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Circularity in the Scoring Rule 
Vindication of Probabilities1

11.1. Introduction
The last chapter argued that all proofs of the necessity of probabilities 
fail. They are deductive arguments for a contingent conclusion. It is that 
probabilities must be used to represent inductive degrees of support or 
subjective degrees of belief. Thus, the proofs must employ premises that 
are deductively at least as strong as or even stronger than the conclusion 
sought. It follows that any proof of the necessity of probabilities can be 
undone merely by examining the premises of the proof and revealing the 
presence of the necessity of probability, in whatever congenial disguise it 
is hidden. The last chapter also predicted that any program of demonstra-
tion of the necessity of probabilities would be trapped forever in a cycle of 
near misses, corrections, and renewed attempts, none of which would ever 
succeed completely, for the program’s goal is unattainable.

The present chapter offers an extended illustration of the claims of the 
last chapter through the recent literature that seeks to demonstrate the 
necessity of probabilities by means of considerations of accuracy alone, 
where accuracy means quantifiable closeness to the truth. This closeness 
is in turn measured by numerical scoring rules, which will become the 
major focus of what follows. If these scoring rule vindications succeed, 
they will have the potential to displace decision-theoretic approaches, for 

1	 I thank Joshua Fry, Lee Elkin, and Richard Pettigrew for helpful discussion that 
informed this chapter.
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the scoring rule approach has no need to envisage elaborate scenarios with 
agents adapting beliefs to decisions that maximize utilities. Credences are 
chosen simply by the criterion of accuracy. The approach depends on an 
appealing dominance argument: if our credences are not probabilistic, 
then they will always be dominated by probabilistic credences in the sense 
that, whatever may be the case, we improve accuracy by shifting from 
non-probabilistic credences to probabilistic credences.

The discussion below will proceed within the framework routinely 
employed by the scoring rule literature. Its suppositions include 

• 	 that credences in any two propositions are always 
comparable; and

• 	 that the relation of comparison can be captured by a real-
valued degree in the interval 0 to 1.

Both of these suppositions, and others like them, also require justification; 
and attempts to justify them would in turn face just the same issues of 
circularity developed here.

The focus of attention in the analysis below will be the particular scor-
ing rule employed to measure the accuracy of credences. We shall see that 
almost every slight change in the rule undoes the demonstration; and al-
most every larger change leads to a wide variety of alternative results. This 
shows that it is not the general notion of accuracy that drives the proof, for 
accuracy alone gives very little. Rather, everything depends on the delicate 
selection of an accuracy measure tailored to give the desired result. Herein 
lies the circularity. It is in this delicate fine-tuning that the probabilistic 
credences are presumed in disguised form.

The response to this threat of circularity has been a flourishing of at-
tempts to make the choice of the fine-tuned scoring rule seem necessary or 
inevitable or perhaps just natural. We find a regress of reasons that never 
quite terminates successfully; or we find a proliferation of alternatives, 
each of which is replaced by another, without apparent end. This endless, 
frustrating dynamic is just what was predicted by the general argument 
against all proofs of the necessity of probabilities.

The exploration here of scoring rules will necessarily be partial. The 
literature on the topic is so large that a mere chapter can only scratch the 
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surface. The goal is not to review every demonstration. Rather, it is to dis-
play by example how the regress and proliferation of reasons comes about 
in this specific instance. In case after case, we shall see that plausible as-
sumptions that initially appear independent of the assumption of the ne-
cessity of probabilities actually contain the assumption in covert form. An 
ardent vindicator will, no doubt, have further demonstrations that I have 
not discussed and may urge these as finally resolving all difficulties. I can 
only respond with some confidence as I would to a circle squarer or an-
gle trisector: these further demonstrations would in turn succumb under 
scrutiny. For if they are to succeed, they must employ premises logically at 
least as strong as the conclusion sought.

The accuracy-driven demonstration of the necessity of probabilities 
draws on a much larger literature in meteorology, economics, and sub-
jective Bayesianism that uses scoring rules for other purposes. These other 
uses will be sketched in Sections 11.2 and 11.3 below. They include the 
elicitation of true but secret probabilities from subjects who, we are to 
suppose, might otherwise not reveal them. In that context, the adapta-
tion of scoring rules specifically to probabilities is benign, since these uses 
presume explicitly that credences are probabilistic. Use of these adapted 
rules in the newer context of the vindication of probabilities ceases to be 
benign, however, for there we are no longer allowed to presume that all 
credences are probabilities: the circularity of vindication lies precisely in 
that adaptation.

The original form of the accuracy-driven demonstration of the neces-
sity of probabilities will be developed in Section 11.4. It employs a quad-
ratic Brier scoring rule. This rule, we shall see, so favors probabilities that 
it rewards subjects with non-probabilistic credences for lying that their 
credences are probabilities. In Section 11.5, we will see that the success of 
the original accuracy-driven vindication depends on selection of exactly 
the Brier scoring rule and not on any other in its neighborhood. When 
we replace the power of 2 in the Brier score formula by a more general 
exponent n, the slightest change in the exponent—a shift from 2 to 2.01 or 
1.99—is enough to undo the proof. Section 11.6 will reflect on how little in 
the original proof comes from the mere idea of accuracy, as opposed to the 
careful choice of scoring rule. Section 11.7 will review attempts to justify 
the restricted choice of scoring rule.
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Section 11.8 will describe the “strictly proper” scoring rules that have 
been introduced into the larger literature with a different purpose. They 
are a generalization of the Brier scoring rule, contrived to preserve its key 
property of favoring probabilities. Hence, as we will see in Section 11.9, 
the success of strictly proper scoring rules in the dominance proof is to 
be expected. However, the contrived favoring of probabilities is precisely 
how the proof covertly assumes probabilities at the outset. Section 11.10 
will review the inevitable failure of attempts to justify independently the 
restriction to strictly proper scoring rules in the dominance analysis. 
Section 11.11 will remind us once again of the pitfalls of “natural” criteria. 
Section 11.12 has a short conclusion.

11.2. Origins in Frequencies
The present literature on scoring rules has origins in considerations of 
frequencies. Identifying these considerations proves important in under-
standing what otherwise looks like arbitrariness in the systems now used.

In 1950, meteorologist and statistician Glenn Brier addressed a vexing 
problem in systems used to track the reliability of meteorologists’ weather 
forecasts. The systems were leading meteorologists to deliver something 
other than their best forecasts in efforts to improve their ratings. They 
would, as Brier (1951, p. 10) put it, be “‘hedging’ or ‘playing the system.’” 
For example, as Brier and Allen (1951, p. 843) noted, if a temperature 
forecast must be given as a single number, the forecaster may choose to 
report different temperatures according to the statistic that would be used 
to measure the forecaster’s reliability. If it was measured by a count of 
how many predictions proved exactly right, the best strategy was to report 
the most probable temperature. If reliability was measured by mean ab-
solute error, then the best strategy was to report the median temperature. 
If reliability was measured by the root-mean-square error, then the mean 
temperature was best. The forecaster’s best judgment was overshadowed 
by a concern for the performance measure.

Brier’s solution was to propose an assessment system that would not 
reward efforts to play the system: the forecasts are given as probabilities, 
and a “verification score”—later called the “Brier score”—is computed ac-
cording to a scheme in which higher scores represent poorer performance. 



39111 | Circularity in the Scoring Rule Vindication of Probabilities

If there are n possible, mutually exclusive weather conditions, the fore-
caster predicts them with probabilities x1, …, xn. The best forecasts are 
to be given the lowest scores. So, if condition i does not occur, a term in 
xi2 is added to the score. The higher the probability xi is, the more de-
fective the prediction and thus the worse—that is—the higher the score. 
Correspondingly, if condition k arises, a larger associated probability xk 
should contribute less to the score. This is achieved by adding a term (1 − 
xk)2 to the score. The final score P is recovered by averaging this sum over 
the N possible occasions over which the forecaster is scored.

