct opposition 
to the Sun S, indicated by the Earth at E ' in Figure 12.12; second, the distant 
planet P is at quadrature — that is, at a right angle to the Earth-Sun distance 
— indicated by the Earth at E in Figure 12.12.

The angle ESP is known from how far the Earth has moved in its orbit. 
Observing the change in which stars are directly overhead at midnight would 
give the angle directly. Simple trigonometry on the right-angle triangle SEP 
tells us that the ratio of sizes SP/SE is 1/cos(ESP). This method is inapplicable 
in practice since the planet P will move during the time that the Earth pro-
gresses from E ' to E. In the case of slow-moving Saturn, which has a period 
of 29.5 years, the movement will be slight. However, the analysis must correct 
for it. The correction is straightforward.25

11. Securing the Copernican Hypothesis
Copernican heliocentric astronomy and its later refinements proved to be key 
to the determination of planetary distances in the centuries that followed. It 
provided the ratios of the sizes of the orbits of the planets. All that astron-
omers needed was a single absolute measurement of one distance; then all 
of the rest could be recovered from the ratios. This was the procedure used 
after the seventeenth-century determination of the parallax of Mars and the 
eighteenth-century observations of the transits of Venus. This was the same 
strategy used by Ptolemy. His determination of the distance to the Moon 
triggered a cascade of computations that gave all of the distances. However, 
the difference was that independent evidence for Ptolemy’s hypotheses never 
emerged. His inductive debt was never discharged. The Copernican hypoth-
esis fared much better.

To begin, the Copernican system had an advantage over the Ptolemaic 
system in the practical challenges of securing evidential support. The 
Copernican system needed fewer independent hypotheses and thus fewer in-
dependent items of evidence. Ptolemy had to posit as an independent hypoth-
esis that the centers of the epicycles of Mercury and Venus always aligned 
with the mean Sun, as shown in Figure 12.8. This alignment was automatic 
in the Copernican system since the center of the orbits of Mercury and Venus 

25	 For a simplified construction, see Crowe (2001, Chapter 6).
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simply was the mean Sun. Similarly, Ptolemy had to posit that the epicycles 
of the outer planets — Mars, Jupiter, and Saturn — moved in perfect concert 
with the motion of the Sun, such that their retrograde motion coincided with 
their opposition to the Sun. Copernicus needed no such posits. These effects 
followed automatically from his recognition that these epicycles were merely 
the superposition of the Earth’s annual motion on the true motions of the 
outer planets. Even just to recover an order for the planets in their distances 
from the Earth, Ptolemy had to posit additional hypotheses concerning their 
periods and motions. Copernicus needed no such additional posits. In his 
system, the relative distances of the planets from the Sun could be recovered 
from careful measurements of planetary positions.

As time passed, further evidence emerged. Galileo used his telescope to 
observe Venus in 1610, and he reported his results in his Letters on Sunspots of 
1613. He saw Venus exhibiting a variety of Moon-like phases that could only 
be if its motion took it both closer to the Earth than the Sun and farther from 
the Earth than the Sun. This contradicted Ptolemy’s system in which Venus 
is always closer to the Earth than the Sun but fit the Copernican hypothesis 
that Venus orbits the Sun.

It was Isaac Newton who made the decisive advance that fully discharged 
whatever residual inductive debt heliocentric astronomy might have carried. 
His Principia of 1687 provided a complete mechanics for the motions of the 
bodies in heliocentric astronomy. At the same time, celestial mechanics was 
combined with terrestrial mechanics in a single unified system. Any chal-
lenge to heliocentric cosmology would end up eventually having to challenge 
the entirety of this new physics.

12. Crossing of Relations of Support
The most useful relationship concerning the ratios of sizes of planetary orbits 
in the new astronomy is Kepler’s so-called third law.26 It asserts in its modern 
form that the square of the periods of a planet’s orbit T 2 is proportional to 
the cube of the semi-major axis of its elliptical orbit R3. Since the periods of 
two planets are accessible to measurement, the relationship provides a rapid 
determination of the ratios of their distances from the Sun. The relationship 

26	 Called thus, for example, by Maxwell (1894, 113).
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between this law and Newton’s mechanics provides a striking illustration of 
how relations of inductive support can cross over one another.

The distance-period relationship for the planets was first reported by 
Kepler for the mean distance from the Sun, among the many harmonies of 
his Harmonices mundi of 1619. In Book III of his Principia, Newton ([1726] 
1962, 401–05) enumerated the phenomena from which his system of the 
world would be inferred. Phenomenon IV was his relation for the planets, as-
serted in terms of the mean distances. Phenomena I and II asserted the same 
relation for the moons of Jupiter and Saturn. Within Newton’s mechanics, 
this relation could be translated almost immediately into a result central to 
his system: the acceleration due to the gravitational attraction of a body such 
as the Sun diminishes with the inverse square of distance. We can see how 
rapidly the result follows if we take the simple case of a planet or moon in a 
perfectly circular orbit of radius R with period T. It follows that the speed 
of the object is V = 2pR/T. Newton’s mechanics sets the centrally directed 
acceleration A of such a motion equal to V/R2. We can now combine these 
relations as

where Kepler’s third law allows us to set R3/T 2 to a constant.
Here we have the first relation of support:

from Kepler’s third law to Newton’s inverse square law of gravity.

It is possible to run the inferences in the above equalities in reverse and there-
by infer Kepler’s third law from the inverse square law:

We read from these equalities that R3/T 2 must be a constant if we first assume 
the inverse square law. Thus, it is possible to have a relation of support that 
proceeds in the other direction:

from Newton’s inverse square law of gravity to Kepler’s third law.
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Since the relation is a deduction, given the requisite background assumptions 
of Newton’s mechanics, it is especially strong.

This second inference is commonly given in mechanics texts. Is it mere-
ly a formal derivation purely of mathematical interest? Or should we also 
conceive of it as a relation of evidential support proceeding in a direction 
opposite to that of Newton’s original relation? That we can and should so 
conceive of it follows from a complication revealed by more careful analysis. 
The analysis above requires that the mass S of the central body, such as the 
Sun, should be considerably greater than the mass P of the orbiting body, such 
as a planet. When this assumption is relaxed, Maxwell (1894, 113–15) gives 
the correction that must be applied to the original form of Kepler’s third law:

R3 = constant (S+P) T 2

Deviations from the original law are small according to this formula as long 
as P is much smaller than S. However, for cases in which P becomes large in 
relation to S, the orbital periods will become smaller than predicted by the 
original relation from the orbital sizes. Maxwell proceeded to show that such 
deviations have been measured for the more massive planets Jupiter, Saturn, 
and Uranus.

Thus, Newton’s mechanics does not merely recover Kepler’s third law. 
Rather, it tells us the circumstances within which the law holds and gives a 
more general law that will hold when we deviate from those circumstances. 
In doing this, Newton’s mechanics provides evidential support for Kepler’s 
third law.

13. Conclusion
The determination of distances in our planetary system illustrates how hy-
potheses are used to extend the otherwise limited inductive reach of evidence. 
This is a procedure used widely in science. What makes the present case study 
revealing is that the investigations extended over millennia. That means that 
its stages are readily dissected. We can see in this slow development that evi-
dence unaided by hypotheses was limited in its reach. Direct measurements 
of distances to celestial bodies by triangulation returned very little in spite of 
the most energetic and ingenious efforts. This reach was decisively furthered 
by various systems of hypotheses: harmonic, Ptolemaic, and Copernican. 
That each of the three considered here yielded different results underscores 
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the provisional nature of the results. They are given a secure inductive foun-
dation only when independent evidence is found for the hypotheses used and 
the inductive debt taken on in assuming them is discharged.
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Dowsing: The Instabilities of Evidential 
Competition

1. Introduction
In Chapter 4, “The Uniqueness of Domain-Specific Inductive Logics,” I ad-
dressed the possibility that a single collection of empirical facts might eviden-
tially support multiple sciences equally well. This circumstance would negate 
the power of evidence to determine a definite theory and compromise the 
uniqueness of our mature sciences. Worse, since these facts also determine 
the applicable inductive logic, we would then have multiple logics applicable 
in the same domain. Inductive anarchy would prevail.

In that earlier chapter, I argued that this possibility has not arisen in the 
case of mature sciences, well supported by an extensive body of empirical 
evidence. There is, for example, only one periodic table of the elements and 
only one chemistry derived from it. I also argued that the material theory 
of induction provides a mechanism that precludes the persistence of equal 
support for such multiple sciences. It is based on an instability in the com-
petition among rival theories. Insofar as the differences between competing 
theories manifest in empirically decidable disagreements, evidence can point 
in favor of one over the other.1 One theory then secures more facts than its 
rival. Since background facts so secured can then authorize more inductive 
inferences, that gain enhances its inductive reach while weakening that of its 
rival. The enhanced theory is then better placed to achieve more successes at 

1	 If the differences between them have no empirical manifestation, then we must ask 
whether the differences matter. Are they the same theories empirically but dressed up in different 
theoretical clothing? Do they contain elements superfluous to their empirical content?
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the expense of its rival. A continuation of the process leads to the evidential 
dominance of one theory.

Where might we look to see this process within real sciences? The natural 
place is among the many fields of endeavor labeled as pseudosciences: astrol-
ogy, parapsychology, telepathy, telekinesis, crystal healing, psychic surgery, 
and many more. These endeavors purport to offer bodies of knowledge in 
competition with established science. Each proposes facts radically at vari-
ance with standard science. If they are correct, then these facts would induce 
an inductive logic different from that of standard science.2

These endeavors are routinely disparaged by established science. The 
term “pseudoscience” is not intended to be flattering. In my view, these pseu-
dosciences are properly disparaged, for the case has been made abundantly 
that they lack proper evidential support. The tradition of challenging the 
evidential credentials of these endeavors is as old as these endeavors them-
selves. Recently, a leading role among many in these efforts has been taken by 
CSICOP (Committee for the Scientific Investigation of Paranormal Claims). 
It was founded in 1976 and later renamed as CSI (Committee for Skeptical 
Inquiry). Its major vehicle of publication is the magazine Skeptical Inquirer, 
whose pages have offered evidential scrutiny of extraordinary claims since 
the magazine’s inception in 1976 as The Zetetic.

My goal in this chapter is not once again to make the evidential case 
against these many pseudosciences. Rather, it is to see whether their evi-
dential collapses resulted from the mechanism sketched earlier. It would be 
impractical and redundant to trace the collapse in many of these sciences. 
One will suffice as an illustration. The practice of dowsing is well suited to 
this analysis. The practice itself is narrowly defined: a dowser walks over a 
candidate area of land seeking underground water sources or, in the ori-
ginal tradition, metallic ores. The dowser employs some instrument as a 
detector. A forked hazel twig is traditionally preferred. The detection event 
is unambiguous: the detector moves, clearly and sometimes even violent-
ly, in response to the water or metal ores sought. Finally, success or failure 

2	 Another example of a variant logic is among conspiracy theorists. Many proceed under 
the assumption that nefarious hidden powers are systematically misleading the public for their 
own ends. The presumption of this fact leads the conspiracy theorists to an inverted inductive 
principle: strong evidence against their theory is actually evidence of the perfection of the 
deception by the hidden powers. Evidence “against” is really evidence “for.”
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is unambiguously determinable. Either there is water present there or not 
or the metal ore sought is there or not. There has been a long-standing de-
bate over the effectiveness of dowsing. Its proponents are zealous in offering 
extraordinary tales of unlikely successes. Its critics are equally zealous in 
denouncing the practice as superstitious hokum.

The literature on dowsing is so massive that I make no effort to do it jus-
tice here. My goal is solely to investigate the competition between proponents 
and skeptics and to show that an instability in the competition leads to the 
collapse of the scientific credibility of dowsing and the evidential dominance 
of its scientific skeptics.

