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Mutually Supporting Evidence in 
Atomic Spectra

1. Introduction
Gases and vaporized metals, when heated or energized by electric discharges, 
emit light or electromagnetic radiation in the invisible parts of the spectrum. 
In the nineteenth century, spectroscopists began detailed measurements of 
the frequencies emitted by various substances. The most striking result was 
that, commonly, the emitted spectra did not consist of a continuous range 
of frequencies but only specific frequencies organized regularly in series. 
Identifying which frequencies were emitted by each substance under which 
circumstances proved to be a challenge that occupied spectroscopists for dec-
ades. Their efforts required many ingenious approaches. What resulted was 
a complicated network of relations of evidential support that is the subject of 
this chapter. In it, we will see mutual relations of support crossing over each 
other and at two levels.

We will look only at the simplest of the emission spectra, that of hydro-
gen, for itis already sufficient to display this multiplicity of relations of mu-
tual support. We will take as the simplest item of evidence the proposition 
that excited hydrogen produces electromagnetic radiation at such and such 
frequency or wavelength. One such item asserts the fact that a prominent 
line in the hydrogen spectrum, the first “Ha” line of the Balmer series, is at 
wavelength 656.2 Angstroms. Once a spectroscopist has identified some lines 
in the spectrum of a substance, it is possible to identify others by means of 
a device introduced in 1908 by Walther Ritz, his “combination principle.”  
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It asserted that adding or subtracting the frequencies of certain1 known lines 
in a spectrum will yield more lines.

If there are two lines with the frequencies2 ν
12

 and ν
23

 of the right type, 
then there is a third line at the frequency ν

13
 = ν

12
 + ν

23
. These additions are 

easily inverted. If we have lines at the frequencies ν
12

 and ν
13

, then there is a 
third line at the frequency ν

23
 = ν

13
 – ν

12
. And, if we have lines at the frequen-

cies ν
23

 and ν
13

, then there is a third line at the frequency ν
12

 = ν
13

 – ν
23

. Each 
of these applications of the Ritz combination principle expresses a relation 
of support. There are three, and they cross over one another in relations of 
mutual support:

Lines at ν
12

 and ν
23

 support a line at ν
13

.

Lines at ν
12

 and ν
13

 support a line at ν
23

.

Lines at ν
23

 and ν
13

 support a line at ν
12

.

There are more than just a few of these sets of mutually supporting items of 
evidence. Since the emission spectrum of hydrogen contains infinitely many 
lines, there are infinitely many of them.

In Sections 2 and 3, I recall the discovery of the various series of lines of 
the hydrogen spectrum and their systematization by Ritz through his com-
bination principle. In Section 4, I explore how the principle allows a dense 
network of relations of mutual support among the lines. If the Ritz combin-
ation principle is taken as a premise, then these relations of support are ex-
pressed by deductive inferences. They combine to produce a totality in which 
the observed lines of the hydrogen spectrum provide inductive support for 
the series of infinitely many lines.

In Section 5, I ask a further evidential question. What supports the 
Ritz combination principle? Is it merely to be supported as a generalization 
about observed lines in the spectrum? Which fact warrants it? The decisive 
theoretical development came in 1913 when Niels Bohr proposed an atomic 
mechanism capable of producing precisely the spectra observed. It became 
one of the foundations upon which modern quantum theory was built. Bohr’s 
theory, to be outlined in Section 6, proposed that the lines arise when an 

1 The word certain, meaning “some carefully chosen,” indicates an important restriction. 
The principle does not work for all pairs of lines.