Write xik for the probability predicted on occasion i for condition k. 
The actual outcomes are encoded in the matrix Eik, where Eik = 1 encodes 
occurrence on occasion i of condition k; and Eik = 0 encodes its failure to 
occur. The “verification score” Brier proposed is

At first, the choice of a reward (1 − x)2 for correct predictions and a pun-
ishment of x2 seems arbitrary. One might imagine that almost any de-
creasing or increasing functions of x, respectively, would serve equally 
well. This turns out not to be the case, for the score has an important 
property shared by relatively few other scores, as we shall see in Appendix 
11.B below. The property appears in the case of N occurrences of some 
circumstance for which the same probability forecast xk for condition k 
is appropriate for each occurrence. The frequency fk of the kth condition 
among the N occurrences is given by fk = Si = 1,N Eik/N. For this case, 
Brier (1951, p. 2) described the key property:2 

It is also easy to show that if [f1, …, fn] are the relative fre-
quencies that the event occurred in classes 1, 2, …, [n], then 
the minimum score that can be obtained by forecasting the 
same thing on every occasion is when

In this special case, Brier’s verification score reduces to 2

2	 The square brackets indicate minor changes from Brier’s notation to mine.
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The optimal (minimum) score arises when the derivative of P with respect 
to each of the x1, …, xn vanishes: dP/dx1 = … = dP/dxn = 0. An easy calcu-
lation shows the minimum occurs when:

Brier predicted the effect of the use of this score on a forecaster: 

A little experience with the use of the score P will soon con-
vince him that he is fooling nobody but himself if he thinks 
he can beat the verification system by putting down only 
zeros and unities when his forecasting skill does not justify 
such statements of extreme confidence. And in the com-
plete absence of any forecasting skill he is encouraged to 
predict the climatological probabilities instead of categori-
cally forecasting the most frequent class on every occasion. 
(1950, p. 2)

Two features of Brier’s verification score are noteworthy. First, Brier as-
sumed at the outset that the forecasters’ predictions, both private and 
public, are probabilities. There are no weights that do not normalize to 
unity and thus need correction to bring them into conformity with the 
probability calculus. Second, the score is designed to ensure that fore-
casters’ probabilities are well calibrated in the sense that they are given 
the best scores when their forecast probabilities for the conditions match 
the frequencies of the conditions. In this calibration, the probabilities are 
calibrated to the short-term frequencies in N occurrences. These are not 
long-term, infinite limit frequencies, but the actual frequencies in a run of 
N occurrences, where N may be quite small.
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11.3. Eliciting Credences
Brier used his score as a way of matching weather forecasts with short-
term frequencies. Around the same time as Brier’s work, a second litera-
ture sprang up in which the same devices were used for a different pur-
pose.3 The literature addressed a subject who harbored certain credences 
or subjective probabilities and the task was to elicit those credences. The 
means was to assign a score to probabilities announced by these subjects. 
The Brier score is most commonly used, but not exclusively so. For ex-
ample, Brier’s score formula (2) is used but its terms are interpreted dif-
ferently. The quantities xi are the subject’s announced probabilities, and 
the quantities fi are the subject’s true beliefs. Replacing frequencies fi by 
probabilities pi, we have a penalty function: 

If the Brier score is a penalty that the subject seeks to minimize, the analog 
of (3) above shows that the subject does best by announcing the subject’s 
true beliefs. 

The literature presents different scenarios to motivate an interest in 
what otherwise looks like an arcane scenario of dissembling subjects who 
may not announce their true subjective probabilities. McCarthy (1956, 
p. 654) imagines a forecaster and a client. The client uses the penalty as 
a way to “keep the forecaster honest” (the scare quotes are McCarthy’s). 
De Finetti (1965, §3; 1974, §5.5) is more detailed. He imagines scenarios 
in which an expert makes a probabilistic recommendation. A geologist, 
for example, may announce probabilities on the success of drilling an oil 
well at a particular site. We interest the geologist “in giving an honest an-
swer; in expressing his deep felt belief ” (De Finetti 1974, p. 193; emphasis 
in original) by associating the score with the fee to be paid to the geologist 
on completion of the drilling. In another scenario, probabilistic bets are 

3	 See, for example, McCarthy (1956), De Finetti (1965; 1974, chap. 5), Savage (1971).
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made on the outcome of sporting events and the payoff is tied to the score. 
Finally, it is proposed that answers to multiple choice exam questions be 
given as probabilities and that the final score be computed as a Brier score.

For our purposes, however, minimizing the Brier score works too well. 
Our concern includes credences that may not be probabilities. Imagine 
that the true credences pi of a subject are not probabilities. They are just 
a set of numbers p1, …, pn that do not sum to unity. The minimum of 
the penalty function P of (2a) occurs when the reported values x1, …, xn 
are not the true credences p1, …, pn but the true credences normalized to 
unity.

To see this, note that the minimum of (2a) with respect to varying xi 
arises when we have dP/dx1 = … = dP/dxn = 0. Thus we have

and similar conditions for the remaining x2, …, xn. Rearranging these, we 
have

The credences reported are the true credences renormalized, so they sum 
to unity.

Thus, elicitation of true credences by means of a Brier score rewards 
subjects for lying and saying that their credences are probabilities, when 
they are not. This is an indication that the scoring method is biased to-
wards probabilities, for it rewards a shift to probabilities, even when they 
are not the quantities sought.

11.4. The Dominance Argument
What is distinctive about the last literature discussed above is that, first, 
the elicitation is governed by pragmatic factors. The students score the best 
on an exam or the geologist is paid the most if they reveal their true prob-
abilistic credences. Second, the primary focus is the eliciting of credences, 



39511 | Circularity in the Scoring Rule Vindication of Probabilities

which are already assumed to be probabilities. It is not offered as a way of 
demonstrating that one’s credences must be probabilities.4 

A more recent development in this literature sought to alter both fea-
tures.5 It produced an argument for the necessity of probabilities that is 
presently enjoying considerable popularity. The core idea is that credences 
should be distributed not on pragmatic grounds but in a way that optimiz-
es the accuracy of the credences. The main result of this development is 
that the accuracy of a non-probabilistic credence can always be improved 
by switching to a probabilistic credence, no matter which outcome obtains

The simplest instantiation of the argument employs a Brier score. We 
have n mutually exclusive outcomes E1, …, Er over which credences x1, …, 
xr are distributed. All credences here and henceforth are restricted to the 
interval [0, 1]. The original Brier score formula (1) or (2), (2a) is broken 
up into r component loss functions Li, i = 1, …, r, according to which of 
outcome E1, …, Er obtains: 

The greatest accuracy is achieved by minimizing these scores. Hence, it is 
natural to characterize the quantities as “losses” to be minimized; and to 
think of an increasing loss score as a measure of increasing inaccuracy.

The association of loss with inaccuracy derives from the loss generat-
ing functions used. That is, each loss function Lk, associated with outcome 
Ek obtaining, is a sum of r terms: 

Generating function g1(xi) assures that a larger xi makes a smaller contri-
bution to the loss, for the case in which Ei obtains. Generating function 

4	 For completeness, the devices needed are present. They are just not emphasized. The 
essential step of the dominance argument is mentioned in passing in the captions to Figure 1 and 2 
of De Finetti (1965, p. 92) and Figure 5.3 of De Finetti (1974, p. 189).

5	 See, for example, Rosenkrantz (1981, 2.2), Joyce (1989, 2009), (Pettigrew 2016).
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g0(xi) assures that a larger xi makes a larger contribution to the loss in all 
the remaining cases.

With the loss functions (4), no matter which of E1, …, Er obtains, we 
always improve accuracy by replacing a non-probabilistic credence with 
a probabilistic credence. The argument is represented graphically in the 
simplest case of two outcomes E1, E2, with credences x1, x2. Figure 11.1 
shows the space of credences with individual points <x1, x2>, where both 
credences are restricted to values in [0, 1]. On the left, the figure shows 
curves of constant loss L1. They are circular arcs, centered on the corner 
point, <x1, x2> = <1, 0>, On the right, the figure shows the corresponding 
curves of constant loss L2. The diagonal dashed line represents those cre-
dences conforming with the additivity of the probability calculus. That is, 
x1 + x2 = 1. 

Figure 11.1. Dominance of probabilistic credences using a Brier 
score.

Pick any point in the space not on the diagonal, such as point A. This 
represents credences that violate the additivity axiom of the probability 
calculus. If we move along line AB, perpendicular to the diagonal, to the 
point B on the probabilistic diagonal, we replace the non-probabilistic cre-
dences at A with the probabilistic credences at B. We see in the figure on 
the left, that replacing credences at A by those at B reduces the loss L1. The 
same is true if we approach probabilistic credence B from a corresponding 
non-probabilistic credence A’, on the other side of the diagonal. That is, 
among all credences on the line AA’, the probabilistic credence at B has 
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the lowest loss L1. In other words, it is the most accurate among them if E1 
occurs. The same lines AB, A’B are shown on the right. Once again, among 
all credences on the line AA’, the probabilistic credence at B has the lowest 
loss L2. It is the most accurate among them if E2 occurs. This means that 
whichever of E1 or E2 occur, the probabilistic credence at B is the most 
accurate among all credences on the line AA’. Probabilistic credence B 
dominates: we achieve greater accuracy by replacing any non-probabilistic 
credence in AA’ with a probabilistic credence B.