In Section 2, I briefly sketch the emergence of dowsing in the historical 
literature. In Sections 3 to 6, I recount the factual disputes surrounding dows-
ing: which physical theory if any governs the process (Section 3), how water 
sought by dowsers is distributed geologically (Section 4), whether there really 
is any effect in the first place (Section 5), and finally whether the effect can 
be merely unconscious self-deception (Section 6). In Section 7, I review how 
proponents and skeptics end up presuming different inductive logics because 
they differ in their presumptions of the prevailing facts. In Section 8, I con-
clude by displaying the instability that leads to the evidential dominance of 
the skeptics.

We shall see that the competition unfolded on two levels: that of theory 
and that of phenomena. At the level of theory, in the sixteenth century, pro-
ponents and skeptics had positions of comparable strength. The physical 
interaction between metallic ores and the dowser’s rod fit well enough with the 
qualitative understanding of electric and magnetic effects. With continuing 
investigations in each field, theories of electricity and magnetism developed 
by the end of the nineteenth century into a quantitatively precise candidate 
theory of everything. This dominant theory supported the inference that 
there is no physical effect in nature corresponding to dowsing. The propon-
ents of dowsing had nothing to match. They were reduced to speculating that 
the effect derived from some sort of qualitatively described psychic process.

At the level of phenomena, proponents and skeptics were once again in 
comparable positions in the sixteenth century. Proponents could point to 
a well-established and apparently successful practice of dowsing. Skeptics 
could point to the uncomfortable fact that dowsing did not work for every-
one. The discovery of the ideo-motor principle in the nineteenth century al-
lowed skeptics to block the inference from the motion of the dowser’s rod to a 
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real process of detection. The motion was the result of unconscious muscular 
actions by the dowser. The proponents could offer no comparable account 
of why dowsing failed for some. Proponents could infer from the success of 
the later tradition of water dowsing to the reality of a real process of water 
detection. The inference was warranted by the assumption that underground 
water was sparsely distributed and otherwise hard to locate. The inference 
lost its warrant with the recognition that underground water tables are widely 
dispersed and hard to miss in a random drilling. The failure of dowsers to 
detect their targets was established in the twentieth century for all but the 
most ardent believers by statistical analysis of well-crafted tests.

Finally, the successes of skeptics at the theoretical and phenomenologic-
al levels were mutually reinforcing. The theory deployed by skeptics left no 
niche for dowsers’ physical processes of detection. Using this as a warranting 
fact, skeptics could infer from the failure of dowsers in tests to the conclusion 
that any apparent dowsing successes in the phenomena must be spurious. 
Conversely, the failure of dowsers in these tests supported the conclusion that 
skeptical theorists had not somehow overlooked a theoretical process that 
could underpin dowsing.

2. The Phenomenon Established
The modern tradition in dowsing seems to have started among the miners in 
Saxony and the Hartz mountains in what is now modern-day Germany. It was 
well established by the sixteenth century. From there, it spread over Europe 
and beyond. The process presumed to create the detection was direct physical 
interaction between underground metallic ores and the dowser’s instrument. 
Since the interaction, apparently, was manifested routinely, it was reasonable 
to expect some general theoretical basis for it. That such an interaction was 
possible lay well within the contemporary state of physical theorizing. Barrett 
(1911, 169) suggested that a then common belief was that certain trees are 
attracted by metallic ores and droop over them. Agricola ([1556] 1912, 39), 
who gave the first extended account of dowsing, reported the belief; propon-
ents of dowsing asserted “that movement of the twig is caused by the power 
of the veins and sometime[s] this is so great that branches of trees growing 
near a vein are deflected toward it.” It was then only a small step to detach 
a twig from the tree and use its attraction to the metallic ores as a means of 
detection.
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Such an attraction seems to be little different from the attractions then 
known in electrostatic phenomena and magnetism. Agricola ([1556] 1912, 39) 
likened the action to that of a magnet attracting iron. Proponents of dows-
ing, he reported, explained the failure of some people to succeed at dowsing 
through “some peculiarity of the individual, which hinders and impedes the 
power of the veins.” His report revealed the rudimentary nature of the rel-
evant science, for he likened this explanation to the supposed power of garlic 
to weaken a magnet: “For a magnet smeared with garlic juice cannot attract 
iron . . .” (39). Garlic has no such power, of course, and that is a fact easily 
recovered by a simple test.3

3. Disputes over the Theory of Dowsing Processes
At its inception, the effect of metallic ores on the dowser’s twig was likened to 
the effects of electrical and magnetic attraction. It was rudimentary to see that 
the dowsing effect was not mediated by then known magnetic and electrical 
actions. Most ores sought by dowsing were not magnetic, and twigs were not 
susceptible to known magnetic action. Then known electrical actions per-
sisted only if the systems were carefully insulated. The theoretical question, 
then, was whether dowsing had revealed a physical process to be added to the 
known processes of magnetism, electricity, and gravity. We shall see that, in 
the ensuing centuries, theories of electricity, magnetism, and gravity grew in 
strength. Yet accounts of the mechanism of dowsing languished. They lagged 
in their attempts to copy the latest developments in these other theories. By 
the end of the nineteenth century, there was no longer a theoretical niche in 
which dowsing processes could reside. There was no credible physical mech-
anism. We shall see that the most articulate of the proponents had to resort to 
clairvoyance and psychic processes as the foundation of dowsing.

3.1. The Effluvial Theory of Dowsing
Agricola ([1556] 1912) reported no theoretical foundation for the phenomen-
on beyond its similarity in some aspects to other processes, such as magnetic 
attraction. Here his level of reporting was comparable to that of Gilbert’s De 
magnete, the influential treatise on electricity and magnetism published al-
most half a century later in 1600. His work was devoted to establishing the 

3	 For a brief history of this curious notion, see May (1979).
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observed phenomena of magnetism and electricity and speculating about 
how the magnetism of the Earth might be associated with celestial processes. 
There was no detailed proposal for the mechanism of magnetic and electrical 
effects.4

Matters were soon to change. William Pryce’s (1778) treatise on mining 
argued strongly in favor of the efficacy of dowsing. It included an extensive 
theory of the mechanism, formulated in terms of the effluvia proposed by the 
then popular corpuscular philosophy:

It [the dowsing rod] was much talked of in France towards 
the end of the seventeenth century; and the corpuscular phi-
losophy was called in to account for it. The corpuscles, it was 
said, that rise from the Minerals, entering the rod, determine 
it to bow down, in order to render it parallel to the vertical 
lines which the effluvia describe in their rise. In effect the 
Mineral particles seem to be emitted from the earth: now the 
Virgula [dowsing rod] being of a light porous wood, gives an 
easy passage to those particles, which are very fine and subtle; 
the effluvia then driven forwards by those that follow them, 
and pressed at the same time by the atmosphere incumbent 
on them, are forced to enter the little interstices between the 
fibres of the wood, and by that effort they oblige it to incline, 
or dip down perpendicularly, to become parallel with the little 
columns which those vapours form in their rise. (114)

Pryce turned from this report to an extended narrative aimed at establishing 
the plausibility of this theory of effluvia, drawing from the work of Robert 
Boyle (1673) though giving no citation to it. Perhaps he intended Boyle’s 
energetic promotion and defense of effluvia. In any case, the effluvial theory 
described by Pryce bears a striking similarity to the effluvial theory of mag-
netism advocated by Descartes in his Principles of Philosophy ([1644] 1982, 
Part IV). Pryce concluded his defense of the effluvial theory with an analogy 
to magnetism. Effluvia from the Earth can magnetize iron as shown by

4	 Contrary to some later reports (as given in Bynum, Browne, and Porter 1981, 111), the 
notion of effluvia seems to have no major role in De magnete. I found only one use of the word in 
the volume (Gilbert [1600] 1893, 78).
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. . . the polarity and magnetism of an old Iron bar taken from a 
church window, where it has stood upright for many centuries, 
is proved to derive its virtue from the magnetick effluvia of the 
earth. (116)

We are encouraged to make the unspoken inference that effluvia from min-
eral ores can also act on dowsers’ twigs.

We can assess the equivocal status of the theory in the mid-seventeenth 
century of Descartes and Boyle from the latter’s own synoptic report on dows-
ing. Boyle (1669, 92) concluded his essay “Of Unsucceeding Experiments” 
with the lament that, “What to determine concerning the truth of this per-
plexing experiment, I confess not to know.”

3.2. Resistance by Skeptics
At the same time as proponents of dowsing were advancing theories of its 
operation, there was a persistent tradition of theoretical skepticism. Agricola’s 
([1556] 1912) earliest account of dowsing is often reported by proponents of it. 
They regularly omit mention of his astute skepticism of the process. Agricola 
noted how unlike dowsing was from the well-established processes of elec-
trical and magnetic attractions:

But, in truth, all those objects which are endowed with the 
power of attraction do not twist things in circles, but attract 
them directly to themselves; for instance, the magnet does not 
turn the iron, but draws it directly to itself, and amber rubbed 
until it is warm does not bend straws about, but simply draws 
them to itself. If the power of the veins were of a similar nature 
to that of the magnet and the amber, the twig would not so 
much twist as move once only, in a semi-circle, and be drawn 
directly to the vein. . . . (41)

Dowsing, Agricola noted, was a theoretical anomaly in his time whose prop-
erties were unlike electricity and magnetism. That, of course, precluded it 
from having an electrical or magnetic nature.

Since Pryce’s (1778) work was a practical manual for mining, we should 
not expect it to provide the most up-to-date science. The effluvial theory of 
dowsing that Pryce reported represented the level of theorizing from a cen-
tury earlier. At the time of his writing, physical theorizing had changed. 
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Descartes’ qualitative speculations about effluvia had been replaced by quan-
titative measures of forces. Newton’s precise quantitative account of gravity 
in his Principia of 1687 had supplanted Gilbert’s speculation about the role of 
magnetism in celestial motions and Descartes’ cosmic vortices. In 1785, sev-
en years after Pryce’s work was published, Charles Coulomb presented seven 
memoires to the French Académie royale des sciences in which he reported 
his careful quantitative measurements of electrical forces.

These theoretical troubles for dowsing continued. As long as theories of 
electricity, magnetism, gravitation, and other forces remained qualitative, 
dowsers could speculate that their twigs were responding to some combin-
ation of these forces within the standard scientific repertoire or some addi-
tional but analogous force. Over the course of the next 100 years, theories 
of electricity and magnetism matured into the precise electrodynamics of 
Maxwell, Hertz, Lorentz, and others still taught today as classical electro-
dynamics. Their theories annexed other processes. Light, it turned out, was 
merely a propagating ripple in the electromagnetic field. Although the heat of 
gases was reduced to random motions of their molecules, heat radiation was 
found to be just another portion of the electromagnetic spectrum.

With this maturation, the theoretical niche in which speculation about 
dowsing could flourish was gone. It was no longer plausible that metallic 
ores or water, buried underground, could exert some force on hazel twigs 
while evading the now thorough and quantitatively precise measurements 
of the nineteenth-century physicists. The skeptics, brandishing their ma-
ture theory of electrodynamics, were moving from success to success, from 
strength to strength, whereas the dowsers’ theories were successively weak-
ened and in retreat.

3.3. Collapse of the Dowsing Theory
Undeterred, proponents of dowsing continued to urge some sort of electrical 
or magnetic process as the basis of dowsing. By the later part of the nine-
teenth century, dowsing had become more prominent as a means of locating 
underground water. Latimer (1876, 26) claimed that it arose as an electrical 
effect: “. . . the friction of running waters underground produces an electric 
current which causes the switch to turn.” In evidence, he recounted no ex-
acting measurements, no experiments with running water, and no detailed 
computation within then developed theories of electromagnetism. Instead, 
he wore wooden sandals, insulated electrically from the ground by four ink 
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bottles, and attempted to dowse. So insulated, he noted (18) that his dowsing 
powers were extinguished.