2 The two indices arise from the simple two parameter formulae (1)–(6) below, found 
empirically to systematize the frequencies of the lines present.
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excited electron drops or jumps down from a higher to a lower energy state. 
Each jump leads to an emission of radiant energy with a frequency propor-
tional to the energy emitted. This mechanism provided a direct explanation of 
the Ritz combination principle. The two frequencies ν

12
 and ν

23
 corresponded 

to two emissions in a two-step jump. If the jump is taken in a single step, then 
the frequency ν

13
 = ν

12
 + ν

23
 comes directly from the requirement that the 

two-step jump or the single-step jump liberate the same quantity of energy.
The Ritz combination principle provides another instance of the cross-

ing over of relations of support but at a more elevated level of the theory. 
On the one hand, as described in Section 7, the combination principle, taken 
as a datum from observational spectroscopy, provides evidential support for 
the Bohr theory, and it was reported as such. Using a few notions from his 
theory, the principle translates directly in the emission mechanism that Bohr 
proposed. On the other hand, as reported in Section 8, the converse relation 
of support also holds. Once quantum theory is established, it entails the Ritz 
combination principle. The converse relation of support is important, for 
what quantum theory eventually provides is a corrected version of the princi-
ple. Some of the lines that the original Ritz principle predicts are “forbidden”: 
that is, they correspond to electron jumps precluded by quantum theory. 
What results is an embellished Ritz combination principle, supplemented by 
“selection rules” that indicate which lines are forbidden.

2. The Discovery of Regularities in Emission Spectra
The emission spectrum of hydrogen contains lines at many frequencies. They 
are called “lines” since the early methods of spectroscopy captured the differ-
ent frequencies present in the light as lines on a photographic plate. The fre-
quency or wavelength of the light was recovered from distance measurements 
on the plate. An example from Fowler (1922, 8) is shown in Figure 9.1.
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The first formula to embrace some of these lines with enduring success 
was posited by Balmer ([1885] 1967) for strong lines in the visible spectrum. 
In modernized form, his formula for the frequencies of lines in the “Balmer 
series” was

                             ν (2, m) = R(1/22 – 1/m2)           (“Balmer”)                          (2)

where R is a constant. The different values of m = 3, 4, 5, . . . gave specific lines 
in the spectrum shown in Figure 9.1.

Ha: ν (2, 3) = R(1/22 – 1/32)

Hb: ν (2, 4) = R(1/22 – 1/42)

Hg: ν (2, 5) = R(1/22 – 1/52)

Hδ: ν (2, 6) = R(1/22 – 1/62)

. . .

In the following decades, similar formulae were found for other lines in the 
hydrogen spectrum:

                ν (1, m) = R(1/12 – 1/m2)        m = 2, 3, 4, . . .       (“Lyman”)            (1)

               ν (3, m) = R(1/32 – 1/m2)         m = 4, 5, 6, . . .     (“Paschen”)            (3)

               ν (4, m) = R(1/42 – 1/m2)         m = 5, 6, 7, . . .     (“Brackett”)            (4)

              ν (5, m) = R(1/52 – 1/m2)         m = 6, 7, 8, . . .        (“Pfund”)             (5)

Figure 9.1. A spectrograph of the spectrum of hydrogen
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Each series is named after the spectroscopist responsible for its identification.
This quick recitation of the various formulae masks the magnitude of 

the problems faced by the spectroscopists. Decades separated the recovery 
of these series. Although Balmer’s formula was reported in 1885, the terms 
of the Paschen series began to be verified around 1908, as announced by Ritz 
(1908). Lyman (1914) reported his ultraviolet spectrum in a letter to Nature 
that year. Brackett (1922) reported more lines in the Paschen spectrum and 
the first two members of the newly discovered Brackett series. Pfund (1924) 
reported the first line of the Pfund series.

There were multiple problems to be overcome. The first four lines of the 
Balmer spectrum, Ha to Hδ, are easiest to find since they are in the visible 
spectrum. The Lyman series lies in the ultraviolet spectrum, and the remain-
ing series are in the infrared spectrum. These different ranges require differ-
ent instrumentation to separate the frequencies and register them. Controlled 
conditions, such as low pressures, are needed to manifest sharp lines. Then 
some of the lines reported have celestial origins in spectrographs taken of 
stars. Since we have no independent samples of the matter of the stars, how 
do we know just which excited matter produced them? How are they to be 
matched up with spectra produced by excited matter on Earth? The spectro-
graph in Figure 9.1 shows such a case. The upper set of lines arises in light 
from the star Sirius. The lower set comes from light emitted by excited hydro-
gen in a terrestrial laboratory. Fowler (1922, 7) suggests that the celestial lines 
can be identified as an extension of those in a spectrum found terrestrially if 
they fall near enough on a definite curve.  Figure 9.2 shows such a curve from 
Fowler (14). The vertical axis plots the m of (1), (2), and (3), and the horizontal 
axis plots frequency.
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Figure 9.2. Frequencies of series form definite curves