In both cases, what is key is the concavity of the curves6 of constant 
loss towards the direction of smaller loss. Thus, moving towards the diag-
onal of probabilistic credences moves us to credences of smaller loss.

The result generalizes to the case of r outcomes, E1, …, Er . The easy 
way to see it is to identify a differential condition that expresses the dom-
inance. In the case of two outcomes E1 or E2, each probabilistic credence 
<x1, x2> on the diagonal x1 + x2 = 1 dominates a set of non-probabilistic 
credences {<x1 + k, x2 + k>} where k can have any value, both positive and 
negative, that generates points within the space. Each such set forms a line, 
such as AA’ of Figure 11.1, that is perpendicular to the diagonal of prob-
abilistic credences and will intersect it at one dominating point. For the 
case of L1 and L2 restricted just to the set {<x1 + k, x2 + k>}, the dominating 
point satisfies:

We now give the same analysis for the case of r outcomes, E1, …, Er . The 
hypersurface in the space of x1, x2, …, xr , corresponding to probabilistic 
credences is 

Each such point <x1, x2, …, xr> dominates points in the set  
{<x1 + k, x2 + k, …, xr + k>}, where k is both positive and negative as before. 

6	 To avoid confusion, “concavity” here simply reports that the curves of constant L1 are 
geometrically concave towards the point that represents certainty of E1’s occurrence. The same 
property is described in Section 11.7 below, by standard convention, as the “convexity” of the 
function L1. This usage presumably reflects geometrical convexity in the direction of increasing L1.
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The dominating point will satisfy an extension of the differential condi-
tion above: 

To find the dominating point, we start with some point <x1, x2, …, xr> in 
the set that is not necessarily the dominating point, and we seek the value 
of k that satisfies condition (6). L1 expressed as a function of k is

A short computation shows that condition (6) for L1 is satisfied when 

By the obvious symmetry in the formulae, the same value of k leads to 
satisfaction of condition (6) for the remaining loss functions.7

Thus the dominating point in the set has credences

For i = 1, …, r. It is easy to confirm that these dominating credences satisfy 
the additivity condition

That is, the dominating credence point <X1, X2, …, Xr > is probabilistic.

11.5. The Problem: Sensitivity to the Scoring Rule 
Chosen
The analysis as laid out in the last section shows a dominance argument 
that appears at once elegant and compelling. This impression fades, how-
ever, when we realize that the dominance of probabilistic credences de-
pends delicately on the scoring rule or inaccuracy measure chosen. Most 

7	 Based on geometric intuitions, the tacit assumption above was that the set of points 
{<x1 + k, x2 + k, …, xr + k>} is dominated by a single point. This assumption is now vindicated, 
since a single value of k produces a unique optimum for all loss functions. For completeness, 
the second derivative of all loss functions with respect to k is everywhere positive, so the optima 
computed are true minima.
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scoring rules do not return the dominance of probabilities. Even rules that 
differ minutely from the Brier score are enough to undo the dominance.

To illustrate this, replace the power of 2 used in the Brier score with a 
different exponent n. That is, the generating functions for what I shall call 
the “n-power” scoring rule are now

where, as before, outcome Ek is the one that obtains.
For n > 0, these will lead to what are, intuitively, accuracy measures. 

The function g1(xi) is strictly decreasing, so it rewards a higher credence xi 
in the result that obtains with a smaller loss. The function g0(xi) is strictly 
increasing, so it punishes a higher credence in a result that does not obtain 
with a greater loss. The loss functions become

Among all values of n > 0, the only value that supports the dominance of 
probabilistic credences is n = 2. The slightest deviation from it undoes the 
dominance. Choosing different values of n allows us to generate results of 
considerable variety, as we shall now see.

11.5.1. Scoring Rules with n > 1
We begin exploring the dominance relations by considering loss functions 
with n > 1. They exhibit dominance relations qualitatively similar to those 
of the Brier score. Their curves of constant loss are concave towards the re-
gion of lower loss, so that dominating points in the space arise in the same 
way, qualitatively, as in the case of the Brier score. However, the credences 
that dominate are not probabilistic. Loss functions with 1 < n < 2 lead 
to superadditive credences. Loss functions with n > 2 lead to subadditive 
credences.

To recall the definitions: if credences x(A) and x(B) for mutually exclu-
sive outcomes A and B are subadditive, then the credence x(A ∨ B) elicited 
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for their disjunction satisfies x(A ∨ B) < x(A) + x(B). If the credences are 
superadditive, then we have for this last case that x(A ∨ B) > x(A) + x(B). 
In the analysis that follows, we will identify subadditive and superadditive 
behavior in relation to the credence in the full outcome set to which cre-
dence 1 is assigned:

To see with least effort how these deviations from additivity arise, we cal-
culate the dominating credence for the “diagonal” set of points: 

This is just the diagonal that runs from the origin <0, 0, …, 0> to <1, 1, …, 
1> of the r-dimensional hypercubic space. The dominating point in the set 
is identified once again by condition (6). In this set, each loss function is 
the same function of x:

A short calculation that sets dL/dx = 0 in accord with condition (6) shows 
that the minimum loss for all the loss functions occurs when8 

That is, <x1, x2, …, xr> = <xdom, xdom,…, xdom> dominates this diagonal 
set as the point of smallest loss.

To conform with the probability calculus, the r credences of this dom-
inating point must be xdom = 1/r, so that their sum for the r outcomes, (r 
× 1/r), equals unity. This will happen only in two cases. First is the case of 
r = 2; that is, of two outcomes only. Then (r − 1)1/(n−1) = (1)1/(n−1) = 1, and 
we have, for all n, that

8	 For n > 1, the second derivative d2L/dx2 > 0, everywhere, so the turning point is a 
minimum.
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Second is the case of the Brier score, n = 2. For then 1/(n − 1) = 1, so that 
(r − 1)1/(n−1) = (r − 1); and we have for the dominating point

In all other cases, additivity fails.
For r > 2 and n > 2, the exponent in (8) satisfies 0 < 1/(n − 1) < 1, and 

we have

It follows from (8) that:

This entails that the r credences xdom sum to greater than unity 
(subadditivity):

	
For r > 2 and 1 < n < 2, the exponent in (8) satisfies 1/(n − 1) > 1, and we 
have

By analogous reasoning to the previous case, the r credences xdom sum to 
less than unity (superadditivity):

The failure of additivity arises with the slightest deviation from the Brier 
score exponent 2. That is, the dominance argument fails to returns prob-
abilities if the exponent is 2.01 or 1.99. In these cases, the deviations from 
additivity of the dominating credences will be small. The deviations can 
be made as large as we please simply by selecting suitably large or small 
values of n.

For example, for r = 28 and n = 4, we find xdom = 1/4. Then the cre-
dences sum to
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If we set r = 11 and n = 11/10, we find xdom ≈ 10-10. Then the credences 
sum to

A more general sense of the range of possibilities is provided by a plot in 
Figure 11.2 of the sum S = r∙xdom against n, for various values of r > 2. 
Additivity is respected just when S = 1. This arises only when n = 2. All the 
curves intersect at S = 1, n = 2.

Figure 11.2. Failure of additivity for n-power scoring rules.

These results are a special case of the general result demonstrated in 
Appendix 11.A. That is, for n > 1, the dominating points in the space of 
r credences x1, x2, …, xr lie on an r − 1 dimensional hypersurface in the 
space of credences, satisfying
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For r > 2, this surface coincides with the surface of additive probabilities

only when n = 2. Otherwise, for n > 2, the surface lies above this additivity 
surface, and the credences are subadditive. For n < 2, the surface lies below 
this additivity surface, and the credences are superadditive.9

11.5.2. Scoring Rules with 0 < n < 1
We now consider the case of loss functions (4a) with exponent n satisfying 
0 < n < 1. This case exhibits behavior that is qualitatively different from 
the case of n > 1. For now, the surfaces of constant loss are convex towards 
the direction of smaller loss. This inclines credences to move to extreme 
values to secure smaller losses. This effect can be seen in the case of two 
outcomes, r = 2, and a square root loss function, n = 1/2. Then we have two 
loss functions:

Curves of constant loss are plotted in Figure 11.3. Those for loss L1 are 
on the left, and those for loss L2 are on the right. Probabilistic credences 
satisfying x1 + x2 = 1 lie on the dashed diagonal.

9	 Equation (8) picks out a point on this surface. It is recoved by substituting x1 = … = xr = 
x into (12) and solving for x.
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Figure 11.3. Dominance of extremes with n = 1/2.