While dowsing proponents persisted in these efforts, they became targets 
of derision by skeptical scientists. Charles Boys, the English experimental 
physicist, wrote a scathing review in Nature of Tompkins’ 1899 volume The 
Theory of Water Finding by the Divining Rod: Its History, Method, Utility and 
Practice. Tompkins, Boys (1899, 2) reported, attributed the efficacy of dowsing 
to electrical action and quoted him as asserting the “well-known scientific 
fact that water is a generator of electricity.” Elsewhere, he reported Tompkins 
asserting that minerals and water emit effluvia. Tompkins followed the trad-
ition of dowsers who claimed that their method could detect much more than 
metallic ores and water. Their powers of detection extended to precious met-
als, including gold, boundaries, and murderers. To see whether the rod was 
detecting gold, one needed only to put gold in each hand, whereupon the 
motion of the rod ceased. Boys then mocked Tompkins:

We can only infer that the murderer can be discriminated by 
putting a murderer in each hand, but this is not stated.

His sobering conclusion:

But when they [dowsers] put forward preposterous “scientific 
explanations” such as I have extracted, it makes it very diffi-
cult not to come to the almost inevitable conclusion that the 
water-finder has no case. . . .

An anonymous reviewer of papers on dowsing by William Barrett and 
T.V. Holmes wasted no words on derision but dismissed without discussion 
the possibility that successful dowsing results from electrical action. The re-
viewer (Anonymous 1898, 353) wrote that, 

Moreover, as a physicist, he [Barrett] does not bring to this 
task any acquired training which is helpful in unravelling the 
problem; for the only point at which the divining rod touches 
physics — the assumption that electricity is its motive power 
— may be dismissed without investigation.

And still the dowsing theorists persisted. A later anonymous review-
er in Nature (Anonymous 1940) gave a much more restrained dismissal of  
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J. Cecil Maby and T. Bedford Franklin’s 1939 The Physics of the Divining Rod. 
The authors had attempted to ground dowsing processes in something re-
sembling contemporary physical theory. The reviewer’s verdict was dry and 
devastating:

The theoretical section, by the second author, postulates 
some form of cosmic radiation resulting in electromagnetic 
waves of ten metres wave-length. There seems to be no direct 
evidence for such waves, and the author’s discussion of their 
polarization cannot be justified on our present knowledge.

In presenting facts and theories to the scientific world, 
there is a well-accepted and necessary procedure. It is to be 
regretted that the authors have not followed this procedure, 
thus making the position of the scientific reviewer impossible.

A convenient marker of the collapse of a physical theory of dowsing was 
provided by the physicist and psychic researcher William Barrett. He inves-
tigated dowsing extensively, convinced himself of its reality, and provided a 
nonphysical explanation of it in his 1911 volume Psychical Research:

The explanation, I believe, is not physical, but psychical. All the 
evidence points to the fact that the good dowser subconscious-
ly possesses the faculty of clairvoyance, a supersensuous per-
ceptive power such as we have described in a previous chapter. 
This gives rise to an instinctive, but not conscious, detection 
of the hidden object for which he is searching. (183; Barrett’s 
emphasis)

The rod, on this account, is then moved by unconscious muscular action.
Today, over a century later, when clairvoyance has secured no scientif-

ic credibility, we find this retreat to clairvoyance a damning concession of 
failure. It would not have been so for Barrett. He was a founder of both the 
British Society for Psychical Research and the American Society for Psychical 
Research. They advocated the reality of psychic phenomenon and promoted 
research on them.
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4. The Dispute over Geology
Once the locus of dowsing had moved toward detection of underground 
water, a new dispute emerged. Just how is the underground water sought by 
dowsers distributed? Dowsers portrayed the water as commonly residing 
in flowing streams. The flow of the water, as we saw above, is hypothesized 
to produce the electricity mediating in its detection. Latimer (1876, 23–24) 
boasted of his prowess as a dowser in locating a stream of water just ten feet 
from a well that had run dry and of locating a stream in a yard unfamiliar to 
him in the dark of night.

These findings are impressive only if the distribution of underground 
water is sparse and otherwise hard to locate. Critics, however, were quick to 
dispute this supposition. The anonymous reviewer reported above recorded 
Holmes, whose work was under review, as making the point clearly:

He points out, in the first place, that the astonishment caused 
by the dowser’s success is largely due to the fact that the dows-
er himself, and usually those who employ him, always believe 
that water-finding is a matter of locating a “spring,” which it 
is possible to miss by a few inches, so that the achievement 
becomes as wonderful as finding a buried jar of ancient coins. 
But, as Mr. Holmes points out, while water sometimes runs in 
underground fissures, water bearing strata usually cover acres 
or miles, over any point in which a well may be successfully 
sunk. (Anonymous 1898, 355–56)

Similar points about the ease of finding water are made in an anonymously 
authored US Geological Survey pamphlet:

The natural explanation of “successful” water dowsing is that 
in many areas water would be hard to miss. The dowser com-
monly implies that the spot indicated by the rod is the only 
one where water could be found, but this is not necessarily 
true. In a region of adequate rainfall and favorable geology, it 
is difficult not to drill and find water! (Anonymous 1988, 10; 
emphasis in the original)
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Thomas Riddick (1951) makes the same point and many more in a scathing 
review of a book written by Kenneth Roberts about the well-established dows-
er Henry Gross. Riddick, a water-works engineer, decried at length Roberts’ 
“apparent lack of even the most elementary knowledge of the principles of 
water-works engineering” (62). The title, “Dowsing Is Nonsense,” does not 
hide the fury within the article.

5. Dispute over the Phenomena

5.1. The Early Dispute
Although dowsers maintained a healthy and profitable profession, there are 
reports from all eras that many in the mining industry itself were skeptical 
of the reality of the dowsers’ powers of detection. Agricola ([1556] 1912, 40) 
reported it as “in dispute and caus[ing] much dissention amongst miners.” 
Paracelsus was a contemporary of Agricola, both being born in 1493 or 1494. 
He gave a terse warning:

You must take particular care, however, not to let yourselves 
be beguiled by divinations obtained through uncertain arts. 
These are vain and misleading; and among the first of them 
are the divining rods, which have deceived many miners.*5 If 
they once point out rightly, they deceive ten or twenty times. 
(as translated in Waite 1894, 185)

The idea that we count both successes and failures in assessing dowsing was 
later refined greatly and became the basis of the twentieth-century statistical 
tests of dowsing reported below.

A century later Boyle (1669, 93) noted that “Among the Miners them-
selves I found some made use of this Wand, and other[s] laughed at it.” 
Even Pryce (1778, 116) had to concede that “many deny, or at least doubt.” 
Coupled with these doubts were strong suspicions that at least some dows-
ers were frauds and tricksters. Agricola ([1556] 1912, 41) obliquely suggested 

5	 Editor’s footnote here: “Elsewhere Paracelsus says that it is faith which turns and directs 
the divinatory rod in the hand. — De Origine Marborum Invisibilium, Lib. I.” I thank Jennifer 
Whyte for alerting me to Paracelsus’ admonition. It must have been written prior to 1541, the year 
of his death.
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deception in calling successful dowsers “cunning manipulators” and point-
ing out that a forked twig of flexible wood “turns in a circle for any man 
wherever he stands.”

It is also striking that proponents of dowsing relied heavily on anecdotal 
evidence. Latimer (1876, 10) set out his agenda as “I think I have it in my 
power to demonstrate to you, principally from my own personal experien-
ces — the relation of which I beg you to accept as strictly accurate. . . .” The 
demonstration then proceeded through a sequence of boasts of grand dows-
ing successes from his own professional practice. A favorite anecdote was of 
Jacques Aymar, who used his dowsing powers in 1692 to solve a notorious 
murder case in Lyon. The accounts of the episode, though supposedly based 
on objective contemporary accounts, read like a lurid detective novel, with 
astonishing moments of high drama. Barrett (1911, 172) included it in his 
history, favorable to dowsing, but did concede briefly that Aymar was “subse-
quently somewhat discredited owing to his failure in some tests. . . .” Barin-
Gould (1877, 60–78) related the story in all of its lurid details. The account 
included Aymar’s final entrapment in a test that resulted in Aymar being 
labeled an impostor and sent away “in disgrace” (77). Barin-Gould does not 
find, however, the exposé to be “conclusive evidence of imposture throughout 
his career” (78).

At least two commentators were not so credulous. In their colorful exposé 
of the folly of belief in dowsing, Ozanam and Montucla (1803, 259–67) left 
no doubt about their skepticism, calling dowsing “illusion, or philosophical 
quackery” (259–60). Their exposé included the tale of Aymar and suggested 
that his successful detection depended on ordinary, earlier knowledge of the 
murders.6 They concluded their account of his fraud with a lament:

How could rational minds imagine that an action morally 
bad, could communicate any physical quality to the authors 
of it? That the murderer of a human being, or stolen money, 
should have an effect on the rod, rather than the person who 
had killed a sheep, or money merely displaced? Those who can 
believe in such reveries must be exceedingly weak. (263)

6	 They reported without giving the reason that “there is reason to think . . .” that Aymar 
had witnessed the murders. The remark might be more than a rhetorical flourish since they were 
French authors writing in France closer in time to the events.
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5.2. The Modern Dispute
Such weakness persisted. At least as early as the late nineteenth century, pro-
ponents of dowsing sought more objective experimental evidence of dowsing. 
Hansen (1982) reviewed the previous century of experimental research on 
dowsing. The review provides an extensive synopsis of dowsing-related ex-
periments of various types. For example, the “biophysical” seek to establish 
a dowser’s sensitivity to electric and magnetic fields. The “physiological” seek 
to establish physiological responses of dowsers. There are many of these tests. 
The bibliography is over four pages long. However, the results are inconclu-
sive. Hansen says in his final summary that,

In spite of the large number of investigations made into dows-
ing, its status remains unclear. This is largely a result of sloppy 
experimental procedure and or report writing. (362)

It is hard to see how a century of such inconclusive investigation was any-
thing other than a damning indictment of the physical reality of dowsing. 
It is supposedly an effect so strong that it can break dowsing twigs and lead 
dowsers to pass out or vomit. Yet a century of careful experimentation failed 
to establish it. We understand Hansen’s curious conclusion best by recalling 
that the vehicle of publication for his review was the Journal of the Society for 
Psychical Research.

The strongest experimental evidence against dowsing has come in the 
form of controlled trials, which have occurred sporadically over the past cen-
tury. Gregory (1929) collected and detailed the tests of dowsing then known 
to him, many of them unfavorable. Notable among them was a carefully con-
structed blind test organized by Sir John Cadman of the Anglo-Persian Oil 
Company (now British Petroleum) at its experimental station at Meadhurst, 
Sudbury-on-Thames, England, in 1925 (340–43). Dowsers were tested for 
their abilities to detect various combinations of buried deposits of water, oil, 
or empty barrels. The result was failure or, to quote Cadman, “a complete 
fiasco”; “in no case were the diviners able to show any justification for their 
contention that they could discover such deposits” (341).

In another such test, stage magician and parapsychology debunker James 
Randi (2020) organized a controlled trial of dowsing in Sydney, Australia, in 
July 1980. Dowsers were asked to identify which of ten buried pipes contained 
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running water. Despite their confidence, the dowsers performed merely at 
chance levels.

The largest test of dowsing abilities was conducted in Germany with a grant 
in 1986 of DM 400,000 from the government ministry Bundesministerium 
für Forschung und Technologie. It was completed in 1990. Some 500 dowsers 
were subjected to 10,000 individual tests. Most performed at chance levels. 
The few (forty-three) who showed more promise were subjected to further 
tests in a barn, in German Scheunen. These tests came to be known as the 
“Scheunen experiment.” The dowsers were to locate a position on the barn’s 
second floor directly above a water pipe placed randomly on the floor below. 
The experimenters proclaimed a successful demonstration of the reality of 
dowsing. A critic, however, found the experimenters’ statistical analysis so 
flawed as to reverse their conclusion. Enright (1995, 360) concluded that

A reexamination of the data on which that conclusion was 
based, however, indicates that no persuasive evidence was ob-
tained for a genuine, reproducible dowsing skill. The absence 
of reproducibility suggests that the entire research outcome 
can reasonably be attributed to chance.

