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Infinite Lottery Machines

13.1. Introduction
No single calculus of inductive inference can serve universally. There is 
not even any guarantee that the inductive inferences warranted locally, in 
some domain, will be regular enough to admit the abstractions that form 
a calculus. However, in many important cases, when the background facts 
warrant it, inductive inferences can be governed by a calculus. By far, the 
most familiar case is the probability calculus.

That many alternative calculi other than the probability calculus are 
possible is easy to see. Norton (2010) identifies a large class of what are 
called “deductively definable” logics of induction. Generating a calculus 
in the class is easy. It requires little more than picking a function from 
infinitely many choices.

The harder part is to see whether some specific calculus is warranted 
in some particular domain. This chapter and the next three will provide 
a few illustrations of unfamiliar cases. In these cases, the warranted cal-
culus is not the probability calculus. The systems to be investigated are, 
in this chapter, infinite lottery machines; and, in subsequent chapters, 
continuum-sized outcome sets, which include nonmeasurable outcomes; 
indeterministic physical systems; and the quantum spin of electrons.

The infinite lottery machine that is the focus of this chapter selects 
among a countable infinity of outcomes, 1, 2, 3, …, without favor. It allows 
us to pose a series of inductive problems. In this arrangement, how much 
support inductively is given to the outcome of some particular number, 
say 378? Or to some finite set of numbers, say all those between 37 to 256? 
Or to some infinite set of numbers, such as the even numbers or the prime 
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numbers? The answers to these questions will be supplied by the inductive 
logic applicable to these domains.

The warranting facts that pick out the logic will be the physical prop-
erties of the infinite lottery machine. The inductive logic will be the same 
for all properly functioning infinite lottery machines. Thus, the pertinent 
warranting facts will be just those that they have in common—that is, the 
fact that they choose a number without favoring any.

The example of the infinite lottery machine has already proven 
troublesome in the existing literature. We shall see in Section 13.2 that an 
unreflective application of the probability calculus to it fails. The literature 
has explored several ways of modifying the calculus to accommodate an 
infinite lottery. They include dropping countable additivity and introdu-
cing infinitesimal probabilities. In subsequent sections, I will argue that 
neither of these modifications succeeds. The defining characteristic of an 
infinite lottery is that it chooses its outcomes without favoring any. This 
characteristic is captured formally in the condition of “label independ-
ence” described in Section 13.3. It says that the chance of an outcome with 
some definite number or a set of them is unaffected if we permute the 
numbers that label the outcomes. This condition, it is argued in Sections 
13.4 and 13.5, is incompatible with the (finite) additivity of a probability 
measure. This additivity is the familiar property that, if we have two mu-
tually exclusive outcomes, then we can add their probabilities to find the 
probability of their disjunction. Thus, the chance properties of an infinite 
lottery machine cannot be represented by a probability measure. Attempts 
to do so, I argue in Section 13.6, amount to altering the background facts 
presumed. These attempts do not solve the problem but merely exchange 
the problem for a different one that can be solved with a probability meas-
ure. Section 13.7 explores a non-standard calculus that is warranted by 
specific configurations of an infinite lottery machine. Section 13.8 out-
lines how we can give intuitive meaning to the values in the non-standard 
calculus and use it to make predictions. Section 13.9 extends the logic to 
repeated independent drawings of the lottery. Section 13.10 uses the exten-
sion to show that the chances of frequencies of outcomes in these repeated 
drawings do not conform with probabilistic expectations so that frequen-
cies cannot be used to reintroduce probabilities. Section 13.11 defends the 
failure of what is identified as the “containment principle.” Section 13.12 
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reports briefly on work elsewhere on the unexpected complications found 
when we try to determine the extent to which an infinite lottery machine 
is physically possible. Section 13.13 offers some concluding discussion.

Finally, Appendix 13.A reviews the so-called “measure problem” of 
eternal inflation in modern cosmology. It turns out to be essentially the 
same as the difficulty of fitting an additive probability measure to an in-
finite lottery machine.