Repeating the analysis of Figure 11.1, we find in this case that moving cre-
dences away from the diagonal decreases both loss functions L1 and L2 and 
thus increases accuracy. An arbitrarily chosen additive credence at B is 
dominated by non-additive credences to which we arrive by following the 
arrows towards the extremes. Most striking is that the additive credences 
at x1 = x2 = 0.5 are dominated by the credences x1 = x2 = 0 and x1 = x2 = 1.

This striking behavior of the dominance of probabilistic credences by 
both subadditive and superadditive credences is an artifact of having just 
two outcomes, r = 2. For the case of more than two outcomes, the domin-
ating credences all have lower values and are superadditive. This is easy to 
see in the case of the diagonal set (7). All the loss functions for it are the 
same for the case of n = 1/2:

More generally, for all 0 < n < 1, the loss functions are

For all of these cases, the loss functions have a dominating minimum at 
the origin only:
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where L = 1.10 When x1 = x2 = … xr = x = 1, L = r − 1, which is greater than 
one for r > 2.

11.5.3. Scoring Rules with n = 1
The final case uses the absolute norm. That is, the generating functions 
are now11

where, as before, Ek is the outcome that obtains. In the case of two out-
comes, this scoring rule exhibits qualitatively different behavior again. 
The two loss functions are

The curves of constant loss for both are the same

They differ only in the values assigned to the curves. Since L2 = 2 − L1, the 
curves differ in the direction of increasing loss. These curves are plotted in 
Figure 11.4, with curves of constant L1 on the left and curves of constant 
L2 on the right.

10	 Write, L(x, n) = (1 − x)n + (r − 1) xn. We have L(0, n) = 1. Also L(x, 1) = 1 + (r − 2) x  > 1, 
for all x > 0, r > 2. But L(x, n) > L(x, 1), for all 0 < n < 1 and x > 0, since then (1 − x)n > (1 − x) and xn 
> x.

11	 This case is often presented as the absolute norm, writing g1(xi) = |1 − xi|. Since 0 ≤ x i ≤ 
1, the absolute operator |.| is superfluous.
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Figure 11.4. Degeneracy of dominance with n = 1.

In this degenerate case, dominance fails, since both loss functions are 
constant along the curves shown. Thus, as far as the accuracy measure is 
concerned, all the credences A, A’, A’’, … are equally accurate; and all the 
credences B, B’, B’’, … are equally accurate.

This degeneracy is not specific to the absolute norm n = 1, but is re-
coverable in the case of two outcomes, r = 2. For example, take the gener-
ating functions

where, as before, outcome Ek is the one that obtains. Then, as above, curves 
of constant loss for both L1 and L2 are the same:

Instead of a dominance relation, we find all credences on each of the 
curves to have the same loss L1 and L2 and thus to be equally accurate. 
We can take many increasing functions for h(x), such as h(x) = x2. For this 
case, these curves are hyperbolas with an asymptote of x1 = x2.

The degeneracy of the absolute norm rule does not persist when we 
move to more than two outcomes, r > 2. Then, smaller-valued credences 
dominate. The loss functions are
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For the diagonal set of credences (7), all the loss functions are equal

The dominating credence is 

More generally, uniformly reducing credences in such a way that we re-
main within the space 0 < xi < 1 (i = 1, …, r), uniformly decreases all the 
loss functions and thus increases accuracy. For example, we start at x = < 
x1, x2, …, xr> in this space and move to a new point:

for some increment e > 0 sufficiently small to keep us in the space. Then 
we have for all i = 1, … r,

Thus the credence x is dominated by the uniformly smaller credence x 
− . We can continue descending to smaller credences until we finally 
strike the origin x = 0 or end up on one of the two-dimensional edges of 
the hypercubic space (in which case, the above degeneracy replaces the 
dominance relations).

11.6. Accuracy Gives Very Little
In sum, the above exploration shows that the accuracy dominance of 
probabilistic credences is fragile. It depends critically on choosing exactly 
the right scoring rule. The Brier score belongs to a larger family of power 
rule scores (4a) and (5a), characterized by the exponent n. The case of n 
= 2 is the only case among them that returns the dominance of probabil-
istic credences. Other values of n give widely varying results. For n > 2, 
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the dominating credences are subadditive. For 1 < n < 2, the dominating 
credences are superadditive. Scoring rules with 0 < n ≤ 1 generally exhibit 
dominance by the lower values of credence in the space. Cases of equal 
credence, such as the probabilistic xi = 1/r, (i = 1, …, r) are dominated by 
all-zero credences x1 = x2 = … xr = 0, for example. We also saw anomalous 
cases of dominance by small and large credences and failures of domin-
ance, in favor of equality of accuracy over some sets of credences.

If one is not antecedently committed to probabilistic credences, there 
is nothing especially troublesome in these results. We learn from them 
that a requirement of accuracy does not have univocal import. It must bal-
ance rewards for credence in the outcome that obtains with punishments 
for credences in those that do not. There are, it turns out, many ways to 
effect this balance. There is no obviously right way to do it.

Some rules, such as those with n > 1, encourage prudence and direct 
credences towards intermediate values, while generally still not favoring 
probabilities. Others (such as n = 1/2, r = 2) effect the balance so that rash-
ness is rewarded. All unit credences dominate in the equal credence case, 
since the reward for assigning unit credences to the outcome that obtains 
exceeds the punishment for assigning unit credences to the outcome that 
does not obtain. Still other rules encourage timidity. Accordingly, as-
signing all-zero credences is most accurate, since the reward for a higher 
credence on the outcome that obtains is overwhelmed by the punishment 
for higher credences in outcomes that do not obtain.

These are widely varying results and we should accept them. To do 
otherwise and select among them for those we prefer is simply to invali-
date the whole accuracy-based method. We would not be using the meth-
od to inform our understanding and correct our prejudices. We would be 
using our prejudices to overturn what our method tells us.

11.7. Attempts to Justify the Choice of Scoring Rule
If one is antecedently committed to probabilistic credences, matters look 
very different. The results are troublesome. One has to find some way to 
impugn virtually all the accuracy measures employed in favor of the very 
few that return the desired result. In effect, one must work backwards from 
the probabilistic result desired to a condition that will deliver it. When 
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working backwards is done well, the resulting conditions will be congenial 
to those who already conceive of credences as probabilities. To those who 
are not antecedently committed to probabilistic credences, however, these 
conditions will appear as arbitrary as the original commitment to prob-
abilistic credences. This, in my view, is what the following review of these 
attempts shows.

Rosenkrantz (1981, 2.2) presented an early attempt to justify the Brier 
score independently within the context of a dominance-based vindication 
of probabilities. He noted that when the Brier score is used for elicitation 
of credences, it has the property that a subject with non-probabilistic cre-
dences minimizes the loss by reporting credences that are proportional 
to the “true probabilities.” This, he called “absolutely non-distorting.” 
Rosenkrantz conjectured but did not show that the Brier score is uniquely 
selected by this property, supplemented by other, weaker properties. The 
analysis seems hasty, since all strictly proper scoring rules (to be dis-
cussed below) share this property. Moreover, the property does not seem 
praiseworthy, since it is just the result reported above in Section 11.3, 
namely that a Brier score elicitation rewards subjects for lying about their 
non-probabilistic credences by rescaling them to probabilities with a con-
stant multiplicative factor.

Joyce’s (1998) proposal for restricting scoring rules is more definite and 
more confident. His “main theorem” (pp. 587–88) shows that probabilistic 
credences dominate if we use a scoring rule that satisfies six conditions 
that he names: “Structure,” “Extensionality,” “Normality,” “Dominance,” 
“Weak Convexity,” and “Symmetry.” None of these conditions is a logical 
necessity. Each is merely natural for probabilists. Each introduces into the 
proof a contingent presupposition congenial to probabilists. As a result, 
each contributes to the circularity. Lest the analysis grow too lengthy, 
we consider only two of the strongest conditions: Weak Convexity and 
Symmetry.

If two credences c and c’ have the same score on some outcome, 
then Weak Convexity requires that the score assigned to their midpoint,  
(c + c’)/2 is strictly less, unless c = c’. Considered abstractly, the require-
ment seems natural enough. “Weak Convexity is motivated by the intui-
tion that extremism in the pursuit of accuracy is no virtue,” Joyce (p. 596) 
assures us. However, Weak Convexity is violated by power scoring rules 



The Material Theory of Induction410

with 0 < n < 1. As we saw above in Section 11.6, that does not make them 
defective, but just different ways of balancing the rewards for true beliefs 
and punishments for false beliefs. To preclude them is not to learn from 
what accuracy measures tell us, but to tell accuracy measures what they 
should be doing to accord with our other notions. It is part of the artificial 
adjustment of the premises needed if the demonstration is to yield the 
predetermined result—that is, the necessity of probabilities.