A trace of these different sources appears in Bohr’s (1913a) celebrated paper 
on his theory of the atom. Bohr notes that then only nine lines of the Balmer 
series had been observed terrestrially in vacuum tubes, whereas thirty-three 
had been observed in celestial spectra (9). 

Finally, even when definite series are identified in some spectrum, it is not 
always clear that all of the series derive from the same substance. Sommerfeld 
(1923, 207–08) reports two series originally attributed to hydrogen because of 
the similarity to the Balmer formula (2) for hydrogen. They are

ν  = R(1/1.52 – 1/m2)         m = 2, 3, 4, . . .   (“Principal series”)

ν  = R(1/22 – 1/(m+0.5)2)  m = 2, 3, 4, . . .  (“Second subsidiary series     
                                                                of hydrogen”)

One outcome of Bohr’s atomic theory of 1913 was that these series would 
result from an atom with a nuclear charge twice that of hydrogen, so that the 
constant R in these formulae is four times greater than that for hydrogen. 
That is, they derive from helium and not hydrogen. This conversion is easily 
accomplished by multiplying the above formulae by 4/4. We now have
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ν  = (4R) (1/32 – 1/m2)    m = 4, 5, 6, . . .    (“Principal series”)

ν  = (4R) (1/42 – 1/m2)    m = 5, 6, 7, . . .    (“Second subsidiary series  
                                                               of hydrogen [?]”)

The attribution of the spectra to helium was already made immediately by 
Bohr (1913b) in a letter to Nature.

3. The Ritz Combination Principle
Given the variety and difficulty of the problems facing the spectroscopists in 
locating and grouping spectral lines, any assistance in the heuristics would 
be useful. Such was offered by Ritz (1908). Rydberg (1890, 331) had noted that 
formulae for spectral lines could be simplified if they were written in terms 
of wave number, the inverse of wavelength.3 Then the formulae could be ex-
pressed as a difference of two terms, as done in (1) to (5) above. This fact 
enabled Ritz (1908, 523) to propose what he called his “principle of combin-
ation” (Kombinationsprinzip). Its value, as Ritz noted in the first sentence of 
his paper,4 is that one could use known spectral series to discover new ones. 
He applied it to a range of spectra, including those of hydrogen, helium, and 
the alkali and alkaline earth metals.

A good statement of the principle is provided by Ritz himself in a note 
found posthumously in his papers and published as an appendix to Ritz 
(1908) in his Gesammelte Werke (Collected Works) (1911, 162). Sommerfeld 
(1923, 205) quotes Ritz as giving this formulation:5

By additive or subtractive combination, whether of the series 
formulae themselves, or of the constants that occur in them, 

3 The spectroscopists preferred to report wavelengths since they were more directly 
measurable than frequency. To convert wavelengths to frequencies required multiplication 
by the speed of light: frequency = (speed of light) / wavelength. Using inverse wavelength as a 
surrogate for frequency avoids systematic errors introduced by errors in the value of the speed of 
light employed.

4 “In the following, it will be shown that, from known spectral series of an element, one 
can derive new series without introducing any new constants. Through this especially, almost all 
the series and lines recently discovered in the alkalis by Lenard, Konen and Hagenbach, Saunders, 
Moll, Bergman etc. come to be represented exactly” (Ritz, 1908, 523).

5 Sommerfeld’s (1923) report is abridged. In place of “certain newly discovered lines from 
those known earlier,” Ritz’s (1908, 523) text specifies lines of alkalis then recently discovered by 
Lenard and others, as well as new elements, in particular helium.
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formulae are formed that allow us to calculate certain newly 
discovered lines from those known earlier.