13.2. The Initial Difficulty
An infinite lottery machine entered the literature because it poses an im-
mediate problem if we wish to use the probability calculus as the applic-
able inductive logic. This problem arises from a tension between two con-
ditions. First, the machine chooses each number without favor. So each 
outcome n must have equal probability P(n): 

Second, the outcomes are mutually exclusive and at least one must occur. 
Hence, all of these probabilities must sum to unity in the infinite sum: 

No value of e can satisfy both (1) and (2). For if we choose some e > 0, no 
matter how close this e is to zero, then (26) is the summing of infinitely 
many non-zero e’s. Summing only finitely many will eventually exceed the 
unity required in (2). If, instead, we set e = 0, then (2) is the summing of 
infinitely many zeros, which is zero.

Two types of solutions have been proposed in the literature. The most 
popular, advocated by Bruno de Finetti (1972; §5.17), targets the fact that 
(2) requires the summing of an infinity of probabilities. This infinite sum 
operation is qualitatively different from merely summing finitely many 
probabilities. For the infinite summation is carried out in two steps. First, 
one sums finitely many terms up to some large number N, say
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One then takes the limit of S(N) as N grows infinitely large. De Finetti 
proposed that we discard this rule of “countable additivity”1 and employ 
only the first step, “finite additivity,” in which we are allowed to add only 
finitely many probabilities. The outcome is that we no longer require sum-
mation condition (2) for the infinite lottery machine; and we can now 
employ e = 0 in (1), without running into contradictions. De Finetti’s pro-
posal has been subject to extensive critical scrutiny.2

Setting e = 0 amounts to setting the probability of each individual 
number outcome (or any finite set of them) to zero. This seems too severe 
to some. Might we not manage by assigning a very tiny probability—an 
“infinitesimal” amount—to each outcome? Non-standard analysis pro-
vides a mathematically clean way of doing just this. The possibility has 
been explored, for example, by Benci, Horsten, and Wenmackers (2013) 
and Wenmackers and Horsten (2013); and it has been subjected to critical 
scrutiny by, for example, Pruss (2014), Williamson (2007), and Weintraub 
(2008).

Neither of the repairs to probabilistic analysis will be pursued fur-
ther here, since, as I will below argue, no such repair is adequate. The 
infinite lottery requires an even greater departure from normal ideas of 
probability.

13.3. Label Independence
To proceed, we must clarify just what is meant by “choosing without favor,” 
or, as it is sometimes said, having a “fair” lottery. Taking this to mean that 
each outcome has equal probability is untenable, since this presumes that 
the probabilistic treatment is adequate. We need an analysis that does not 
make this presumption. In the following, I shall speak of the “chance” of 
an outcome, where the term will no longer designate a probability. What 
it designates will be determined through the development of the inductive 
calculus that governs it.

1 The full condition of countable additivity applies to any infinite set of mutually 
incompatible outcomes {A1, A2, …, An, … } and asserts that P(A1 or A2 or …) = P(A1) + P(A2) + 
…, where the ellipses “…” indicate that the formulae continue for all n.

2 See, for example, Bartha (2004), Blackwell and Diaconis (1996), Kadane, Schervish, and 
Seidenfeld (1986), Kadane and O’Hagan (1995) and Williamson (1999).
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What it is to choose without favor can be specified through the re-
quirement of “label independence.” The driving intuition is that when out-
comes are chosen with favor, then the chances will generally differ with 
different outcomes. Holding a ticket for the outcome labeled “37” may be 
preferable to, say, “18” if the outcome labeled “37” is favored over the one 
labeled “18.” If, however, the choice is made without favor, then we should 
be indifferent to whether we have the outcome labeled “37,” “18,” or any 
other label. Moreover, this indifference should remain no matter how the 
lottery machine operator switches the labels around over the various out-
comes. We should not care to which outcome our label “37” is attached, 
for none is favored.

The general requirement is that the chances are unaffected by any 
permutation of the labels. A permutation moves labels from outcomes to 
outcomes such that every outcome starts and ends with exactly one label; 
no labels are discarded; and no new labels are introduced. More formally, 
the requirement is the following:

Label independence. All true statements pertinent to the chances 
of different outcomes remain true when the labels are 
arbitrarily permuted.