Weak Convexity alone, however, does not restrict power scoring 
rules with n > 1. The further restriction needed in the main theorem is 
Symmetry. If two credences c and c’ have the same score on some outcome 
i, then the distribution of scores over the intermediate credences is sym-
metric in the sense that, for any 0 ≤ λ ≤ 1

This condition picks out just the quadratic Brier score from all n-power 
scoring rules as required.12 Thus, if we are working backwards to a pre-
determined result, the condition will seem apposite. However, it is difficult 
to see any independent justification for it. Joyce’s rationale (p. 597) mere-
ly restates what the formula says in words and suggests that Symmetry 
somehow precludes an improper favoring of one credence over another.

About a decade later, Joyce (2009) had presumably recognized the 
fragility of positing these conditions unequivocally. They were, he con-
ceded, “not all well justified” (p. 264), and a reappraisal was undertaken. 
Indeed, at times the commitment to the overall project is equivocal. The 
decline predicted earlier seems well underway. He writes: “Readers will 
be left to decide for themselves which of the properties discussed below 
conform to their intuitions about what makes a system of beliefs better or 
worse from the purely epistemic perspective” (p. 266). A proof has scant 
foundations if acceptance of its premises depends on the intuitions of in-
dividual readers. My intuitions about angles and lines are immaterial to 

12	 An easy way to see this is to consider credences (xdom + e) among the diagonal set (7) 
in the immediate vicinity of the dominating point xdom, for n > 1. The symmetry of scoring rule Li 
will manifest in the vanishing of the cubic term in e3 in the power series expansion

Li(xdom + e) = Li(xdom) + e Li’(xdom) + e2/2 Li’’(xdom) + e3/6 Li’’’(xdom) + …

However, Li’’’(xdom) = 0 only in the case of n = 2.
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the proof of Pythagoras’ theorem or the impossibility of duplicating the 
cube. In a notable compromise of the entire program of providing quan-
titative, normative guides to credences, he notes that “epistemic goodness 
or badness for partial beliefs can be made sufficiently precise and deter-
minate to admit of quantification” is merely a “useful fiction.” Further, 
he reports on a newly named condition, “admissibility,” which “is not a 
substantive claim about epistemic rationality” but a way to “capture one’s 
sense of what is valuable about beliefs from a purely epistemic perspective” 
(p. 267). Nonetheless, it is used to restrict the choice of scoring rules, al-
though apparently on rather infirm ground.

One should not fear that Joyce (2009) has abandoned the original pro-
ject entirely. For eventually Joyce settles on what is offered as the “least 
restrictive” of the theorems that employ dominance ideas to demonstrate 
the necessity of probabilities. The theorem—whose details are found in 
Joyce (2009, pp. 287–88)—depends, among other things, on the condition 
of “Coherent Admissibility” (p. 280). This condition dismisses a scoring 
rule as “unreasonable” if it assigns a worse score to a probabilistic credence 
than to a non-probabilistic one in the case of all outcomes.

Hannes Leitgeb and Richard Pettigrew (2010, p. 246) seem to me to 
give the correct appraisal. As they put it, Coherent Admissibility is far 
from benign since “it accords a privileged status to probability functions.” 
They add, 

We are inclined to ask: Why is it that we are justified in 
demanding that every probability function is admissible? 
Why are we not justified in demanding the same of a belief 
function that lies outside that class? And, of course, we must 
not make this demand of any nonprobability function.

Just this sort of privileging of probabilities seems quite benign if one is 
working backwards from the predetermined conclusion that credences 
must be probabilities, for the condition says that a scoring rule cannot 
preclude probabilities, as Joyce says, “a priori” (2009, p. 280). It does not 
appear benign to those who have not already prejudged the outcome.

A real difficulty for probabilists is that once one becomes con-
vinced that credences have to be probabilities, it is hard to conceive of 
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how alternatives could be cogent. This may be behind Joyce’s (2009, p, 
283) concerns that the all-zero-valued credences that can dominate with 
power scoring rules when 0 < n ≤ 1. His assessment is severe. He calls 
them “logically inconsistent,” since “the believer minimizes [the] expected 
inaccuracy by being absolutely certain that every [proposition] is false 
even though logic dictates that one of them must be true.” This accusation 
of logical inconsistency will be unwelcome to proponents of the Shafer-
Dempster theory of belief functions. Complete ignorance is represented 
there by assigning zero-valued belief functions “Bel” to all outcome sets 
except the universal set. We see here that Joyce’s assessments are driven by 
a prior commitment to interpreting credences as probabilities, so that zero 
credence coincides with certain falsity.13 In the Shafer-Dempster theory, a 
zero-belief function can be interpreted as demarcating an interval of belief 
stretching from zero to one. 

In my view, the most promising avenue for restriction of scoring rules 
is through the class of “strictly proper” scoring rules that are much used 
elsewhere. Joyce (2009, §8) discusses and defends them. Let us first review 
them.

11.8. Strictly Proper Scoring Rules
Strictly proper scoring rules arose in the context of scoring a predictor’s 
performance and of the elicitation of subjective probabilities. It addresses 
the problem that most alternatives to the Brier rule do not deliver prob-
abilistic credences at their minima.

For example, we can generalize the Brier rule by replacing its expo-
nent 2 by an arbitrarily selected n, as in the n-power rule of (5a) above. 
It is shown in Appendix 11.B below that the only value of n that gives a 
rule that correctly elicits probabilities is n = 2. For all n > 2 (and r > 2), the 
power rule (5a) elicits subadditive credences. Alternatively, if 1 < n < 2, 
then the n-power rule elicits superadditive credences.

13	 Of course, even for probabilists, zero probability does not coincide with certain falsity, 
but merely measure zero improbability. De Finetti’s finitely additive treatment of the infinite 
lottery assigns zero probability to each outcome individually, even though one must obtain. That 
a dart strikes any particular point on the board is a probability zero outcome, even though some 
point must be struck.
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These general n-power rule elicitations have an awkward property 
that is something like the reverse of the n = 2 Brier rule. We saw above 
in Section 11.3 that the Brier rule elicits an additive probability measure, 
even when the subject’s true credences are not probabilistic. The n-power 
rule (for n not 2) elicits credences that are not probabilities, even when the 
subject’s true credences are probabilities.

The upshot is that the formal properties of the credences elicited by 
the scoring rule method will only be probabilities if the rule used is very 
carefully tuned to give just that result. The standard response in the lit-
erature on elicitation and assessment of a predictor’s performance is to 
restrict the scoring rules under consideration to “strictly proper” scoring 
rules.

As a background to the notion, we recall that a general scoring rule 
employs two functions: g1(x) to reward a credence x in what turns out 
to be the true outcome; and g0(x) to punish a credence x in an outcome 
that turns out not to be true. The loss score assigned to elicited credences 
x = <x1, x2, …, xr > for true probabilistic credences or true frequencies 
p = <p1, p2, …, pr> is

The most direct definition (such as given in Gneiting and Raftery 2007, p. 
359) simply asserts that

Strictly Proper I

A scoring rule L is strictly proper just if L(p, x) ≥ L(p, p), for all pi 
in 0 ≤ pi ≤ 1, i = 1, …, r, with equality only when x = p.

This definition explicitly rules out by fiat any scoring rule that fails to 
elicit x as a probability measure. Note that the definition is so strong that, 
like the Brier rule, a strictly proper scoring rule will elicit a probability 
even when the subject’s true credences are not probabilities. To illustrate, 
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imagine that the subject’s true credences are a non-probabilistic q = (q1, q2, 
…, qr). We can normalize them to a probability

by dividing by Q = (q1 + q2 + … + qr). If the subject’s true probability is p, 
we know that the scoring rule will elicit x = p. By the definition of strictly 
proper scoring rules, x = p is the unique value of x that minimizes L(p, x). 
However, L(p, x) is linear in p so that L(p, x) = L(q, x)/Q. Hence, x = p will 
also minimize L(q, x) uniquely. That is, if the subject’s true credences are 
a non-probabilistic q, a strictly proper scoring rule will reward the subject 
most if the subject lies and reports a probabilistic, normalized credence p 
= q/Q.

11.9. Strictly Proper Scoring Rules in the Dominance 
Argument
This favoring of probabilities by strictly proper scoring rules is unprob-
lematic in the context in which the notion was introduced. For when 
the rules are used to elicit probabilities from a subject, we begin with 
the assumption that the subject’s credences are already probabilities. 
Correspondingly, when we use the rules to assess the performance of a 
predictor against the actual frequencies of outcomes, these actual frequen-
cies are also additive measures.