The principle is incomplete since it does not specify which additions and sub-
tractions are those that yield new lines. The necessary supplement is provided 
in each application by a formula that represents the line frequency as a dif-
ference of two terms. Its application to hydrogen assumed that the series of 
hydrogen conforms to a general formula

              ν (n, m) = R(1/n2 – 1/m2)      n = 1, 2, 3, . . .   m = 2, 3, 4, . . .              (6)

in which we always have m > n. It follows that a new line in the spectrum can 
be identified by taking the difference in the frequencies of two known lines, 
as long as the expression (6) for each shares a common term. For example, the 
lines Ha and Hb can be subtracted in this way since they share a 1/22 term 
eliminated by the subtraction:

Hb: ν (2, 4) = R(1/22 – 1/42)

Ha: ν (2, 3) = R(1/22 – 1/32)

__subtract________________

        ν (3, 4) = R(1/32 – 1/42)

What results is the first lineν (3, 4) of the Paschen series (3), not an established 
series in 1908. It led to an immediate affirmation of the correctness of Ritz’s 
proposal. In his paper, Ritz (1908, 522) reported with obvious satisfaction that 
Paschen had informed him by letter (“Nach einer brieflichen Mitteilung”) 
that he had observed just this line in the infrared spectrum.

4. Mutually Supporting Evidence
For Ritz, the combination principle was valuable as a means of discovering 
new lines. At the same time, it was the warrant for an inference from the 
existence of some lines to others. The evidence of the lines Ha and Hb of the 
Balmer series supports the line ν (3, 4) of the Paschen series. This subtraction 
can be reversed into an addition that supplies a different relation of support:
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Ha: –ν (2, 3) = R(1/22 – 1/32)

           ν (3, 4) = R(1/32 – 1/42)

__add______________________

Hb:    ν (2, 4) = R(1/22 – 1/42)

That is, the frequencies of the Ha line and the ν (3, 4) line can be added to 
recover the Hb line. In this addition, the common 1/32 terms cancel. That is, 
the Ha line and the ν (3, 4) line support the Hb line.

These two relations show the crossing over of relations of support. In the 
first, the Hb provides support for the ν (3, 4) line. In the second, the ν (3, 4) 
line provides support for the Hb line. Since the full range of series covered by 
relations (6) has infinitely many lines, there will be infinitely many of these 
relations of support, crossing over in many ways.

These relations can be captured in infinite sets. For example, the Ritz 
combination principle can be applied to the infinitely many lines of the 
Balmer series (2) to support the Paschen (3), Bracket (4), and Pfund (5) series. 
For the first, lines in the Balmer series can be subtracted to cover the entire 
Paschen series:

       ν (2, m) = R(1/22 – 1/m2)    (m > 4)  Balmer

Ha: ν (2, 3) = R(1/22 – 1/32)

__subtract___________________________________

       ν (3, m) = R(1/32 – 1/m2)     (m > 4)  Paschen

Additional lines are needed as supplementary evidence if series in the se-
quence of (1), (2), (3), (4), and (5) are to support those earlier in the sequence. 
For example, we take as an extra datum ν (1, 2), the first line of the Lyman 
series (1), and then the entire Lyman series is recovered by addition from the 
Balmer series:

ν (1, 2) = R(1/12 – 1/22)

ν (2, m) = R(1/22 – 1/m2)  (m > 2)  Balmer

__add_______________________________________ 

ν (1, m) = R(1/12 – 1/m2)   (m > 1)   Lyman

If we take as an extra datum the Ha line of the Balmer series, then the Paschen 
series supports the Balmer series.
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       ν (3, m) = R(1/32 – 1/m2)   (m > 3)    Paschen

Ha: ν (2, 3) = R(1/22 – 1/32)

__add__________________________________________

       ν (2, m) = R(1/22 – 1/m2)    (m > 3)  Balmer

Two of these relations of support cross over one another and can be repre-
sented more compactly as

Ritz combination principle
Balmer series
____deduce_______________
Paschen series

Ritz combination principle
Ha line
Paschen series
____deduce_______________
Balmer series

Similar computations realize many more like-structured relations of mutual 
support that cross over each other, including

the Paschen series supports the Bracket and Pfund series;

the Bracket and Pfund series support the Paschen series;

the Bracket series supports the Pfund series;

the Pfund series supports the Bracket series;

et cetera.