We can see how it works by taking the case of a finite randomizer, the rou-
lette wheel. Such a wheel has, in the American case, thirty-eight equally 
sized pockets on its perimeter. It is spun and a ball projected in the oppos-
ite direction. The pockets are numbered from 1 to 36, 0 and 00; and the 
outcome is the pocket in which the ball eventually comes to rest. As long 
as the wheel is well balanced with equal-sized pockets and the croupier 
spins and projects with vigor, the ball with pass over the wheel many times 
and arrive with equal chance in each pocket. Under those conditions, the 
choice of labeling the pockets is immaterial. We could, without comprom-
ising the fairness of the wheel, peel off the labels that mark each pocket 
and rearrange them in any way we please.

To apply label independence, we start with a statement true of a prop-
erly made roulette wheel:

Pockets 11 and 23 are the same size.
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Under a permutation that switches label 11 with label 3 and label 23 with 
label 10, the proposition now asserts a truth expressed in the old labeling 
as

Pockets 3 and 10 are the same size.

Proceeding with further permutations, we see that the label independence 
of the statement amounts to the assertion that any two pockets have the 
same size. Similarly, the following is true of any well-functioning roulette 
wheel:

The ball ends up in pockets 1 to 12 roughly as often as it does in 
pockets 13 to 24.

Under label independence, it remains true if we permute the labels of 
pockets 13 to 24 with those of pockets 25 to 36. It now expresses a truth 
expressed in the old labeling as

The ball ends up in pockets 1 to 12 roughly as often as it does in 
pockets 25 to 36.

Thus, the label independence of the second statement reflects the fact that 
the relative frequency of outcomes in a set of pockets depends merely on 
the number of pockets in the set.

The qualification “pertinent to the chances” is essential, for there are 
many statements true of a roulette wheel whose truth is not preserved 
under arbitrary permutation of the pocket labels. For example, in an 
American wheel,

Pockets 3 and 4 are diametrically opposite on the wheel.

This statement does not remain true under most permutations of the pock-
et labels. However, since the statement is not pertinent to the randomizing 
function of the wheel, the failure does not violate label independence.

13.4. Abandoning Finite Additivity
There are no surprises when label independence is used to characterize 
how a finite randomizer, such as a roulette wheel, picks outcomes without 
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favor. Matters change when label independence is applied to an infinite 
lottery machine. The reason is that labels on infinite sets of outcomes can 
be permuted in ways that are impossible for finite sets. It is easy to permute 
them so that the labels for some infinite set of outcomes end up assigned 
to one of its proper subsets. It follows from label independence that the set 
and its proper subset have the same chance. If chances are probabilities, it 
means that they have the same probability. Assembling several permuta-
tions like this soon contradicts the requirement that the probability of an 
outcome is the sum of the probabilities of its disjoint parts. This is a strik-
ing result that bears repeating. If outcome A is the disjunction of mutually 
exclusive outcomes B or C or D—that is,

and B, C, and D pairwise contradict, then we can have cases in which

which is incompatible3 with finite additivity,4 which requires

That is, the label independence of an infinite lottery machine requires us to 
abandon finite additivity for a measure of the chance of sets of outcomes. 
Since finite additivity is essential to the definition of probability, it follows 
that chances cannot be probabilities for an infinite lottery machine.

13.5. An Example of the Failure of Finite Additivity
An illustration of the failure of finite additivity in (3) and (4) is provided by 
an example reported in Bartha (2004, §5) and Norton (2011, pp. 412–15). 
Assume that the chance function “Ch(.)” measures the chance of different 
sets of outcomes of an infinite lottery machine, recalling that the notion 
of chance employed here, so far, is only loosely defined and need not be a 

3 Unless all the probabilities are zero.
4 The full condition of finite additivity applies to any finite set of mutually incompatible 

outcomes {A1, A2, …, An} and asserts that P(A1 or A2 or … or An) = P(A1) + P(A2) + … + P(An).



The Material Theory of Induction476

probability measure. For some numbering of the outcomes, the labels on 
the sets of even-numbered outcomes5

and the labels on the sets of odd-numbered outcomes

can be switched one-to-one by a permutation:

Hence, by label independence, the two sets must have equal chance: 

Now, consider the four sets of every fourth number:

By similar reasoning, each of one, two, three, and four have equal chance: 

So far, nothing untoward has happened. All of this is compatible with the 
Ch(.) function being a probability measure. This will now change.