The use of strictly proper scoring rules ceases to be benign, however, 
when they are used as part of a vindication of probabilities. For the rules 
are engineered to favor probabilities and will yield them even when they 
are not the subject’s credences. They exhibit the same favoring of probabil-
ities if they are used as accuracy measures in the dominance arguments 
used to vindicate probabilities. A much-noted theorem in the scoring rule 
literature asserts exactly this: any non-probabilistic credence q is strong-
ly dominated by a probabilistic credence p, where “strongly dominated” 
means that p has a strictly lower score than q for all possible outcomes 
when the scoring rule used is strictly proper.14

14	 See, for example, Predd et al. (2009, p. 4788).
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A simpler but less transparent definition of a strictly proper scoring 
rule lets us display the dominance in an example. 

Strictly Proper II15

A scoring rule L is strictly proper just if pg1(x) + (1 − p)g0(x) is 
uniquely minimized at x = p for all 0 ≤ p ≤ 1.

This definition is equivalent to the definition Strictly Proper I.16

This simpler form of the definition lets us see quickly how probabil-
istic credences dominate in a special case, that of the “diagonal” set (7) of 
credences above. For the general scoring rule, the generalization of the r 
loss functions (4) and (4a) above is the following:

For the diagonal set (7) of credences, all of these loss functions reduce to 
the same expression:

The second definition of strict propriety tells us directly that all of these 
loss functions are uniquely minimized when

That is, all credences in the set are strongly dominated by this probabilistic 
credence.

The selection of a strictly proper scoring rule in the accuracy-driven 
vindication of probability amounts to a delicate fine-tuning of the analysis 
to give just the probabilistic result antecedently desired. The extent of the 
fine-tuning depends on just how sparsely the strictly proper scoring rules 

15	 Predd et al. (p. 4787) also include the requirement that the functions g0(x) and g1(x) are 
continuous. Schervish, Seidenfeld, and Kadane (2009, p. 205) relax the condition of continuity. 
Some of my analysis assumes differentiability of these functions, however.

16	 For a demonstration of the equivalence, see Appendix 11.D.
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are distributed among scoring rules that we would intuitively judge to be 
admissible measures of accuracy.

In short, the strictly proper rules are very sparsely distributed among 
this larger class of rules. This is already suggested by theorems such as 
those of Schervish (1989), which show how all strictly proper scoring rules 
can be generated from the selection of a small class of functions. We can 
more directly gauge the sparseness by means of the second definition 
above. In brief, we have considerable freedom in selecting either of the 
functions g0(x) or g1(x). But once one is fixed, then so is the other; and 
we can generate an arbitrary number of scoring rules that are not strictly 
proper simply by selecting different functions for the second.

To see this, assume that g0(x) is fixed at some function suitable for 
penalizing a credence x on an outcome that does not obtain. We have from 
the second definition that pg1(x) + (1 − p)g0(x) has a unique minimum, for 
fixed p, when x = p. This minimum arises when the derivative with respect 
to x vanishes

Substituting x = p at this minimum, we have

Since p can have any value in 0 ≤ p ≤ 1, this relation is a restriction on the 
functions g0(x) and g1(x) for any x in the same range. It follows that

Reading from right to left in this formula, fixing g0(x) fixes g1(x) up to the 
additive constant g1(0). Selecting any other function for g1(x) will yield a 
scoring rule that is not strictly proper. For example, if we fix g0(x) = xn for 
n > 1, then a short calculation shows that g1(x) must be

up to the additive constant g1(0) = 1. Any other choice of function for 



41711 | Circularity in the Scoring Rule Vindication of Probabilities

g1(x), such as the apparently “natural” n-power rule (5a), fails to be strictly 
proper.

11.10. Justifying Strict Propriety
A dominance-accuracy argument for probabilities that employs strictly 
proper scoring rules must provide independent grounds for the restriction 
to strictly proper scoring rules. That these rules are popular in the broad-
er elicitation literature provides no such grounds. Indeed, it is quite the 
reverse. Since strictly proper scoring rules have been designed explicitly 
to favor probabilities, using them to preclude non-probabilistic credences 
is prima facie circular. Their favoring is so strong that, used as a means 
of elicitation, they will reward a subject with non-probabilistic credences 
who lies and declares probabilistic credences.

All that can now prevent the analysis from collapsing into circularity 
is some independent justification of the use of strictly proper scoring rules. 
Joyce (2009, pp. 277–79) attempts such a justification by means of the no-
tion of “immodesty.” The quantity L(p, x) of (10a) is the probabilistically 
expected score using rule L of a credence x, according to the expectations 
of probabilistic credence p. A “modest” credence will judge L(p, x) < L(p, p). 
That is, it will judge some other credence x to have a lower expected score 
and thus to be more accurate than p itself. This is a poor situation for 
credence p, since considerations of expected accuracy indicate that, by p’s 
own assessment, credence x is the better one. The credences we should 
seek, therefore, are “immodest.” They are such that, by their own lights, 
they are the most accurate.

This favoring of immodest credences is, in effect, a guide for selecting 
scoring rules, for a credence can only be immodest or modest relative to 
a scoring rule. This guide leads us directly to strictly proper scoring rules. 
We are asking for rules in which L(p, p) takes the minimum value in com-
parison with all other L(p, x). But just this property of a scoring rule is 
strict propriety in the form of definition I of Section 11.8 above.

The justification of a restriction just to strictly proper scoring rules is 
still not complete. For nothing so far precludes another scoring rule that 
might render some non-probabilistic credence immodest. The analysis 
stalls at this point since we have no precise characterization of this last 
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sort of scoring rule. Note that the score L(p, x) of a strictly proper rule is 
the expected score for credence x according to probability p. If we seek an 
immodest, non-probabilistic credence y, then we would replace p in the 
score by y. But then L(y, x) is no longer an expectation. It is unclear how 
the quantity should be interpreted.17 We have no clear way to characterize 
an immodest, non-probabilistic credence.

The regress of reasons must continue. In an attempt to complete the 
justification, Joyce considers cases of physical chances in which we nat-
urally choose probabilistic credences. What credence can we have in the 
each of the six outcomes of a fair die throw, other than a probability of 
one sixth? Thus we should demand the hospitality condition of “Minimal 
Coherence” of our scoring rules: they should not preclude in advance 
probabilistic credences. This way credences concerning physical chance 
can be accommodated. If, however, we require both immodesty and the 
possibility of rules that favor probabilistic credences in their expectations, 
then we are led to strictly proper scoring rules. They are, by their defin-
ition, the only rules that can serve.

As we have already seen, this latest step in the regress of reasons will 
seem quite compelling to someone who antecedently favors probabilities. 
It is surely benign, they might think, to demand that we use scoring rules 
that are minimally hospital to probabilities in the sense that they do not 
automatically preclude them. To someone who has not prejudged the out-
come, the demand is anything but benign.18 For the burden of the analysis 
shows that this demand is enough to force probabilistic credences in all 
cases. 

If our earnest desire is not to prejudge, then should we not ask that 
our scoring rules be hospitable to more than just probabilistic credences? 
Once we demand hospitality for one favored type of credence, no others 
are sustainable. 

17	 For example, expectation-like quantities computed using a non-probabilistic y fail to 
meet minimal conditions of an expectation. For example, the expectation for a quantity Q = <Q1, 
Q2, …, Qr> in the special case in which Q1= Q2 = …= Qr = Q, should be Q. However the sum 
Si yiQi = Si yiQ is equal to Q only when Si yi = 1, which is the case of probabilistic credence y.

18	 Let us set aside the quibble that considerations of strict dominance in accuracy have 
been replaced by considerations of expected accuracy. That weakens the whole argument since 
maximizing expectations is not automatically always the best.
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If this last vindication is unsatisfactory, might we find another? 
Pettigrew (2016, chap. 4) offers another vindication of strictly proper 
scoring rules. The analysis depends on positing several conditions on an 
inaccuracy measure that include what he calls “Divergence Additivity,” 
“Divergence Continuity,” and “Decomposition.” We find once again that 
these conditions are congenial for a probabilist who knows that they will 
yield the required result. They appear arbitrary, however, to someone not 
antecedently committed to probabilities.