It is noteworthy that all of the individual relations of support just described 
are implemented by deductive inferences. We can infer deductively from some 
subset of lines, via the Ritz combination principle, to the larger portions and 
even the entire set in (6). Nonetheless, accepting the entirety of the series does 
involve inductive risks. Those risks enter in accepting the premises that figure 
in the individual deductions. We take a small inductive risk in accepting the 
correctness of the report of the existence of each line. Most notably, we take 
considerable inductive risk in accepting the combination principle, since it 
has infinite scope. That the risk is considerable is seen most easily from the 
fact that later investigations introduced a small “fine structure” splitting of the 
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lines in the series described above.6 More significantly, as we shall see below, 
the Ritz combination principle itself needed to be modified by selection rules 
that prohibit certain lines when we move beyond the hydrogen spectrum.

Although combining deductive relations to yield inductive support over-
all might appear at first to be paradoxical, it is not so. All that has happened 
is that the inductive risks taken in accepting the premises of the deductions 
are the only inductive risks that we need to take. Once they are taken, we can 
proceed with maximally secure deductive arguments. This type of support is 
inductively more secure than combining inductive relations of support in a 
similar way. No further inductive risk is taken in accepting these component 
deductive inferences, whereas further inductive risk would be taken if they 
were replaced by inductive inferences. In Chapter 2, “Large-Scale Structure: 
Four Claims,” I reflected on other examples of deductive relations of support 
combining to provide overall inductive support.

The massively entangled network of relations of mutual support goes well 
beyond the heuristic guidance of Ritz’s original purpose. For that narrower 
purpose, the most useful are the inferences from readily available lines to 
those not yet discovered. My concern here, however, is not so narrow. It is to 
discern the full structure of the relations of inductive support.

5. Supporting the Ritz Combination Principle
The inferences reported in the previous section all employ the Ritz combin-
ation principle as a premise. None of the inferences in that section provides 
support directly for the Ritz combination principle. Rather, they all merely 
use it. With the qualification noted below, the principle is a standard part of 
atomic spectroscopy.

What evidence supports the Ritz combination principle? One might be 
tempted to answer that we have many instances of the general formula (6) and 
no counterexamples. So we can inductively infer to (6) and from it deduce the 
Ritz combination principle for the hydrogen spectrum. The trouble is that a 
generalization — any generalization — requires a warranting fact. So far, it 
has been unclear what that fact is.

6 The splitting, reported by Sommerfeld in 1916, resulted from relativistic corrections 
to Bohr’s atomic theory. Sommerfeld found that differences in the eccentricities of the elliptical 
electron orbits of the theory led to slight differences in their energies (1915, 1923, 474).
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We might be tempted to say that, when a general formula this simple fits 
all of the cases at hand, we have a license to infer to it. I developed the familiar 
difficulty at length in Chapter 6 of The Material Theory of Induction (Norton 
2021). We lack both a notion of simplicity precise enough to warrant these in-
ferences, and we lack a factual basis for the inductive powers of such a notion.

As an intermediate attempt to warrant the generalization, we might sug-
gest that a formula as simple as (6) can be as successful as it is only if it is 
part of a larger regularity whose precise character is not currently known 
to us. Something like this is plausible. However, it rests on the supposition 
of further facts not so far produced. That, at least, was the situation in 1908 
when Ritz proposed his principle. In 1913, circumstances would change. Then 
Bohr proposed his novel theory of the atom. That theory used Ritz’s principle 
and the formula (6) as evidential support. Soon the relation of support would 
become mutual when the quantum theory that emerged from Bohr’s theory 
provided support for a modified version of Ritz’s principle.