Consider two sets of outcomes: set one and the set whose members are 
in (two or three or four). Since all the sets are countably infinite, we can 
have the following two-part permutation of the labels. The first switches 
the labels one-to-one on odd with those on one:

The second part switches the labels one-to-one on even with those of (two 
or three or four):

5 Here and henceforth I move without warning between a set representation of an 
outcome, even = {2, 4, 6, …} and an equivalent propositional representation, even = 2 or 4 or 6 or 
….
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For convenience, since the set one now carries the labels that originated in 
odd, let us also call it odd*; and similarly (two or three or four) is also called 
even*. That is, we have two names for each outcome set:

Since the new labels of outcomes in odd* and even* can also be switched 
one-to-one with each other, analogously to (5), they must also have equal 
chance. That is: 

Combining this, we have

These last equalities violate6 finite additivity (4), since a finitely additive 
probability measure P(.) must satisfy,

13.6. Finite Additivity Must Go
The simple example above shows that label independence for an infinite 
lottery is incompatible with the finite additivity of a probability measure. 
To proceed, at least one of them must be given up. Both Bartha (2005, §5) 
and Wenmackers and Horsten (2013, p. 41) find giving up finite additivity 
too great a sacrifice. In my view, we have no choice but to sacrifice finite 
additivity. For label independence is a defining characteristic of an infinite 

6 Unless all the probabilities are zero.
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lottery machine. Without it, we can no longer say that the infinite lottery 
machine chooses its outcomes without favor. There is no comparable ne-
cessity for probability measures, other than our comfort and familiarity 
with them.

To persist in describing the chance properties of an infinite lottery 
machine by a probability measure is, in effect, to change the problem 
posed. For no single probability measure can satisfy all the equalities 
derived above from label independence. We must choose which subset 
will be satisfied. This choice amounts to adding extra conditions on the 
operation of the infinite lottery machine. While the augmented problem 
may be quite well-posed and even interesting, it is a different problem. 
The extra conditions must breach label independence so that we no longer 
describe a device that chooses outcomes without favor. We have not solved 
the original problem; we have merely changed the problem to one we like 
better.

To see how this favoring can come about, consider the two equalities 
(5) and (7). If the chance function is a probability function P(.), then they 
become

We cannot uphold both if we note that the probabilistic version of (30) 
requires

For then P(odd*) = P(one) = 1/4; while P(even*) = P(two) + P(three) + 
P(four) = 3/4, in contradiction with (7a).

To preserve the applicability of a probability measure, we have to 
block one of (5a) or (7a). A simple strategy is to select a preferred num-
bering of the outcomes, such as the original labeling, and then define the 
probability of each set of outcomes in the natural way. That is, we consider 
the sequence of finite, initial sets
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The probability of some nominated outcome set is defined as the limit of 
the frequency of outcome set members in this sequence. For the outcome 
even, we have 

Definitions of the form (9) using the sequence (8) give the expected prob-
abilities (5a) and (6a) for P(even), P(odd), P(one), P(two), P(three), and 
P(four). However, they fail to return (7a), since, as before, we have P(odd*) 
= P(one) = 1/4 and P(even*) = P(two or three or four) = 3/4.

There is a second, parallel “starred” analysis that preserves the equal-
ity of (7a) while giving up (5a). It proceeds exactly as above, but replaces 
the sequence (8) with one natural to the starred labeling of outcomes. That 
is, the starred labels assigned to outcomes after the permutation conform 
with

In place of (8), it has this sequence:

Using the sequence (8a), definitions of probability based on relative fre-
quencies akin to (9) will give starred results that are the reverse of the 
unstarred results. That is, we shall secure (7a) P(even*) = P(odd*) = 1/2, 
but not (5a).

In comparing the unstarred and starred analysis, we see how each 
improperly favors certain outcomes in the judgment of the other. The un-
starred analysis gives P(odd•) = 1/4 and P(even•) = 3/4, improperly favor-
ing even• over odd•, according to a starred analysis. However, the starred 
analysis gives P(odd) = 1/4 and P(even) = 3/4, improperly favoring even 
over odd, according to an unstarred analysis.