Divergence Additivity requires that the inaccuracy of some set of cre-
dences <x1, x2, …, xr > is measured by taking the arithmetic sum of the 
inaccuracies of the individual credences, using g1(xi) or g0(xi), according 
to whether the credence xi is in the true state or not. Summation seems, 
initially, to be an innocent requirement. Pettigrew (p. 49) calls the sum-
mation “the natural thing to do.” But it is far from innocent, for it rep-
resents a particular rule for determining the import of variation among 
individual inaccuracy measures. Take the case of five credences r = 5 and 
assume that we have two different sets of inaccuracies provided by the 
functions g1(xi) or g0(xi):

0.1, 0.1, 0.1, 01, 0.1  and  0.01, 0.01, 0.01, 0.01, 0.46.

How are we to summarize the combined inaccuracy in each case? Is the 
combined inaccuracy of the first the same as the second? Or does the pres-
ence of the large inaccuracy 0.46 in the second render the second case 
more inaccurate than the first? Or is this second case less inaccurate since 
four of its five components are very small, 0.01? Divergence Additivity 
measures the combined inaccuracy by summing the components. Since 
the components in both cases sum to 0.5, this condition judges them equal 
in combined inaccuracy. This is quite a specific way to trade off the import 
of non-uniformities of the second case. Since it competes with many other 
possible ways of trading off non-uniformities, merely finding it “natural” 
falls well short of the independent justification needed.

Similar arbitrariness troubles the other two conditions. Briefly, 
Divergence Continuity requires the analogs of the functions g1(x) or 
g0(x) to be continuous in x. In the abstract, the requirement seems inno-
cent. However, requirements of continuity can be far from innocent. In 
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geometry, we might think it innocent to require that some two-dimen-
sional surface be covered continuously by the familiar <x, y> coordinate 
system. However, this condition restricts us to surfaces that are topologic-
ally “R2,” precluding surfaces of spheres and toruses, even though both 
are, in a geometric sense, everywhere continuous. Finally, Decomposition 
arises from two further conditions, Calibration and Truth-Directedness, 
each of which, independently, looks quite natural. The difficulty is that 
these two conditions turn out to be incompatible, so that at least one is 
wrong. Once again, naturalness proves to be a poor guide. Decomposition 
is a compromise condition that attempts to mediate between them. We 
may well wonder why it is a good idea to mediate between two conditions, 
one or both of which might be wrong. The mediation uses a formula that 
in turn appears arbitrary, unless one knows that it will enable a demon-
stration of the result sought.

All of these efforts end up offering no escape from the problem that 
has dogged the accuracy-based vindication of probabilities from the start. 
We are trapped in an endless regress of reasons. The requirement of accur-
acy alone, it turns out, gives us very little. What really determines the out-
come is our choice of scoring rule. Even among n-power scoring rules, we 
can select any desired extent of superadditivity or subadditivity of our cre-
dences just by choosing a suitable n. If we are to vindicate a restriction to 
probabilistic credences, we must find further reasons that favor them. We 
find new reasons that seem natural; and then we realize that they are only 
natural if judged by our antecedent prejudice for probabilistic credences. 
Still further reasons are needed, and the regress of reasons proceeds.

11.11. Naturalness Gone Astray
Reinhard Selten (1998) provides a sobering illustration of the precarious-
ness of accepting conditions on the basis of their naturalness. His interest 
is what he calls “the quadratic scoring rule.” It is used in something like an 
elicitation context in which a predicted probability distribution x is scored 
against a true probability distribution p by means of the “expected score 
loss.” His quadratic scoring rule is given in one form (p. 48) as
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where the two distributions x = <x1, …, xr> and p = <p1, …, pr> adopt the 
indexed values xi and pi over outcomes i = 1, …, r. Selten (p. 43) reports: 
“As far as the author knows, Brier (1950) was the first one who described 
this rule.”

This scoring rule formula differs from the Brier score formula given 
above as (2a). The difference is easy to see, since the reference probabil-
ity pi of formula (2a) enters linearly into the expression, whereas the true 
probability pi of Selten’s formula enters as a quadratic. A simple relation, 
however, connects the two formulae and is such that this formality does 
not make a difference to their common function of eliciting distributions. 
If we write the Brier formula (2a) as “B(x | p),” then we have L(x | p) =  
B(x | p) − B(p | p).19

The principal result of Selten’s paper is a demonstration that its four 
axioms are satisfied uniquely by the quadratic scoring rule. This unique-
ness is a strong result. Selten goes to some pains to justify the naturalness 
of what might be the most contentious of the axioms, the fourth axiom, 
“neutrality.” It requires that the loss function L be symmetric in the two 
distributions:

Selten’s plea for the axiom is strong and plausible:

The interpretation of axiom 4 becomes clear if one looks at 
the hypothetical case that one and only one of two theories 
p and q is right, but it is not known which one. The expected 
score loss of the wrong theory is a measure of how far it is 
from the truth. It is only fair to require that this measure is 
“neutral” in the sense that it treats both theories equally. If 
p is wrong and q is right, then p should be considered to be 
as far from the truth as q in the opposite case that q is wrong 
and p is right.

19	 I thank an anonymous reviewer for BSPSOpen for pointing out this connection.
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A scoring rule should not be prejudiced in favor of one 
of both theories in the contest between p and q. The severity 
of the deviation between them should not be judged differ-
ently depending on which of them is true or false.

A scoring rule which is not neutral is discriminating 
on the basis of the location of the theories in the space of 
all probability distributions over the alternatives. Theories 
in some parts of this space are treated more favorably than 
those in some other parts without any justification. There-
fore, the neutrality axiom 4 is a natural requirement to be 
imposed on a reasonable scoring rule. (p. 54)

It is easy to accept this plea and, with it, neutrality as a reasonable demand 
for any scoring rule. It does seem natural. The comfort will surely be dis-
turbed when one realizes that Selten’s naturalness requirement eliminates 
virtually all the many, strictly proper scoring rules discussed above. All 
that remains is Selten’s quadratic rule. This elimination might be justifi-
able if Selten’s analysis had found some inadequacy in the function of all 
of these other strictly proper scoring rules. His analysis shows no such in-
adequacy; and it cannot. For all strictly proper scoring rules are by explicit 
design adequate to their function of eliciting a probabilistic credence.

The symmetry of Selten’s neutrality condition does not derive from 
the function of the scoring rule. Rather, it calls to mind the idea that dis-
tances between two points in ordinary space treat the two points symmet-
rically. Distance AB in a geometric space is the same as distance BA. It is 
easy to assent to the corresponding symmetry in the context of Selten’s 
analysis, since his scoring rule is, in a more abstract sense, a measure of 
the distance separating two distributions in a probability space. However, 
there is a difference from the geometric case. Distances in geometry must 
treat the points A and B symmetrically, since the notion of distance itself 
does not distinguish or privilege one point over another. There is no cor-
responding symmetry in the two distributions, p and x. One is the true 
probability distribution; the other is an elicited distribution. In terms of 
function of the scoring rule, there is no need to treat them symmetrical-
ly. Asymmetric strictly proper scoring rules still serve their function of 
elicitation.
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It is of course “natural” to treat them symmetrically. What results is 
an appealing simplification. We reduce the many scoring rules possible to 
a unique rule with a simple expression. That simple rule is likely easier to 
work with computationally than many of the more complicated strictly 
proper scoring rules. There is an aesthetic comfort in the formula. Its sym-
metry is visible from inspection, and we can see without calculation that 
it takes a minimum value just when our elicited distribution xi coincides 
with the true distribution pi.

However, the appeal of these factors should not lead us to think of the 
naturalness condition as anything more than an aesthetically motivated 
restriction unrelated to the rules’ function. It establishes no necessity for 
the quadratic scoring rule.

11.12. Conclusion
What makes the circularity of this accuracy-based approach harder to see 
at the outset is that it draws on a well-established literature on scoring 
rules in meteorology, economics, and subjective Bayesianism. This litera-
ture developed scoring rules for other purposes. They were used to reward 
meteorologists for their probabilistic predictions when scored against the 
actual frequencies of weather conditions; or they were used to encour-
age subjects to match their publicly declared probabilities with their true 
but hidden probabilities. For these purposes, it was appropriate to work 
with a narrow subset of scoring rules, adapted antecedently to probability 
measures. Using different rules, ill-adapted to probabilities would have no 
point.

Matters change when we try to use scoring rules to demonstrate the 
necessity of probabilities. Now, the careful selection of the same scoring 
rules ceases to be the practical adaption of the rules to the intended use. 
It amounts to the covert assumption of the very thing that is to be proven. 
For these favored rules—the Brier score and its generalization as strictly 
proper scoring rules—strongly favor probabilistic credences. As we saw 
above, if a subject harbors non-probabilistic credences and these scoring 
rules are used to elicit them, the subject will be rewarded for lying and 
reporting probabilistic credences.
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All would be well with accuracy-based vindications if solid, independ-
ent grounds could be found for use of these favored rules. However, no 
such grounds have emerged and, I argue, none can emerge. For all such 
grounds must covertly assume exactly what they seek to demonstrate. 
Instead, as we have seen repeatedly, the grounds will succumb under scru-
tiny. We are forever trapped in an endless regress of reasons.