6. Bohr’s Theory of the Atom
Bohr’s celebrated theory of the atom was based on Rutherford’s nuclear ac-
count of the atom. According to it, a hydrogen atom consists of a massive, 
positively charged nucleus with a light, negatively charged electron orbiting 
it. To this, Bohr added two ideas. Classical electrodynamics requires that this 
orbiting electron must radiate its energy electromagnetically and thus be 
pulled rapidly into the nucleus. Bohr simply posited otherwise:

I. There are stable orbits for the electron.

The energies of these orbits were to be computed by standard electrostatics. 
Bohr further supposed that electrons could jump between these stable orbits. 
Another idea connects these jumps to emission spectra:

II. When an electron drops down from a more energetic stable orbit 
to a less energetic one, closer to the nucleus, the energy E it loses re-
appears as electromagnetic radiation with a frequency ν , according 
to E = hν , where h is Planck’s constant.

We can denote the (negative) energies of two stable orbits as W1 and W2, with 
W1 > W2. When an electron drops from the first to the second orbit, it emits 
electromagnetic radiation of frequency ν 12 whose value, according to II, is
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                                           ν12 = (W1 – W2)/h                                                     (7)

Comparison with the general spectral formula (6) then allows us to identify 
the (negative) energies of the stable orbits as

                                      W (n) = R/n2       n = 1, 2, 3, . . .                                     (8)

The striking outcome here is that, from the spectral formula (6), we infer that 
the energies of the stable orbits do not form a continuous set. Rather, they 
form a discrete set whose members are indexed by n. Bohr’s posits I and II 
do not presume discreteness. It is inferred from the evidence of the spectra.

The Bohr theory clarified Ritz’s combination principle. In its original 
form, the principle was the recognition of a bare numerical regularity. It was 
a kind of scientifically useful numerology. Bohr’s theory gave it a physical 
basis. Consider the case shown in Figure 9.3. An electron in an excited hydro-
gen atom drops to a lower energy orbit, emitting radiation of frequency ν12 
with energy E12 = hν12. In a second jump, it drops to a still lower energy orbit, 
emitting radiation of frequency ν23 with energy E23 = hν23. Had the electron 
jumped directly from the first orbit to the final orbit, it would have emitted 
radiation of frequency ν13 with energy E13 = hν13.

We have two cases, one with two successive jumps and the other with 
a single jump. They are between the same initial and final orbits. Thus, the 
energy radiated in each must be the same:

E13 = E12 + E23

Applying E = hν to each of these three energies, we recover

ν13 = ν12 + ν23

This last sum is the Ritz combination principle applied to the hydrogen spec-
trum. Its physical foundation is now displayed.
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Figure 9.3. Physical basis of the Ritz combination principle

There is much more in Bohr’s theory, and these details have been elabor-
ated frequently elsewhere.7 Using further conditions, Bohr concluded that the 
constant R in (6) and (8) is given by R = 2p2me4/h3, where m is the mass of an 
electron and e its charge. The value of R, computed from this formula using the 
best-known values of m, e, and h, Bohr reported, was 3.1 x 1015. It matches close-
ly enough to the value that he reported from spectral observations, 3.290 x 1015.

Bohr also showed that the stable orbits of (8) coincided with the orbit-
al angular momentum of the electron taking on integer values in units of 
h/2p. This formulation of the discreteness of the stable states of (8) became 
increasingly important as Bohr’s theory evolved. In more elaborate versions 
of his theory, the “old quantum theory,” this result was the simplest case of 
the quantization of action. In the “new quantum theory” that emerged in the 
mid-1920s, this result coincided with the fact that stable electron orbitals are 
eigenstates of the angular momentum operator.

7. The Ritz Combination Principle Supports Quantum 
Theory
The first half of the mutual relations of support is that the newly emerging 
quantum theory was supported by the Ritz combination principle. This sup-
port has been evident from the start. In a much-quoted remark, reported 
by Bohr’s assistant and confidant, Léon Rosenfeld, Bohr remarked that, “as 
soon as I saw Balmer’s formula, the whole thing was immediately clear to me” 
(quoted in Duncan and Janssen 2019, 14).