The German investigators (Betz et al. 1996) disputed this damning appraisal, 
and Enright (1996) reaffirmed it.

Although the practice of dowsing and disputes over it persist today, 
establishment skepticism of it has been unequivocal and well entrenched 
for over a century. A report in 1917 by the United States Geological Survey 
(Ellis 1917) responded to the “large number of inquiries received each year 
by the United States Geological Survey” about the efficacy of dowsing. The 
“Introductory Note” (5–6) was written by Oscar E. Meinzer, widely recog-
nized as the founding figure of modern groundwater hydrology. His verdict 
was unequivocal:

It is doubtful whether so much investigation and discussion 
have been bestowed on any other subject with such absolute 
lack of positive results. It is difficult to see how for practical 
purposes the entire matter could be more thoroughly discred-
ited. . . . (5)
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He went on to suggest that part of the dowsing profession is populated by 
swindlers who deliberately defraud people:

To all inquirers the United States Geological Survey therefore 
gives the advice not to expend any money for the services of 
any “water witch” or for the use or purchase of any machine or 
instrument devised for locating underground water or other 
minerals. (6)

6. The Ideo-Motor Principle
This entrenched skeptical conclusion is that there is no real dowsing effect. 
This presents a problem for the skeptics. Some dowsers, presumably, are 
frauds and swindlers. However, many sincerely believe that they have the 
ability and have had the profound experience of their twigs or rods moving 
as if under the influence of powerful external forces. Why else would these 
dowsers allow themselves to be subjected to carefully controlled tests?

The skeptical response came in the codification of something long sus-
pected: a sincere dowser might be unconsciously moving the twig. Ellis (1917, 
16) noted the idea already advanced in the seventeenth century by Gaspard 
Schott and Athanasius Kirchner. The modern tradition was initiated by 
William Carpenter (1852). He argued that muscular motion might occur 
without one’s conscious volition, and he dubbed the effect the “ideo-motor 
principle.” It explains, he assured readers, “numerous phenomena which may 
have been a source of perplexity. . . .” They include

. . . the movements of the “divining rod,” and the vibration of 
bodies suspended from the finger; both which have been clear-
ly proved to depend on the state of expectant attention on the 
part of the performer, his Will being temporarily withdrawn 
from control over his muscles by the state of abstraction to 
which his mind is given up, and the anticipation of a given 
result being the stimulus which directly and involuntarily 
prompts the muscular movements that produce it. (153; Car-
penter’s emphasis)
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This possibility had an immediate application in England in the mid- 
nineteenth century when interest in spiritualism was growing. Participants 
in séances were startled to find the table under their hands moving even 
though no one was consciously moving it. Michael Faraday, then an eminent 
experimental scientist, devised a simple test. He placed stacks of cardboard 
and other materials under people’s hands resting on the table in the séance. 
The stacks were devised so that they would respond differently according to 
whether the sitters’ hands were moved by the table that moved first or wheth-
er their hands moved first and pushed the table. The latter case was demon-
strated unequivocally. Faraday reported his results in a letter to the London 
Times on June 30, 1853.7

This ideo-motor principle or just the idea of unconscious movement 
enabled skeptics to account for how sincere dowsers might nonetheless find 
their twigs moving, as if under some external power. It also explained why 
sincere dowsers were so successful in controlled trials when they knew where 
the target was but failed when they did not. Indeed, it could even account 
for some of the limited successes of dowsers. As has often been noted, there 
are ordinary clues above ground that a dowser might unwittingly discern. 
Gregory (1929, 331) concluded that

Hence a man going over a tract of ground may notice signs of 
water unconsciously, and some slight mental action may cause 
the twitching of a finger and a jerk of the rod. While some 
dowsers may be deliberate frauds, and others may be duped 
by their vanity, many of the best dowsers probably act by their 
dissociated mental activities.

The flexibility of the ideo-motor principle also proved to be useful to pro-
ponents of dowsing. When it had become increasingly clear that dowsing did 
not operate by familiar physical processes such as electricity and magnetism, 
we saw above that Barrett (1911, 183) resorted to clairvoyance as the active 
mechanism. But how might a clairvoyant thought be known by the dowser’s 
twig? Unconscious muscular movement by the dowser transmits it, Barrett 
concluded.

7	 Presumably, he knew of Carpenter’s proposal since Faraday was a contributor to the 
volume of the Proceedings in which Carpenter’s paper appeared. For an account of the origin and 
development of the idea of ideo-motor action, see Hyman (1999).
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7. The Diverging Inductive Logics
The preceding sections have recounted the dispute among proponents and 
skeptics of dowsing over which are the facts governing dowsing. According to 
the material theory of induction, different facts will support different induct-
ive logics. Since these differences among the facts proposed and presumed 
by each group are large, we should expect and will find these differences re-
flected in differences in their inductive inferences.

The easiest to see arises from differences in views over the facts of the 
geological distribution of the water sought by dowsers. If one believes with 
the dowsers that underground water is distributed sparsely in veins, then one 
will infer that a dowser’s successful prediction of the location of water pro-
vides good inductive support for the efficacy of dowsing. Success, if dowsing 
were ineffective, would be unlikely. If, however, one believes with the skep-
tics that water is often distributed broadly in readily accessible water tables, 
then one will find a dowser’s successful prediction of the location of water to 
be evidentially inconsequential. The success is assured independently of any 
special power of the dowser.

A richer divergence in the inductive logics derives from differences over 
whether there is a real physical process directly connecting the dowser’s target 
and the movement of the dowser’s twig. If one believes with the mainstream 
of dowsers that there is such a process, then a dowser’s success is expected and 
provides additional support for facts already believed, the efficacy of dowsing. 
The problematic cases are those in which dowsing fails. In that circumstance, 
under this logic, we have evidence for a secondary disturbing process or other 
confounding factor resulting in the failure. The research agenda is to find it. 
We have seen already that such failures might be explained by proponents of 
dowsing in a way familiar even to modern parapsychologists — in Agricola’s 
([1556] 1912, 39) words, “some peculiarity of the individual, which hinders 
and impedes the power of the veins.”

If, however, one believes with the skeptics that no real physical process 
directly connects the dowser’s target and the movement of the dowser’s twig, 
then matters are exactly reversed. The failure of a dowser is expected and pro-
vides additional support for facts already believed, the inefficacy of dowsing. 
The successes are the problematic cases. They are evidence for some second-
ary process that emulates successful dowsing. The research agenda is to find 
it. Perhaps the dowser unconsciously reacted to ordinary signs of the target, 
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or success was assured by the prevalence of water, or the reports of success are 
exaggerated or heavily selected.

These last remarks pertain just to the beliefs of the two sides regarding 
which are the prevailing facts and thus which are the appropriate inductive 
inferences. Of course, at most, one of these logics can be applied correctly to 
dowsing. That one logic is determined by which are the facts actually prevail-
ing over dowsing.

8. Conclusion: The Inductive Instability
I can now summarize the inductive instability that led to the collapse of the 
credibility of dowsing and the evidential dominance of the skeptics. Initially, 
when the practice first emerged in the sixteenth century, neither proponents 
nor skeptics could claim a decisive advantage. If anything, skeptics were at a 
striking disadvantage, for dowsing was an established practice. Its operation 
was directly visible in the unambiguous motions of the dowsers’ twigs, and 
there was a financially successful profession of dowsers serving the mining 
industry. What followed was a steady stream of self-reinforcing victories by 
the skeptics that so weakened the dowsers’ claims that they lost scientific 
credibility.

As far as the observed reality of the process itself was concerned, the evi-
dential case was unstable, at least in the shorter term. The successes of dowsers 
strengthened their case and weakened that of the skeptics. Correspondingly, 
the failures reversed these judgments. These failures were a concern for 
dowsers from the start, for there were always skeptics who suspected self- 
deception and even dishonesty by the dowsers. An enduring history of fail-
ures is more damaging to the dowsers than to the skeptics, for the dowsers 
make the positive claim of the existence of a definite process. Yet they are 
unable to delineate the precise conditions under which that process is guar-
anteed to appear. Pryce (1778, 116), who championed the efficacy of dowsing, 
curiously had to concede that he himself was unable to dowse:

As many deny, or at least doubt, the attributed properties of 
the divining rod, I shall not take upon me, singly to oppose 
the general opinion, although I am well convinced of its ab-
solute and improveable virtues. It does not become me to de-
cide upon so controvertible a point; particularly, as from my 
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natural constitution of mind and body, I am almost incapa-
ble of co-operating with its influence; and, therefore, cannot, 
of my own knowledge and experience, produce satisfactory 
proofs of its value and excellence.

That is troublesome for an effect supposedly akin to the reliable processes of 
magnetism and electricity. The persistence of these failures over the centuries 
must erode the strength of support for dowsing.8

The identification of ideo-motor effects in the nineteenth century gave a 
new advantage to the skeptics at the expense of the dowsers. Pryce had em-
phasized the honesty and reliability of those giving favorable observational 
reports of dowsing. He wrote of one,

. . . my worthy friend Mr. William Cookworthy, of Plymouth, 
a man, not less esteemed for his refined sense and unimpeach-
able veracity, than for his chemical abilities. (1778, 116)

Just as the honesty of this observer weighed favorably on Pryce, so too does 
the sincerity and honesty of at least some of the dowsers who appear to prac-
tice dowsing successfully. This part of the case for dowsing was now eliminat-
ed. Ideo-motor effects gave skeptics a serviceable account of the illusion of the 
effectiveness of dowsing. The ideo-motor effects were reproducible reliably. 
The effect would be present just when the agent knew the targeted answer.

Finally, failures of controlled trials of dowsing completed the experi-
mental side of the skeptics’ case.

In parallel with these developments, the strengthening of theories of 
magnetism, electricity, gravitation, and more left no theoretical niche for the 
physical processes that would have to mediate in dowsing, if the effect was 
real. The process unfolded in an instability in which successes by the skep-
tics strengthened their case while weakening that of the dowsers. That is, as 
theories of electricity, magnetism, and other physical forces advanced, the 
theoretical niche available for the physical basis of dowsing contracted. The 
dowsing theorists were perpetually retreating and shifting their theoretical 
ground with yet another speculation. Meinzer gave an acerbic appraisal:

8	 Here we might compare their continuing difficulties with the comparable problem 
faced by proponents of cold fusion to produce the effect reliably in the laboratory. See Norton 
(2021, Chapter 4, Section 5).
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A favorite trick for appealing to uneducated persons and yet 
making specific disproof impossible is to give as the working 
principle of such a [dowsing] device some newly discovered 
and vaguely understood phenomenon, as, for example, radio-
activity. (Ellis 1917, 5)

Dowsers repeatedly retreated to speculations within existing theories that 
fell far short of professional standards and then finally to suppositions of 
psychic effects.

These two observational and theoretical tracks were also mutually re-
inforcing. When observational or experimental tests fail to manifest an ef-
fect, there is always some possibility that a different set of conditions might 
nonetheless produce it. The skeptics could dismiss this possibility by pointing 
to the lack of a theoretical niche in known physics for processes that could 
mediate in dowsing. The skeptical theorists, however, could worry that their 
theories had failed to probe all of the material processes in their domain of 
investigation. These theorists could reassure themselves that they had not 
missed some novel process at work in dowsing by pointing to the failure of 
objective testing to discover any such process.