Thus, describing an infinite lottery machine with a probability meas-
ure replaces the original requirement of selection without favor, by se-
lection with the added restriction that the selection must respect also a 
preferred numbering scheme and the limiting ratios native to it.
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That some such change in the problem is required if probabilities are 
to be retained was noted by Edwin Jaynes (2003). He was a leading pro-
ponent of objective Bayesianism and a master of the memorable riposte, 
which he formulated for this case as follows:

Infinite-set paradoxing has become a morbid infection that 
is today spreading in a way that threatens the very life of 
probability theory, and it requires immediate surgical re-
moval. In our system, after this surgery, such paradoxes 
are avoided automatically; they cannot arise from correct 
application of our basic rules, because those rules admit 
only finite sets and infinite sets that arise as well-defined 
and well-behaved limits of finite sets. The paradoxing was 
caused by (1) jumping directly into an infinite set without 
specifying any limiting process to define its properties; and 
then (2) asking questions whose answers depend on how 
the limit was approached.

For example, the question: “What is the probability that 
an integer is even?” can have any answer we please in (0, 1), 
depending on what limiting process is used to define the 
“set of all integers” (just as a conditionally convergent series 
can be made to converge to any number we please, depend-
ing on the order in which we arrange the terms).

In our view, an infinite set cannot be said to possess any 
“existence” and mathematical properties at all—at least, in 
probability theory—until we have specified the limiting 
process that is to generate it from a finite set. (p. xxii)

The bluster of Jaynes’ riposte cannot cover the fact that he can offer no 
good reason for eschewing infinite sets that do not come with a preferred 
ordering or numbering scheme. If we must eschew all such sets, then we 
are precluding from inductive analysis cases that arise in real science. The 
problems rehearsed in Sections 13.5 and 13.6 above have played out almost 
exactly as a foundational problem in recent inflationary cosmology—the 
“measure problem”—where the lack of a preferred order on an infinite set 
of pocket universes has precluded introduction of a probability measure 
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over them. This problem is reviewed in Appendix 13.A. This should quell 
fears that the problem of fitting a probability measure to an infinite lot-
tery machine is merely the contrarian whimsy of eccentric theorists and 
idle philosophers. The problem has a connection and application in real 
science.

13.7. The Inductive Logic Warranted for an Infinite 
Lottery Machine
The defining characteristic of an infinite lottery machine is that its choice 
of outcomes respects label independence. This characteristic rules out 
an inductive logic whose strengths of support are probability measures. 
According to the material theory of induction, the background facts war-
rant the inductive logic appropriate to the domain. Label independence—
the characteristic common to all infinite lottery machines—is the key, 
warranting fact. It acts powerfully and leads us to the following inductive 
logic.

13.7.1. Equal Chance Sets
The logic divides outcome sets into types such that all sets of the same 
type must have the same chance. To implement this division, we require 
that two outcome sets are of the same type if the members of the two sets 
can be mapped one-to-one by a permutation of labels. This means that the 
outcome sets must have the same size (i.e., cardinality). In addition, the 
complements of the sets must also be the same size, else the requisite per-
mutation of labels will not be possible. What results are sets of outcomes 
of the following types:7

Examples of finite3 are {1, 2, 3}, {27, 1026, 5000}, and {24, 589, 2001}.

7 Co-infinite means that the complement of the set is infinite. Co-finite means that the 
complement of the set is finite.



The Material Theory of Induction482

An example is the infinite set of even numbers {2, 4, 6, …} since its com-
plement is the infinite set of odd numbers {1, 3, 5, …}

An example of infiniteco-finite-10 is the set of all numbers greater than 10: 
{11, 12,  13,…) since its complement is the finite set {1, 2, 3, …, 10}.

13.7.2. Chance Values
The requirement of label independence entails that sets of outcomes of the 
same type must be assigned the same chance. Thus, the chance function 
Ch(.) in this logic can only have the following set of values: 

And for completeness we add in the two special cases

According to (10a), all equal-sized finite sets of outcomes have the same 
chance: any n membered finite set has the same chance Vn. This is re-
quired by label independence, since some permutation can always switch 
the labels between any two finite sets, as long as they are the same size. 
Similarly, (34b) tells us that all infinite sets that are co-infinite have the 
same chance. We have already seen an example above in (5) and (7):

Since each of the four infinite sets are co-infinite, there is a permutation 
that switches their labels. By label independence, they have the same 
chance. Since every co-infinite infinite set of outcomes is assigned the 
same value V∞ as its complement set, we informally name this value “as 
likely as not.” Finally, (10c) can be interpreted similarly to (10a).
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13.7.3. Comparing Chance Values
The conditions (10) are powerful restrictions. They preclude the chance 
function Ch(.) being an additive probability measure. However, they leave 
the logic underspecified. We do not yet know whether the values Vn, V∞, 
and V−n are the same or different; and, if they are different, how they com-
pare with one another. To arrive at the conditions (10), we used label in-
variance only. Further restrictions can enrich the logic.