7 For an early authoritative textbook account, see Sommerfeld (1923, 211–18). Norton 
(2000) develops these details with special focus on the evidential relations.
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The evidential support that the Ritz principle gave to Bohr’s emerging 
theory was widely recognized. Max Born (1935, 85) was forthright about it: 
“A direct confirmation of this [Bohr’s 1913a] theory can be seen in the fol-
lowing fact. . . .” He proceeded to explain in detail and with a figure similar 
to Figure 9.3 how Ritz’s combination principle (identified by this name) is a 
consequence of the cascade of emissions described in the preceding section.

Sommerfeld (1923), in his early, authoritative volume on the old quantum 
theory, was similarly forthright. He introduced the Ritz combination prin-
ciple by name, along with the quotation given above, and then explained its 
application in detail. He then characterized its significance:

The principle of combination has maintained itself in the 
whole region of spectroscopy from infra-red to X-ray spec-
tra as an exact physical law with the degree of accuracy that 
characterises spectroscopic measurement. It constitutes the 
foundation on which Bohr’s theory of spectra rests, and is, 
in essence, identical with Bohr’s law . . . [equation (7) above], 
which likewise taught us to regard the frequency of a spectral 
emission as the difference between two energy-levels. (205–06; 
Sommerfeld’s emphasis)

If we approach the support relations materially, then we can be more precise 
in just what Ritz’s combination principle provides to Bohr’s theory. Bohr’s 
posit II above associates spectral lines with electron jumps between stable 
orbits of different energy. Using the posit as a warranting fact, we infer from 
each spectral line to the existence of an electron jump in the hydrogen atom 
between stable energy states.

The Ritz combination principle adds something very important to this 
last inference. All that this inference gives us is the energy differences between 
the energies of the stable orbits. Posit II does not specify how these stable 
energy states are related. It might just be that each line derives from its own 
unique set of energy states and that no other line derives from electron jumps 
to or from them. The principle assures us that it is possible to find a single 
set of energies of stable orbits such that all of these orbits are accessible to 
the electron in a hydrogen atom. More precisely, it follows from the spectral 
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formula (6) that such a set of energies is given by the relation (8) of the Bohr 
theory,8 W(n) = R/n2.

If we follow Sommerfeld (1923) and take the Ritz combination princi-
ple as holding universally for all spectral lines, including those not observed, 
then the relation of support is deductive. All of the inductive risk is taken in 
accepting posit II provisionally as a hypothesis.

8. Quantum Theory Confirms the Ritz Combination 
Principle
In the early years of quantum theory, it was natural to focus on the support 
that the Ritz combination principle provided for the developing theory. The 
principle itself was rightly judged to be more securely supported by spectro-
scopic evidence. The developing quantum theory was speculative and even 
required physicists to overlook a glaring contradiction with classical elec-
trodynamics. As quantum theory developed, became more established, and 
evolved into the later “new quantum theory,” this orientation reversed. A more 
secure quantum theory provided support for the Ritz combination principle 
directly. The principle is a deductive consequence of the account given by 
quantum theory of the origin of the spectra. It also became more congenial 
to see support for the Ritz combination principle in quantum theory, for that 
support derived from a definite physical ontology and replaced what I called 
“numerology” above.

What further strengthens the inverted relation of support is that the de-
velopment of quantum theory showed that the full Ritz combination princi-
ple, when applied to spectra beyond those of hydrogen, needed corrections.9 It 
turned out that not all of the lines predicted by the principle occurred. Some 
transitions turned out to be “forbidden,” and the determination of which ones 
are allowed was governed by “selection rules.” The jumps allowed in Bohr’s 

8 The formula is determined only up to an additive constant that plays no role in energies 
and frequencies of the radiation emitted. The inference is only to the possibility of the single set of 
energies described. It does not preclude a more complicated set that simulates the behavior of the 
simpler set, even though in practice this complication would be dismissed as contrived.