In sum, the early viability of both proponents’ and skeptics’ positions 
was unstable under further investigation. As those investigations proceeded, 
on the experimental and theoretical tracks, they favored the skeptics. The 
investigations reinforced each other, accelerating the skeptics’ advantage and 
leading to their evidential dominance.
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14

Stock Market Prediction: When 
Inductive Logics Compete

1. Introduction
This chapter continues the investigations of Chapters 4 and 13 of the possibil-
ity that a single body of evidence might support competing theories equally 
well. That possibility is precluded, I argued, by an instability in the competi-
tion among rival theories. As long as the evidence is pursued sufficiently, that 
instability will lead to one theory prevailing over its rival. A small advantage 
gained from evidence by one theory amplifies its inductive powers at the ex-
pense of the rival. This amplification leads to an acceleration of the gains of 
that theory against its rival and speeds the latter’s demise. This process can 
be completed quickly. The competition between dowsers and their skeptics 
in the previous chapter was exceptional in its slow pace. The stability of our 
mature sciences arises from the repeated elimination of rivals by this process. 
Many outcomes of this process fill most of our present science.

This chapter provides an illustration, occurring now, of an otherwise 
rarer and enduring competition of theories and their associated inductive 
logics. The competition has endured over decades and shows no sign of a 
speedy resolution. It arises through efforts to predict the changes in prices of 
stocks in the stock market. The competition is relatively easy to assess since 
the predictions are generally unambiguous and their successes or failures 
soon evident. Either the stock price went up as predicted, or it did not.

I will describe four systems of prediction. Each is currently in vogue, and 
each has a history extending over many decades. Each, in effect, is an induct-
ive logic, for each uses past stock performance and related facts to discern 
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which among many future possibilities are more likely. The four systems to 
be discussed are

•	 fundamental analysis;

•	 technical analysis;

•	 random walk/efficient market analysis; and

•	 fractal/scale free analysis.

They are sketched in Section 2 below. Since each of these systems has spawned 
evolving research programs of great complexity, a rudimentary sketch of 
each is all that is possible here. Each sketch indicates the ideas that motiv-
ated the system and its founding hypothesis in its simplest and original form. 
That, however, will be sufficient for my purposes here. Such sketches provide 
enough to illustrate the differences between the systems and the dynamics of 
the competition between them.1 The mutual incompatibility of the different 
systems is widely recognized and manifests in repeated attempts by propon-
ents of each system to impugn the others. In Section 3, I collect a represent-
ative sample of such cross-system criticism. For my purposes, the important 
point is that the criticism focuses on proposing facts troublesome for the 
competition. This is how the material theory of induction dictates that dif-
ferences among systems are to be resolved — by further factual investigation. 
A concluding Section 4 summarizes general features of the competition and 
how the factual investigations proposed could drive the field toward a single 
inductive logic if only they were pursued.

2. The Systems
Multiple systems of inductive logic are possible, temporarily at least. This 
is a natural artifact of how these systems are constructed. Each is based on 
founding propositions that warrant the logic’s inferences. We shall see in 
the examples of stock market prediction below that these founding propos-
itions are introduced initially as hypotheses without full inductive support. 
The expectation of proponents of each system is that this support will accrue 

1	 For an engaging historical survey of the development of these systems, written by a 
philosopher of science, see Weatherall (2013).
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eventually. Until this happens, the systems will remain legitimately in con-
flict while proponents of each seek the strong inductive support needed.

2.1. Fundamental Analysis
This venerable approach is based on a simple idea. Each stock, it is suppos-
ed, has an intrinsic value. Often there will be discrepancies between the 
market price of the stock and its value. These discrepancies will not last. If 
you can identify a stock whose price is well below its intrinsic value, then 
it can be purchased with the confidence that the price will rise eventually. 
Correspondingly, a stock whose price is well above its intrinsic value would 
be a poor long-term investment since its price will fall eventually. The previ-
ous two sentences are predictions inductively supported by the founding

Hypothesis of fundamental analysis. Each stock has an intrinsic 
value. Discrepancies between the intrinsic value and the market 
price of a stock will be removed eventually by price moves.

This system has a rich pedigree. The work widely known as the “bible of value 
investing”2 is Graham and Dodd (2013). It was first published in 1934 and 
is now in its sixth edition. In his preface to the latest edition, the legendary 
investor Warren Buffett endorsed the volume and its approach:

. . . I studied from Security Analysis while I was at Colum-
bia University in 1950 and 1951, when I had the extraordinary 
good luck to have Ben Graham and Dave Dodd as teachers. 
Together, the book and the men changed my life.

On the utilitarian side, what I learned then became the 
bedrock upon which all of my investment and business deci-
sions have been built. . . . (2013, xi)

There is considerably more, of course, to fundamental analysis. Graham and 
Dodd is a work of 766 pages. Perhaps the most delicate issue is the determin-
ation of the intrinsic value of a stock. It cannot be merely the market price on 
pain of trivializing the whole system of analysis. One important element will 
be the dividends paid by the stock. Others include less tangible judgments of 
the stability of the stock’s business model and its management’s acumen and 
abilities.

2	 So reported by Seth Klarman in his preface to Graham and Dodd (2013, xiii).
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Fundamentalists make their predictions on the basis of an exhaustive 
examination of companies behind the stock. In this aspect, fundamental 
analysis employs a far larger body of evidence than the three remaining ap-
proaches discussed below. These latter approaches make their predictions 
solely on the basis of the history of past stock prices and volumes of trades.

2.2. Technical Analysis (“Chartists”)
Technical analysis starts with an observation that can be made by any casual 
observer of a chart of stock prices over time: the line tracing the prices ex-
hibits all sorts of interesting patterns, some of which appear to be repeated. 
The core supposition made by technical analysts — “chartists” — is that these 
patterns are sometimes signals that, properly interpreted, reveal to traders 
subsequent moves in stock prices. This type of analysis goes back to Charles 
Dow in the late nineteenth century. This is the same Dow of the Dow Jones 
Industrial Average. The approach has been refined by many hands. A recent, 
authoritative exposition is Edwards, Magee, and Bassetti (2019), the eleventh 
edition of a work first published in 1948.3

There are many suppositions underlying that approach. The editor and 
reviser of the seventh edition attributes to John Magee three principles 
(Edwards, Magee, and Bassetti 2019, xxxix):

1.	 Stock prices tend to move in trends.

2.	 Volume goes with the trends.

3.	 A trend, once established, tends to continue in force.

A primary goal of technical analysis is the identification in the charts of the 
signals indicating a reversal of a trend. These signals appear in a bewildering 
array of patterns in the charts, which are given suggestive names such as “head 
and shoulders,” “symmetrical triangles,” “the diamond,” and many more.

The existence of these signaling formations is attributed to the behavior 
of traders reacting to shifts in the market; this behavior, in turn, is explicated 
by an understanding of the traders’ psychology. A simple example is the exist-
ence of support and resistance levels, which appear as plateaus of constant 
price with time in the charts. A support arises when a surge in purchasing 

3	 Another version of technical analysis is the Elliot wave theory, popularized by Frost and 
Prechter (2017). It asserts that trader psychology produces nestled waves whose compound action 
comprises the movements of prices in the market.
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forms a plateau that halts a downward trend in prices. A resistance arises 
when a surge in selling forms a plateau that halts a rising trend in prices.

Following the analysis of Edwards, Magee, and Bassetti (2019, Chapter 
13), support and resistance will arise at price levels where, in the past, there 
was a larger amount of trading. The reason lies with the psychology of the 
traders involved in these earlier trades. For example, traders might purchase 
stock at some price level, confident in its price rising. If, instead, the price 
rises and falls, then traders who have continued to hold the stock might lose 
confidence in their purchase. When the price rises again and passes through 
the price at which these traders originally purchased the stock, they would 
be tempted to sell since then they would have lost nothing on the trade other 
than the transaction cost. The resulting surge in selling would flood the mar-
ket and temporarily suppress further price rises. That is, the price would be 
a resistance level. An inversion of this process could convert the same price 
level into a support level. If instead the traders become more confident in the 
wisdom of the purchase, then they might regret not initially purchasing more 
at the original price. They might be inclined to buy more of the stock when 
it falls in price to that original level. Then the surge in purchasing forms a 
support level.

A more elaborate pattern, prominent in technical analysis, is head and 
shoulders. It consists of three peaks in succession in the charts. In its most 
characteristic form, the first and third peaks are of the same height, and the 
second peak is higher. The overall shape is loosely like the silhouette of a per-
son’s head and shoulders. Its appearance, we are told by Edwards, Magee, and 
Bassetti (2019, 44) is common, and it is, they assure us, “by all odds, the most 
reliable of the Major Reversal Patterns.” That is, we can be confident that the 
stock price will fall once this pattern arises. Their confidence is so high that 
they later report that, since

The odds are so overwhelmingly in favor of the downtrend 
continuing once a Head-and-Shoulders Formation has been 
confirmed, it pays to believe the evidence of the chart no mat-
ter how much it may appear to be out of accord with the pre-
vailing news or market psychology. (48)

As with support and resistance, this head and shoulders formation does not 
arise by chance. It is a product of the psychology of traders. Edwards, Magee, 
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and Bassetti (2019, 43–44) describe a plausible scenario in which the forma-
tion would occur. They imagine a well-financed coterie that has purchased 
some stock heavily. When it has risen to the price at which they plan to sell, 
they proceed to sell their holdings hesitantly so as not to precipitate a collapse 
in the stock’s price. In their telling of the scenario, the cautious stopping and 
starting of the selling happen in just the right way to produce the head and 
shoulders pattern.

The volume proceeds in this fashion of identifying a prodigious reper-
toire of patterns for traders to seek and use as signals of reversals in prices. 
Of course, none of the patterns is infallible. Every few pages, we are warned 
of “false moves” or “false signals” confounding the technical indicators. The 
hypothesis that warrants the inferences of this mode of analysis can be sum-
marized as the

Hypothesis of technical analysis. The psychology of market traders 
leads to trading behavior that imprints distinctive patterns on the 
changes in time of prices and volumes. The unique association of 
the earlier and later part of the pattern is strong enough that the 
presence of the former predicts the coming of the latter.

2.3. Random Walks
The two analytical systems reviewed so far are optimistic. If traders use the 
right system, each system maintains, then their predictions can lead them to 
profitable trading. Another approach is pessimistic. Traders, this approach 
says, are engaged in fierce competition with one another. Any usable indi-
cation of a market move is seized and exploited to the full. This happens so 
rapidly that any actionable indication has already been anticipated, and the 
move that it foretold is already built into the present price of a stock, at least 
as far as ordinary investors are concerned. Chance alone governs price move-
ments. It is just self-deception to think that one can beat the averages of mar-
ket behavior by sophisticated techniques of prediction. The best that one can 
do is to follow a “buy and hold” strategy that minimizes trading expenses and 
lets one’s fortunes rise with the market as a whole.

Here is how Paul Samuelson (1965, 41) put it, posing it as an enigma that 
introduced a famous paper:
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“In competitive markets, there is a buyer for every seller. If one 
could be sure that a price will rise, it would have already risen.” 
Arguments like this are used to deduce that competitive prices 
must display price changes over time, [formula], that perform 
a random walk with no predictable bias.

The mathematically precise statement of this form of predictive pessimism 
is the random walk model. It asserts that stock prices meander in a manner 
akin to the process that Einstein predicted in 1905 for small particles sus-
pended in a liquid. These small particles are affected on all sides by many fluid 
molecules. The accumulated effect of many of these uncorrelated collisions 
is the jiggling known as Brownian motion. It is the best-known example in 
science of a random walk. The proposal is that stock market prices execute a 
random walk about their mean values. Most importantly, whether the stock 
will rise or fall momentarily is statistically independent of what it did mo-
ments before.

The random walk hypothesis for markets was first proposed by Bachelier 
(1900) prior to Einstein’s work of 1905. A more recent version is elaborated in 
Fama (1965). The conditions needed for prices to exhibit a random walk are 
well known. Drawing from Fama (40–41), they are the

Hypothesis of the random walk. Price changes are governed by a 
probability distribution with a finite mean and variance, and suc-
cessive price changes are probabilistically independent.

The most significant predictions supported by the random walk model are 
negative. The best that one can do predictively is to determine the prob-
ability distribution of price changes. An examination of the past history 
of changes in prices, no matter how thorough and extensive, can provide 
nothing more. It follows that all of the indicators of technical analysis are 
predictively useless.