Appendix 11.A. Dominance Relations for n-Power 
Scoring Rule with n > 1
The n-power loss functions

admit dominating points that lie on an r − 1 dimensional hypersurface 
of the r dimensional space of credences x1, x2, …, xr . Each point on the 
surface is a minimum for all r loss functions among a set of points lying on 
a curve in the space of credences. We write this curve as xi(λ), I = 1, …, r, 
where λ is a path parameter. A dominance point is identified by means of 
the derivatives of the loss functions with respect to λ. T﻿he first derivatives 
are

and similarly for L2, …, Lr . The second derivatives are 
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and similarly for L2, …, Lr . To identify a dominance point, we set all the 
first derivatives (13) to zero. The results for dL1/dλ = 0 and dLi/dλ = 0 are, 
respectively,

Subtracting the second from the first, we recover

This expression (16), with i = 2, 3, …, r can be used to replace expressions 
for dx2/dλ, dx3/dλ, …, dxr/dλ in (15), rewritten as

After some manipulation, the reconfigured equation (15) reduces to the 
expression that identifies the r − 1 dimensional hypersurface of domin-
ance points: 

In the special case of n = 2, the Brier score, this relation identifies the 
hypersurface of additive credences that conform with the probability 
calculus:20

To determine the disposition of the hypersurfaces of the remaining cases, 
we write the individual terms of (12) as

20	 For this case, n – 1 = 1 and xi
n−1 + (1 − xi)

n−1 = xi + (1 − xi) = 1.
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They can be inverted to yield

where, following (12), we have

A special case is r = 2, for any n > 1. For then y2 = (1 − y1) we have

so that the dominance points are also additive: 1 = x1 + x2.
Otherwise, for r > 2 and n > 2, we have from (17) that

since

by means of inequality (23) below. Using similar relations for x2, x3, …, xr , 
we recover

It follows that r > 2 and n > 2 is the case of subadditive credences. Repeating 
the above analysis for r > 2 and 1 < n < 2, using inequality (24), we recover:

from which it follows that this is the case of superadditive credences.
The hypersurface (12) is picked out by the vanishing of the first de-

rivatives, dL1/dλ = dL2/dλ =… = dLr/dλ = 0 for the curves xi(λ), i = 1, …, 
r. To complete the analysis, we need to show that these points are true 
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minima for the loss functions along the curves, so that the points on the 
hypersurface are dominance points. This in turn requires identification of 
the curves.

It will be sufficient to identify one set of curves as follows.21 In brief, we 
find the slope of the curve at each point on the hypersurface. We then take 
as the curve xi(λ) through that point, the straight line that has this slope 
as its slope everywhere. Select some point on the hypersurface, whose cre-
dences Xi satisfy equation (12). We have from (16) that

where K is some undetermined constant that is the same for all xi(λ). The 
constant is undetermined since its differing values give us the freedom to 
rescale the parameter λ arbitrarily. We can, for example, alter the value of 
K if we introduce a new parameterization λ’(λ) for which

To ensure that the path parameterization introduces no nuisance pathol-
ogies, it is convenient to set it, by stipulation, proportional to the natural 
Euclidean path length through

We select the constant in this expression so that the undetermined con-
stant K is set to one. That is, we now have

where mi > 0 since 0 ≤ Xi ≤ 1 for all i. The straight line with this slope mi 
that passes through the hypersurface point Xi at λ = 0 is

21	 The properties described above do not, I suspect, uniquely define the curves xi(λ). 

Identifying one set of curves is sufficient to display the dominance properties of the points of the 
hypersurface.
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For all such curves, we have

Substituting these properties into the r expressions for d2Li/dλ2, I = 1, …, 
r, analogous to (14), and recalling n > 0, it is easy to see that all the second 
derivative terms are greater than zero. Hence the point of intersection of 
each curve Xi with the hypersurface (12) is a true minimum along each 
curve for all the loss functions L1, …, Lr .

Appendix 11.B. Credences Elicited by n-Power Scoring 
with n > 1
The n-power scoring rule is generated by the functions (5a). The credences 
x = <x1, x2, …, xr> it elicits for a subject’s true probabilistic credences p = 
<p1, p2, …, pr> are those that minimize the loss function.

To keep the analysis simple, consider only the generic case in which pi > 0, 
all i. The first and second derivatives of L(p, x) with respect to x1 are

and similarly for x1, …, xr. We seek the minimum loss with respect to x by 
setting all first derivatives to zero. We find for i = 1, …, r, that ∂L/∂xi = 0 
leads to
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The values selected by this condition represent a true minimum since 
∂2L/∂xi

2 > 0 for 0 ≤ xi ≤ 1, for all i. Solving for xi, the credences elicited are

The credences elicited will correspond to probabilities pi only in the case 
of the Brier rule, n = 2. For then we have

When n is not 2, but r = 2, the rule will return additive credence x1 and x2:

These elicited credences x1 and x2 will not correspond to the probabilities 
p1 and p2 unless we have the exceptional cases of p1 = 0 or p1 = 0.5 or p1 = 1.

In all other cases for n > 1, we recover subadditive credences (for n > 
2) or superadditive credences (for 1 < n < 2).

To begin, consider the case of n > 2. For r > 2, we have from inequality 
(23) below that:

Using 1 − p1 =  p2 + … + pr , it becomes

Substituting into (20) for the case of i = 1, we have
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with similar formulae for x2, …, xr . We see that these credences are suba-
dditive if we sum them:

where the credence in the set of all outcomes is 1. For the case of 1 < n < 2, 
using (24) below, we have, instead of (21), the inequality: 

Following analogous reasoning, we arrive at superadditive credences

Appendix 11.C. Useful Inequalities
The equalities used above are derived by considering the function 

for some fixed value of y > 0. Its first derivative is

For n > 2, the exponent satisfies −1 < (2 − n)/(n − 1) < 0. It follows that  
df(x)/dx < 0 for all x > 0. Since f(0) = 0, we have after integration of df(x)/dx 
that f(x) < 0. That is, for all x > 0 and y > 0, n > 2,

Applying this inequality to (z2 + z3 + … + zr)1/(n−1) for all zi > 0, we recover

and then

Further iteration eventually leads to:
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For 1 < n < 2, we have that the exponent in f(x) satisfies (2 − n)/(n − 1) > 0. 
Proceeding as before we now have

which eventually leads to:

Appendix 11.D. Equivalent Definitions of Strictly 
Proper Scoring Rules
To show the equivalence of the two definitions I and II of strictly proper 
scoring rules, it is sufficient to show that definition II entails definition I; 
and to show the converse entailment.

Strictly Proper II entails Strictly Proper I

The loss function L(p, x) of (10a) consists of a sum of r terms:

where i = 1, …, r. Definition II entails that each of these r terms individual-
ly is minimized when xi = pi. To illustrate for I = 1, the term is rewritten as

Hence, this term is minimized uniquely, according to definition II, when 
x1 = p1. The corresponding results for the remaining x2, x3, … follow an-
alogously. Since x = p minimizes each term uniquely, it follows that x = p 
minimizes their sum, L(p, x), uniquely, which is definition I.

Strictly Proper I entails Strictly Proper II

Definition I applies for all pi in 0 ≤ pi ≤ 1, i = 1, …, r. Thus it applies to the 
case in which only p1 > 0 and p2 > 0, but p3 = p4 = … = pr = 0. In this special 
case, the loss function reduces to
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There are no terms in L(p, x) in g1(x3), g1(x4), …, g1(x4), but these variables 
only appear in g0(x3), g0(x4), …, g0(xr). Since all suitable functions for g0(xi) 
are strictly increasing, the condition for minimization must include xi = 
0 = pi, for i = 3, 4, …, r. Hence, the minimization of definition I reduces to 
the simpler problem of minimizing:

That is, definition I requires minimization for fixed p1 and p2 of:

Definition I stipulates that the minimum is achieved uniquely when x1 = 
p1 and x2 = p2. Since x1 and x2 can be varied independently in seeking the 
minimum, the minimum can only arise when the terms in which they 
appear 

are individually, uniquely minimized by x1 = p1, for the first, and x2 
= p2, for the second.

Either of these is equivalent to definition II, with the restriction that 0 
< p < 1. The complete definition II allows 0 ≤ p ≤ 1. The two missing cases, 
p = 0 and p = 1, always conform with definition II. Hence, definition I 
entails definition II.
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