9 Another example of this type of correction is seen in the previous chapter on Newton 
and the inverse square law of gravity. Kepler’s elliptical orbits of the planets support the inverse 
square law. Yet that law, when developed systematically by Newton, leads to corrections to the 
elliptical orbits due to perturbations from other celestial bodies.
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original theory were constrained only by energy conservation. Such jumps 
must also conform to the conservation of angular momentum. The emitting 
electron must lose just the angular momentum carried off by the emitted 
radiation.10 In the case of the simple hydrogen spectrum, the additional con-
dition does not further limit the spectra beyond the limitations of energy 
conservation. However, that is only a special case. Spectra of other elements 
do have forbidden lines.

Through these considerations, the reverse direction of support, from 
quantum theory to Ritz’s combination principle, becomes more secure. The 
observation of spectra can give us direct evidence of only a finite subset of the 
infinity of lines possible. That finite evidence can support Ritz’s combination 
principle among the lines observed. When we move past hydrogen spectra, 
this finite evidence can indicate when the principle fails. If, however, we de-
rive the principle from a fully developed quantum theory, then we recover 
the principle in its most general form as it applies to the infinity of lines in 
some spectrum. We also recover a way of determining when certain lines are 
forbidden and a principled physical account of why they are forbidden.

This inversion had already occurred under the old quantum theory. As 
the theory developed, new quantum numbers were added, beyond the single 
quantum number n of Bohr’s theory of 1913. Sommerfeld (1923) introduced 
the “azimuthal quantum number” among other numbers. His authoritative 
treatment of the old quantum theory included an extensive account of a selec-
tion rule for atomic spectra. He states it as follows:

The principle of selection states: the azimuthal quantum number 
can at the most alter by one unit at a time in changes of configuration 
of the atom. (266; Sommerfeld’s emphasis)

This selection rule was carried over11 and vindicated by the wave mechanics of 
the new quantum theory. It was rapidly absorbed into textbook expositions, 
such as Pauling and Bright (1935, Section 40f).

In his article for Review of Modern Physics, Gibbs (1932, 307) reflects on 
the need to qualify the Ritz combination principle:

10 In the full quantum electrodynamic analysis, an emitted photon carries off h/2p of 
angular momentum. It follows that the emitting electron can only jump to a state whose angular 
momentum differs from its starting state by h/2p.

11 Sommerfeld’s “at most one unit” is replaced by exactly one unit for the quantum 
numbers l and m in the case of hydrogen. See Slater (1960, 183).
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The later development of the quantum theory has shown that 
for certain types of radiation some of the Ritz combination 
lines are “forbidden” or perhaps better are extremely improb-
able under ordinary circumstances. The degree of probability 
for these “forbidden” lines varies widely for different combi-
nations and accordingly under certain conditions of pressure, 
electric field, and mode of excitation some of the more proba-
ble of these improbable or “forbidden” lines are observed.

After reporting the discovery of the Brackett and Pfund series, Gibbs record-
ed what amounts to the inversion of the relations of support:

These series, both of which lie well out in the infrared, were 
discovered sometime after the theoretical basis for the combi-
nation principle had been completely changed and elaborated 
by the introduction of the quantum theory. Indeed the theo-
retical arguments advanced by Ritz in proposing this principle 
were quite unsound even in terms of the older classical theory. 
It is an excellent example of how a fundamentally correct idea 
is envisioned through false reasoning, to be later explained on 
an entirely new basis, the theoretical development of which 
was encouraged and assisted to some extent by the very idea 
itself. (307–08) 

9. Conclusion
The investigation of atomic spectra and their relation to quantum theory 
illustrates the nonhierarchical structure of relations of evidential support. 
There is a massively entangled set of relations of support among the infinitely 
many propositions that assert the existence of specific spectral lines. The fact 
that warrants these relations of support is the Ritz combination principle. It 
too enters into nonhierarchical relations of support, for initially the princi-
ple provided important evidential support for the newly emerging quantum 
theory. As that theory developed and became better established, this relation 
of support was inverted. The quantum theory was seen as providing eviden-
tial support for the Ritz combination principle. This inversion is appropriate 
since quantum theory indicated that the Ritz combination principle had to be 
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supplemented or corrected to accommodate “forbidden lines.” The quantum 
theory could provide both a systematic means of identifying these forbidden 
lines and a physical basis for forbidding them.
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