Although the random walk model supports few positive predictions, 
one has proven to be important. The conditions above for a random walk are 
sufficient to allow the application of the central limit theorem of probability 
theory to the accumulation of many price changes. That theorem tells us that, 
if we sum sufficiently many smaller price changes, then the resulting accumu-
lated price change conforms to a Gaussian or normal distribution. Once one 
knows the standard deviation “s” of the distribution, the range of probability 
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changes in prices is well circumscribed. They will mass around the mean: 
95.4% will lie on average within two standard deviations of the mean. The 
probability of larger changes diminishes exponentially since the tail of the 
normal deviation is exponentially thin. Deviations of six sigma, “6s,” or more 
are vastly improbable. They arise with a probability of about 2 x 10–9. That is, 
they occur on average once in roughly 500 million changes.4

2.4. The Efficient Market Hypothesis
The random walk hypothesis is customarily coupled with what is known 
as the “efficient market hypothesis.” It is the idea sketched above that any 
usable indication of future price changes has already been reflected fully in 
the present price. Markets are efficient at exploiting all usable indications im-
mediately so that none is left for ordinary investors to exploit. The efficient 
market hypothesis is commonly taken to be the grounding of the random 
walk model. We see it in Samuelson’s enigma above. Burton Malkiel (2015), 
in his successful popularization Random Walk down Wall Street, writes 
favorably (in the preface) of the efficient market hypothesis. However, he also 
portrays the hypothesis as an “obfuscation” (26) of the random walk hypoth-
esis deployed by academics who attempt to parry critics of the random walk 
hypothesis.

Malkiel’s hesitation is well justified, for the efficient market hypothesis 
is both imprecisely delimited and weaker logically than the random walk 
hypothesis. It cannot, by itself, sustain the random walk hypothesis. A sig-
nificant imprecision lies in a failure to specify just which sorts of information 
can count as an indication of future price changes. Fama (1970, 383) identi-
fies three candidates. If the information is merely that of the past history of 
prices, then we have the “weak” form of the hypothesis. If the information 
includes all publicly available information, then we have the “semi-strong” 
form. Finally, the “strong” form applies when some monopolistic groups have 
access to all information relevant to price changes. Fama seeks (384) to give 
the hypothesis more precise expression in terms of the probabilistic expecta-
tions of prices over time. Roughly speaking, it asserts that the expected price 
of a security at a later time rises just by the increase expected with the best 
current information. It is immediately clear, as Fama shows (386–87), that a 

4	 You would be correct to wonder whether this prediction conforms to the stock market’s 
history of rarer but memorable crashes. I will take up this issue in the next section.
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condition on probabilistic expectations is weaker than the random walk hy-
pothesis, for this latter hypothesis concerns the full probability distributions 
and not just their expectations. To his critique, I add that the efficient market 
hypothesis, as commonly stated, is not necessarily a probabilistic hypothesis 
at all. It can be expressed for changes, stochastic or otherwise, not governed 
by a probability distribution.

These last considerations show that an efficient market is not sufficient 
to produce a random walk. It is also not necessary, for a random walk could 
also arise if traders were maximally inept and merely traded on idiosyn-
cratic whims.

2.5. Mandelbrot’s Fractals
The core supposition of this approach is that the charts recording changes in 
prices are self-similar under changes of time scale. The program of research 
associated with it is inseparable from the work of Benoit Mandelbrot, its chief 
architect and proponent. He is fond of telling heroic tales of his discovery:

. . . I conceived in the late fifties a tool that was already men-
tioned, but deserves elaboration. I concluded that much in 
economics is self-affine; a simpler word is scaling. This notion 
is most important, and also most visual (hence closest to being 
self-explanatory), in the context of the financial charts. Folk-
lore asserts that “all charts look the same.” For example, to 
inspect a chart from close by, then far away, take the whole 
and diverse pieces of it, and resize each to the same horizontal 
format known to photographers as “landscape.” Two renor-
malized charts are never identical, of course, but the folklore 
asserts that they do not differ in kind. The scholarly term for 
“resize” is to “renormalize” by performing an “affinity,” which 
motivated me in 1977 to coin the term “self-affinity.” . . . The 
scholarly term for “to look alike” is “to remain statistically 
invariant by dilation or reduction.” (1997, 5–6; Mandelbrot’s 
emphasis)

Self-similarity is the defining characteristic of fractal curves, such as the 
Koch snowflake. Each part is made of smaller parts that are scaled-down ver-
sions of the larger part and so on at all levels. Thus, that a curve is self-similar 
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is a powerful constraint. A casual reader, however, might overlook that self- 
similarity is not quite so restrictive in the financial application. As the remark 
above allows, the similarity is not exact, as with the Koch snowflake. It is only 
statistical: that is, there is a similarity in the probabilistic distributions only, 
not the curve’s specific shapes, which means that the curves merely “look 
alike” at different scales.

We best capture the founding hypothesis by quoting what Mandelbrot 
calls the “property assumed as ‘axiom’” (1997, 2) for him, a collection of his 
papers in fractal finance:

Hypothesis of fractal finance. “Starting from the rules that govern 
the variability of price at a certain scale of time, higher-frequency 
and lower-frequency variation is governed by the same rules, but 
acting faster or more slowly.”

Its implementation is straightforward. Consider the probabilistic distribution 
of price changes over one day. That distribution is the same distribution that 
governs prices changes accumulated over a month and again those accumu-
lated over a year. Since the overall magnitude of changes in the periods of a 
day, a month, and a year is different, we must rescale linearly the distribution 
in moving between these time periods so that the overall magnitudes align 
and a sameness of probabilistic distribution is recovered. Here “sameness” 
means “same analytical formula.”

As it happens, just this form of self-similarity is already manifested in 
the random walk model. Price changes over a large interval of time are just 
the sums of the changes over the smaller component intervals of time. If price 
changes in small intervals of time are independent and normally distributed 
with finite means and variances, then their distribution over the summed 
time interval will also be normal but with a mean and a variance each of 
which is the sum of the means and the variances of the distributions in the 
small time intervals. These distributions scale in the sense that we can map 
any normal distribution into any other by suitable linear transformation of 
its variables.

As noted above, the central limit theorem of probability theory tells us 
that this scaling behavior eventually will emerge as the limiting behavior on 
sufficiently large time scales even when the probability distributions over the 
smaller time intervals are not normal. It will happen as long as the probability 
distributions over the smaller time intervals are independent and have finite 
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means and variances (and, informally speaking, no one time interval makes 
a disproportionately large contribution to the sum).

The essential observation that Mandelbrot added to this already existing 
self-similarity is that a Gaussian or normally distributed random walk is not 
the only distribution satisfying self-similarity. His early paper (1963) outlined 
a generalization of this self-scaling behavior that arises when the distributions 
of price changes in the small time intervals are no longer required to have fi-
nite means or variances. The most general class of distributions that exhibits 
the self-similarity under summation of the distributions Mandelbrot called 
“stable Paretian.” That is, if the distribution of price changes in the smaller 
time intervals is stable Paretian, then so is the distribution of price changes 
over the summed time interval. These distributions also sustain a generalized 
version of the central limit theorem. The theorem is as stated above. However, 
we can drop the requirement that the component distributions have finite 
means and variances, but we retain their independence. What we are assured 
to approach in the limit of large sums is a stable Paretian distribution, which 
includes normal distributions as a special case. So once again we should ex-
pect self-similar behavior to be approached over suitably long time periods.5

Mandelbrot’s contribution was not the identification of this extended 
class of distributions and the associated extension of the central limit theor-
em. As Mandelbrot reported, all of this work was already done by the French 
mathematician Paul Lévy some forty years earlier. Rather, it was to recognize 
that the nonnormal members of the Paretian class were better suited empir-
ically to market behavior. As we saw above, the normal distribution makes 
large jumps in prices extremely improbable. Yet such jumps are common in 
real markets. The nonnormal members of the distribution are distinctive in 
having “fat tails.” That is, they assign considerably larger probabilities than 
normal distributions to large deviations from the mean. These deviations are 
the jumps. More specifically, the nonnormal Paretian distributions over some 
real variable U all approach asymptotically a simple power law distribution 
for large U. That is, when U is large, the probability of an outcome u greater 
than U is well approximated by P(u) = C u–a, for C a constant and 0 < a < 2. As 
the variable u increases, any of these power laws decays toward zero slower 
than the exponential decay of any normal distribution.

5	 For a contemporary development of Mandelbrot’s analysis, see Fama (1965). A more 
recent analysis of the generalized central limit theorem is in Ibe (2013, Chapter 8).
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Mandelbrot (1997, 29–30) glosses the “scaling” behavior of this tail dis-
tribution by noting that, if we were to learn that U must be at least equal to w, 
then conditioning the original distribution on this fact yields the same power 
law distribution but now with an altered constant C. This seems to me a weak 
expression of the scaling behavior, better captured by the generalized central 
limit theorem. We can forgive Mandelbrot for not giving more mathematical 
details in a semi-popular presentation since the details become burdensome 
rapidly. There is no explicit expression for the Paretian class of distributions. 
They are best characterized by an explicit formula for the characteristic func-
tions of the distributions.

This introduction of Paretian distributions was the first step in a con-
tinuing program of research by Mandelbrot. Subsequent work introduced the 
possibility of various failures of independence of successive price movements 
while still retaining the statistics of Paretian distributions with their fat tails.

2.6. Random Walkers and Fractals Converge
The random walk theory and the fractal theory might appear to be distinct 
systems with different logics. That was the view that Mandelbrot urged. He 
was already describing his work in 1963 as “a radically new approach to the 
problem of price variation” (395). There were notable differences between 
his approach and that of the random walk theory at the outset. Mandelbrot 
denied two of the basic assumptions of the random walk theory: the finite 
variance of price changes and the independence of subsequent changes. As 
far as the actual predictive apparatus is concerned, the use of distributions 
with infinite variance and fat power law tails comprise the main substance of 
Mandelbrot’s deviation from the traditional random walk theory. The scaling 
hypothesis by itself is not strong enough to preclude the Gaussian random 
walk theory. Indeed, the introduction of infinite variances and fat-tailed dis-
tributions must be supported by observation of the market prices, and those 
observations might well suffice without the scaling hypothesis if our goal is 
merely the compact summary of the data.

Viewed more broadly, the random walk theory and the fractal approach 
agree far more than they disagree. They share a statistical framework that 
presumes that prices are probabilistically distributed, that market analysis is 
the mathematical exploration of these distributions, and that these distribu-
tions exhaust what the analyst can know. To a chartist, however, whose meth-
ods do not include traditional statistical analysis, the differences between 
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the random walk theory and the fractal approach will appear to be mere 
fine-tuning of details in an analysis remote and alien to them.

More significant for my purposes here, these differences are diminishing. 
The approaches are converging. In the evolving literature on random walks, 
empirical investigation is to decide whether the variances are finite and wheth-
er there are failures of independence. It now seems to be well established that 
independence does fail. That recognition is reflected in the provocative title of 
A Non-Random Walk down Wall Street (Lo and MacKinlay 1999). The title is 
hyperbolic since it turns out that the failures of independence are so slight as 
not to be serviceable as predictive tools for ordinary traders.

The mainstream of statistical analysts seems to regard Mandelbrot’s con-
tribution as mere refinement, as is apparent from the papers collected in Lo 
and MacKinlay (1999). The word fractal appears once (15), and Mandelbrot’s 
work is addressed but treated as an interesting proposal among others for 
extensions of the probability distributions and dependencies of the main-
stream analysis. The word fractal and the name Mandelbrot do not appear 
in Malkiel (2015).

Mandelbrot, for his part, accepts the core lesson of the random walk 
theory, the unpredictability of price changes. However, he expands this pre-
dictive pessimism with a warning that price changes might be far larger than 
the traditional random walker expects:

. . . I agree with the orthodox economist that stock prices are 
probably not predictable in any useful sense of the term. But 
the risk certainly does follow patterns that can be expressed 
mathematically and can be modeled on a computer. Thus, my 
research could help people avoid losing as much money as they 
do, through foolhardy underestimation of the risk of ruin.6 
(Mandelbrot and Hudson 2004, 6)

3. The Systems Compete
The competition among these systems is unsustainable in the longer term if 
factual investigations continue and the full import of evidence is respected. 
The competition might be resolved gently if systems in competition migrate 

6	 A similar remark is in Mandelbrot (1997, 9).
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toward one another. This gentle resolution has brought the random walk 
theory and fractal analysis into sufficient agreement that they can be regarded 
as one system. However, if the proponents of competing systems remain 
intransigent, then, I have argued, a thorough factual investigation will lead at 
most to one ascending while the others fail.

Proponents of each system do recognize the threat posed by the other 
systems and have put some effort into impugning their competitors. Here I 
will collect criticisms levied by proponents of each system against competing 
systems. The main point for my purposes is that the criticisms all depend on 
proposing facts whose truth would undermine the competitors’ theories. They 
are most damaging when the proposed facts directly contradict the founding 
hypotheses of each system. A threat to these founding hypotheses is a threat 
to the inductive logic and the predictive capacity of the associated view.

This battle of the foundational facts makes clear one of the principal 
points of this chapter: that the conflict among the systems is to be resolved by 
factual investigation, as opposed to higher-level examination of abstract prin-
ciples of inductive inference. Were the facts proposed below by various pro-
ponents to be investigated thoroughly and a final decision made on each, that 
would suffice to leave viable at most one of the systems. The path to this reso-
lution is open. Whether it is taken depends on many factors that go beyond 
the inductive logic. Is there sufficient motivation by investigators to carry out 
the requisite studies thoroughly enough to achieve inescapable results? Will 
proponents of an impugned system accept the results? The persistence of the 
competing programs indicates that these factors have slowed or even stalled 
progress toward the final decision.

Below is a sample of the threats mounted against each system.

3.1. Against Fundamental Analysis
Malkiel, the most visible proponent of random walk theory, lists three prob-
lems for fundamental analysis:

Despite its plausibility and scientific appearance, there are three 
potential flaws in this type of analysis.

First, the information and analysis may be incorrect.

Second, the security analyst’s estimate of “value” may be faulty.
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Third, the market may not correct its “mistake,” and the stock price 
may not converge to its value estimate. (2015, 128–29; my emphasis)

Malkiel proceeds to elaborate each. Most striking is his disparaging of the 
very idea of value:

It is virtually impossible to translate the specific estimates of 
growth into a single estimate of intrinsic value. Indeed, at-
tempts to obtain a measure of fundamental value may be an 
unrewarding search for a will-o’-the-wisp. (129)

Edwards, Magee, and Bassetti, the authoritative source in technical an-
alysis, level similar criticism against fundamental analysis. They reiterate 
Malkiel’s concern about poor information: “The bulk of the statistics the fun-
damentalists study are past history, already out of date and sterile because the 
market is not interested in the past or even in the present” (2019, 4). Using an 
examination of companies listed in the Dow Jones Industrial Average, they 
also argue that high earnings are a poor indicator of which stock prices will 
grow most (6). Next they assail the idea of a practically accessible notion of 
value, urging that “. . . it is futile to assign an intrinsic value to a stock cer-
tificate” (4). The claim is reinforced by recounting wild gyrations in the price 
of a share of US Steel over nearly two decades, from 1929 to 1947. Finally, 
they doubt that price movements are connected with the factual bases used 
by fundamentalists to determine value. They assert that “the [fundamental] 
analyst assumes causality between external events and market movements, 
a concept which is almost certainly false” (6). Mandelbrot’s (1997, 8) critique 
echoes all of these concerns: “In the real world, causes are usually obscure. 
Critical information is often unknown or unknowable. . . .”

This combined critique assails the essential elements of the founding hy-
pothesis of fundamental analysis. Intrinsic value is not in practice ascertain-
able reliably, and market dynamics might not or will not drive prices toward 
intrinsic value.

The claims of this critique are factual matters. The truth of the founding 
hypothesis of fundamental analysis can be established empirically. All that 
fundamental analysts need to display is a successful record of identifying in-
trinsic values toward which stock prices eventually converge.
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3.2. Against Technical Analysis
Of all the approaches, technical analysis has been subject to the most severe 
criticism, at times bordering on derision.7 Two factors draw this unflattering 
appraisal. First, to anyone with a modicum of statistical sophistication, the 
methods used to ascertain the chartists’ patterns are woefully naive. It is all 
too easy to glance at randomness and see order. We easily see faces in the 
clouds. In a preface to Edwards, Magee, and Bassetti, Richard McDermott, 
president of John Magee, Inc., reports the great man’s response to this concern:

To the random walker, who once confronted John [Magee] 
with the statement that there was no predictable behavior on 
Wall Street, John’s reply was classic. He said, “You fellows rely 
too heavily on your computers. The best computer ever de-
signed is still the human brain. Theoreticians try to simulate 
stock market behavior, and, failing to do so with any degree of 
predictability, declare that a journey through the stock market 
is a random walk. Isn’t it equally possible that the programs 
simply aren’t sensitive enough or the computers strong enough 
to successfully simulate the thought process of the human 
brain?” Then John would walk over to his bin of charts, pull 
out a favorite, and show it to the random walker. There it was 
— spike up, heavy volume; consolidation, light volume; spike 
up again, heavy volume. A third time. A fourth time. A beau-
tifully symmetrical chart, moving ahead in a well-defined 
trend channel, volume moving with price. “Do you really be-
lieve that these patterns are random?” John would ask, already 
knowing the answer. (2019, xxxv)

We would normally pass in silence over such an abysmal display of ignorance 
of the basics of statistical analysis. However, the second factor that encour-
ages circulation of the unflattering appraisal is that the methods of technic-
al analysis are pervasive in the financial world. Everywhere we find charts 
annotated in the language of support and resistance levels, breakouts, and 
more. There is a pretense of learned insight that rests, in practice, on novice 

7	 Ridicule is a staple in the popular literature. See, for example, Chokkavelu (2010), which 
opens with the quotation “Stupid is as stupid does” (Forrest Gump).
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statistical blunders. Yet these instruments are used routinely to make deci-
sions affecting the financial fates of many people. Thus, the long-standing 
derision is well earned. Long ago, in their original text, Graham and Dodd 
(1934, 608) reported “many [unnamed] sceptics” who dismiss the analysis 
as “akin to astrology or necromancy.” Mandelbrot (1997, 9) had no need for 
anonymity and labeled technical analysis “financial astrology.”

A footnote in Graham and Dodd’s original text also reports one of the 
earliest versions that I have found of a much-repeated rebuke. The idea is that 
we can fabricate charts using randomizers that now spuriously manifest the 
patterns of the technical analysts but without any predictive import. They 
write that,

Apropos of this attitude, we refer to a statement made by Fred-
erick R. Macaulay at a meeting of the American Statistical As-
sociation in 1925, to the effect that he had plotted the results of 
tossing a coin several thousand times (heads = “one point up”; 
tails = “one point down”) and had thereby obtained a graph 
resembling in all respects the typical stock chart — with resis-
tance points, trend lines, double tops, areas of accumulation, 
etc. Since this graph could not possibly hold any clue as to the 
future sequence of heads or tails, there was a rather strong in-
ference that stock charts are equally valueless. Mr. Macaulay’s 
remarks were summarized in Journal of the American Statisti-
cal Association, Vol. 20, p. 248, June 1925.8 (1934, 608)

The rebuke appears often in later literature. Malkiel (2015, 137–38) reports 
asking his students to construct such a chart by coin flipping.

Entertaining as such gimmicks might be, they do not really demonstrate 
the failure of technical analysis. If we are to hold the chartists to a high statis-
tical standard, then we should also apply it to ourselves. To conclude that, on a 
superficial scan, random data might manifest the same patterns as the chart-
ists does not prove them wrong. More cautious analysis is needed. Arditti and 
McCullough (1978) found that technical analysts could not pick apart real 

8	 The journal article cited is an anonymous report of an April 17, 1925, dinner meeting of 
the American Statistical Association. Graham and Dodd must be reporting from another source, 
perhaps their own attendance, since the journal text is briefer and uses dice, not coin tosses, as the 
randomizers.
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from randomly generated charts beyond chance levels in a well-constructed 
test. However, Hasanhodzic, Lo, and Viola (2010) devised a game in which 
participants sought to pick real from fabricated charts. The players were given 
immediate feedback on the correctness of their judgments. The training was 
effective. They quickly learned to pick the real from the fabricated charts.

All that the examination of fabricated charts can do is cast doubt on the 
methods that chartists use to arrive at their results. A poor method can still 
yield a correct result. It might just be that the psychology of traders does im-
print identifiable patterns on the charts, as the founding hypothesis asserts. 
The decisive question to answer is whether the methods work. Here Graham 
and Dodd (1934, 609) had already leveled a two-part critique. As a historical 
matter, they reported, the chartists had failed to find a method of prediction 
that works. “There is no generally known method of chart reading which has 
been continuously successful for a long period of time.” This historical report 
was coupled with a more principled critique: there can be no such method 
since it would be self-defeating: “If it were known, it would be speedily adopt-
ed by numberless traders. This very following would bring its usefulness to 
an end.”

Here the fundamentalists, Graham and Dodd, offered the same critique 
as that given later by the random walk proponent, Malkiel. He reported em-
pirical studies showing that the chartists’ patterns lack predictive power (e.g., 
2015, 114). His principal criticism, however, was the same efficient-market 
argument as that offered by Graham and Dodd: the chartists’ methods can-
not work since they undermine themselves.

Any successful technical scheme must ultimately be self- 
defeating. The moment I realize that prices will be higher after 
New Year’s Day than they are before Christmas, I will start 
buying before Christmas ever comes around. If people know 
a stock will go up tomorrow, you can be sure it will go up to-
day. Any regularity in the stock market that can be discovered 
and acted upon profitably is bound to destroy itself. This is 
the fundamental reason why I am convinced that no one will 
be successful in using technical methods to get above-average 
returns in the stock market. (Malkiel 2015, 156–57)
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As before, the decision on the cogency of the chartists’ methods is an 
empirical matter to be decided by investigations of the market. In princi-
ple, arguments such as those against technical analysis are impressive until 
empirical investigations show their conclusions to be false. Only then do we 
realize the fragility of assumptions made tacitly in the arguments. Aronson 
(2007) makes a sustained plea for technical analysts to hold their methods to 
the standards of routine statistical analysis. Perhaps Graham and Dodd and 
Malkiel were correct that enough has been done to refute technical analy-
sis. There are dissenters. Lorenzoni et al. (2007) claim that statistical analysis 
does reveal statistically significant information in two of three patterns: tri-
angle, rectangle, and head and shoulders.

3.3. Against Random Walks
Here I shall construe the random walk theory most broadly as including the 
possibility of small failures of independence and of distributions with infinite 
variances. This expanded version includes Mandelbrot’s fractal approach. It 
still retains the main idea that distinguishes the original random walk theory 
and fractal analysis from other approaches and draws criticism: markets are 
sufficiently random as to preclude useful prediction of change in prices be-
yond the broadest averages.

Although this failure of prediction directly contradicts the technic-
al analysts, there is little in the technical analysts’ authoritative volume, 
Edwards, Magee, and Bassetti (2019), to contradict the random walk theory. 
We have seen Magee’s facile response, reported above by McDermott (2019). 
Otherwise, “random walk” and “efficient market hypothesis” do not appear 
in the index or, as far as I can tell, in the text. Aronson (2007, 342–55) lays 
out an extended assault on the efficient market hypothesis. The approach is 
to undermine what he takes to be the founding assumptions of the hypoth-
esis. For example, he urges that investors are not rational, that their investing 
errors are not uncorrelated, that arbitrage need not force prices to rational 
levels, and more. The weakness of the critique is that Aronson does not prop-
erly separate the efficient market hypothesis from the hypothesis of a random 
walk. However, important for my purposes here is that all of the objections 
depend on factual matters, such as those just listed, and their truth can be 
ascertained by empirical investigations.

Buffett gave the authoritative response from the fundamentalists to 
random walk theory. His extraordinary record of profitable investing alone 
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indicates that an astute analyst can make successful predictions over sus-
tained periods. His “Superinvestors of Graham-and-Doddsville” (1984) 
makes the case against the impossibility of predicting the market in a dir-
ect way. He reports nine successful investment funds that exceeded market 
averages in their returns by wide margins and did so over long periods. The 
longest of them was 1956 to 1984.

This behavior contradicts the unpredictability of markets central to 
the random walk theory. More specifically, when the prices of undervalued 
stocks eventually rise assuredly to their true values, the sequence of upward 
changes in prices contradicts the independence or near independence of the 
price changes hypothesized in random walk theory.

The obvious random walk theorist’s response is that, in any large econ-
omy with many such funds, there will always be outliers that perform well 
merely by chance. Buffett goes to some pains to answer this objection. The 
funds on which he reports were selected prior to their successes. As he puts 
it, “these winners were all well known to me and pre-identified as superi-
or investors, the most identification occurring over 15 years ago” (1984, 4). 
Buffett also stresses the many differences between the funds while retaining 
the major common factor: they all follow the Graham and Dodd policy of 
investing when prices and values are mismatched. This common factor, we 
are to believe, is responsible for their successes.

There is also a casual rebuttal of the efficient market hypothesis, memor-
able because of the credentials of its source:

I’m convinced that there is much inefficiency in the market. 
These Graham-and-Doddsville investors have successfully 
exploited gaps between price and value. When the price of a 
stock can be influenced by a “herd” on Wall Street with prices 
set at the margin by the most emotional person, or the greed-
iest person, or the most depressed person, it is hard to argue 
that the market always prices rationally. In fact market prices 
are frequently nonsensical. (Buffett 1984, 13)

Once again Buffett’s argument is a direct challenge to the founding hypoth-
esis of the random walk theory and its embellished versions. The basis of 
the challenge is empirical. If it is an empirical fact that a particular sort of 
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investment strategy leads to long-term profits, well in excess of market aver-
ages, then the unpredictability of the market has been refuted.

4. Conclusion: The Instability of Competing Systems
Competing systems arise when analysts proceed from different, mutually in-
compatible hypotheses. The competition should be transient while we await 
further evidential scrutiny that will decide which, if any, of the hypotheses is 
well supported. As the full import of the existing evidence and that of new 
evidence is brought to bear, we have seen two ways that the competition could 
be resolved.

4.1. The Gentle Way: Convergence
In the gentler way, one or more of the systems in competition alter their 
founding hypotheses to accommodate evidential pressures. If this process 
of adaptation proceeds far enough, then competing systems might converge. 
This convergence has happened in the case of the random walk theory and 
fractal analysis. While the systems might first appear to be very different, 
they agree on so much at the outset that convergence was easily attained. 
Both adopt an essentially probabilistic outlook using the standard statistical 
methods of analysis. They differ only in smaller matters that can be settled by 
smaller empirical analysis. Are the variances of the probability distributions 
of price changes finite or infinite? What are the extent and nature of any prob-
abilistic dependence among successive price changes? Insofar as proponents 
of the approaches accept the results of empirical studies, and if the statistical 
approach is viable in the first place, then the convergence was inevitable.

In principle, a convergence of this generalized random walk theory and 
technical analysis is also possible. It would be inevitable if chartists would 
heed Aronson’s (2007) urging of the use of sound statistical methodology. 
Either the statistical studies will show a correlation between the head and 
shoulders formation and a subsequent decline in prices, or they will not. 
Once both groups of theorists accept these statistical methods, agreement on 
the efficacy or otherwise of these chartists’ signals is inevitable if only the 
empirical studies are pursued thoroughly. The losing approach then would 
need to adapt its founding hypotheses accordingly. Or both might adapt to 
some compromise account containing elements of both original approaches.
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4.2. The Severe Way: Elimination
The more severe path to a unique logic arises when proponents of each com-
peting logic are intransigent and refuse to adapt their logic to emerging evi-
dence, for the competition is unstable. Evidence that turns out to support 
one system’s founding hypothesis will strengthen that system while weak-
ening those that disagree with it. A stronger system can infer to still more 
that strengthens it further while weakening the competition. The process is 
akin to the instability of a pencil balanced on its tip. Once the pencil starts to 
fall to one side, the forces pulling it to that side are strengthened, and the fall 
accelerates.

The competition between random walk theorists and chartists illustrates 
this instability. The generalized random walk theory depends essentially on 
the independence or meager dependence of the probability distributions of 
successive price changes. This meager dependence needs to be demonstrated, 
in principle, for each stock or each stock sector index. Each success would 
detract from the prospects of the chartists, whose theories depend essentially 
on a failure of independence. Their head and shoulders formation can be a 
reliable indicator of a coming reversal only if there is a strong correlation 
between it and subsequent price changes.

As this independence is established for more individual stocks or indi-
ces, each success provides indirect support for independence among untested 
stocks or indices. This last inference is supported by a warranting hypothesis 
that the mechanisms governing price moves are much the same across the 
market. These successes form a cascade of continuing successes, each ampli-
fying the strength of support of the random walk theory’s claims elsewhere. 
Each also brings the corresponding collapse of the competing chartists’ 
system. This is a cycle of positive reinforcement that would terminate in the 
elimination of technical analysis.

The reverse process would arise if, instead, chartists were able to demon-
strate with statistical rigor the efficacy of one of their formations as a signal 
for future price movements. Such a success would contradict the very limited 
dependence among successive price changes that the random walk theory is 
prepared to accept. The assumption that the mechanisms moving prices are 
much the same across the market would support an inference that similar 
signals are possible elsewhere. As their successes mount, the prospects for 
the limited dependencies allowed by the random walk theory would narrow. 
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Continuing successes eventually would end in the demise of the random walk 
theory.

As we saw above, the fundamentalists’ challenge to the other systems is 
laid out most cogently by Buffett (1984). Using the evidence of several success-
ful investment funds, he claims that pursuit of value-price discrepancies led 
them to purchase stocks whose long-term price gains greatly exceed market 
averages. He argues that the only common factor among them is their focus 
on value. He insists that the successful funds dismissed daily price move-
ments as meaningless distractions. If they prove demonstrably to be correct 
about daily price movements, then the basic supposition of technical analysis 
would be refuted. If the success of value investing persists and is sustainable 
under careful statistical analysis, then random walk theorists who respect 
statistical methods must accept the fundamentalist approach. Conversely, if 
statistical analysis reveals their successes to be merely the luck of a few, then 
fundamentalists would have to retreat. With each new report of a successful 
value investor, the fundamentalist approach would be strengthened, once 
again under the assumption that the mechanisms moving prices are much 
the same across the market. The random walk theory would be weakened, for 
it would be harder to dismiss these successes as mere chance.

4.3. Multiple Systems Are Possible if They Do Not Compete
The processes assuring ascendance of one dominant logic at most arise only 
when the systems truly conflict. In the earlier chapter, I raised the possibility 
of multiple systems coexisting if the domains could be divided so that each 
logic would apply in its partition only. Such a possibility could be realized in 
principle here. Fundamental analysis draws from a different body of evidence 
from the other three systems and makes predictions over a longer time span. 
We might divide the field of stock market prediction into two partitions.

The evidence base for the first is the detailed compilation of facts about 
all aspects of the companies associated with each stock, and the time scale for 
predictions is some suitably chosen longer term. Fundamental analysis would 
apply in this partition.

The evidence base for the second partition is restricted to the past hist-
ory of stock prices and volumes traded. Predictions would be made over the 
shorter term. Each of the remaining systems has aspirations in this partition.
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Although such a partition is possible in principle, fundamental analysts 
and those of the other systems do regard themselves as being in competition. 
Each does seek to impugn the basic suppositions of the others.

4.4. Principle and Practice
The processes sketched above map out how, in principle, suitable empirical 
investigations can and should dissolve eventually the competition among 
the logics. Convergence to a single logic, then, awaits only analysts willing to 
undertake the investigations and proponents of the systems willing to accept 
the results. In practice, however, the differing systems persist, and there is 
little hope that this circumstance will change. We can speculate about why 
this is so. Perhaps the continuing infusion of new traders into the stock market 
replenishes the pool of novice enthusiasts, well informed on just one system. 
Perhaps there is too much inertia among proponents of each competing sys-
tem. The chartists are too wedded to their charts, the random walk theorists 
are too wedded to their theorems, and the value investors are too wedded to 
company balance sheets. Whatever the reasons, this persistence reveals little 
of the applicable inductive logic and more of the contingent social factors.

4.5. Material and Formal Approaches
How can competition among different inductive logics in some domain be 
resolved? These examples display how a material approach to inductive in-
ference succeeds in answering easily where a purely formal approach cannot. 
According to the material theory, facts warrant inductive inferences. Hence, a 
local resolution is possible merely through investigations that establish which 
are the facts of the domain. Such investigations have been the substance of the 
dispute among the systems discussed here.

If instead we were to conceive of inductive logics as governed by uni-
versally applicable formal schemas, then no such easy resolution would be 
possible. A dispute over which is the right logic must proceed at the remotest 
level of generality, separated from any considerations specific to the domain. 
No such domain-specific considerations can enter, tempting as they would 
be. To say that this logic is better adapted to this domain and that logic better 
adapted to that domain is to give up the universal applicability of the formal 
schemas. It is tacitly to become a material theorist who looks to facts of each 
domain to decide which inductive logic applies.
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For example, a probabilist might argue for the probabilistic methods of 
random walk theory on the supposition that all uncertainties everywhere 
are probabilistic. This is a supposition at the highest level of generality that, 
as I have argued in The Material Theory of Induction (Norton 2021), is un-
sustainable. A more realistic probabilist might argue merely that the sorts 
of uncertainties in stock prices are factually of a type to which probability 
theory applies. To do that is just to adopt the core idea of the material theory 
of induction: facts in the domain warrant the inductive logic applicable.

R E F E R E N C E S

Arditti, Fred D., and W. Andrew McCullough. 1978. “Can Analysts Distinguish 
between Real and Randomly Generated Stock Prices?” Financial Analysts 
Journal 34: 70–74.

Aronson, David R. 2007. Evidence-Based Technical Analysis: Applying the Scientific 
Method and Statistical Inference to Trading Signals. Hoboken, NJ: John Wiley 
and Sons.
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Afterword

In this volume, I have sought to describe the large-scale structure of the in-
ductive inferences and the inductive relations of support in science. Although 
I am satisfied that the many chapters devoted to this task have made consider-
able progress in delineating that structure, I am sure that there is much more 
to be done. The research that led to this volume has been research in the his-
tory and philosophy of science. As I noted in the introduction, that research 
involves a continuing exchange between the philosophy of science and the 
history of science. One component of the exchange needs to be emphasized. 
I have found that a major source of theses in the philosophy of science lies 
in the study of the history of science. That history recounts the many ex-
amples of scientists who grappled with inductive problems of great difficulty 
and overcame them with inductive maneuvers of still greater ingenuity. Time 
spent studying the history is philosophically fertile in a way that armchair re-
flection is not. Armchair reflection can only return what each of us can think 
up ourselves. A study of the history of science can draw from the ingenuity of 
generations of the cleverest minds at their moments of greatest achievements. 
It provides an endlessly fertile repository of inductive ideas in the philosophy 
of science for those willing to explore it. This volume explores only a tiny 
portion of this repository. Much remains to be found. My hope is that this 
volume will encourage others to enter this repository and see what marvels 
they can find.
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