A qualitative ranking of the strengths of support derives from the idea 
that the chance of a set of outcomes cannot be diminished if we add fur-
ther outcomes to the set. This condition induces the relation “≤,” which is 
read as “is no stronger than.” It obtains between values A and B when the 
outcomes that realize a value A can be a subset of the outcomes that realize 
a value B. As a result, the relation inherits the properties of set theoretic 
inclusion. It is antisymmetric, reflexive, and transitive. It is easy to see that 

One might think that this condition is unavoidable. It is not. It is mere-
ly familiar and amounts to one construal of the meaning of strength of 
support. A somewhat similar condition fails in the “specific conditioning 
logic” of Norton (2010, §11.2).

Further discriminations, if any, must be warranted by further back-
ground facts, whose truth must be recovered from the physical properties 
of the pertinent chance process. One case that is easy to motivate phys-
ically arises if we have an additive measure that is not normalizable; that 
is, the total measure of its space is infinite. It arises if we have a space in 
which lengths, areas, or volumes are defined, the total space has infinite 
length, area, or volume, and the chances of some event occurring in a 
region of the space are measured by its length, area, or volume. This case 
is developed more fully in the next chapter in Section 14.4. An illustration 
presented there derives from steady-state cosmology. Accordingly, the 
chance of a hydrogen atom being created in some region of our cosmic 
infinite Euclidean space is proportional to the region’s volume.

To apply the infinite lottery logic to this case, we divide the space into 
an infinite number of parts of equal length, area, or volume. An outcome 
finiten arises when the event is realized in some subset of the space of n 
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of these parts. Its chance is measured by n. Correspondingly, the chance 
associated with any infinite volume of space will be measured by ∞. That 
is, we have 

The inequalities relating the various values of Vn in (35) become strict 
inequalities.

If the outcome of the infinite lottery machine lies in some finite set of out-
comes, then the chance relations (12) match those of a finite probabilistic 
randomizer with the same finite set of outcomes. That is, the chances of 
different outcomes in the finite set will behave like probabilities defined as 

where A is a subset of B, and B is a finite set of outcomes.
The conditions (11a) and (13) are not assured. They can fail, depending 

on the particular physical instantiation of the infinite lottery machine. 
Such a failure would arise if the randomizer is based on the non-prob-
abilistic, indeterministic systems described in Chapter 15. The conditions 
succeed for the “Spin of a pointer on a dial” device of Norton (2018). 

Correspondingly, while label independence does not force it, we may 
require as an additional assumption in some more specific logic that8

In the following section, we shall see why this additional assumption 
fits naturally into the formal properties of the chance function.

These inequalities along with relations (10), (11), (12), and (13), all 
assumed henceforth, characterize an inductive logic native to an infinite 

8 Considerations of cardinality make natural the strict inequality V∞ < V−n for all n. 
However, unlike the case of Vn, I have been unable to conceive of possible background facts that 
would warrant strict inequalities among the individual values of V−n as shown in (35b). Might an 
inventive reader be able to conceive of such facts?
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lottery machine well enough for us to see that such logics differ signifi-
cantly from a probabilistic logic. 

A curious outcome of the analysis is that this logic is the reverse of the 
one de Finetti (1972; §5.17) proposed for an infinite lottery. In his logic, 
additivity was preserved for outcomes comprised of infinite sets; but it 
was trivialized for outcomes of finite sets, since the latter were all assigned 
zero probability. In the present logic, non-trivial additivity is maintained 
for finite sets through (12) and (13), but additivity fails through (10b) for 
most infinite sets.

13.8. Interpreting the Inductive Logic
The chance function Ch(.) of Section 13.7 specifies an inductive logic. Its 
formal properties are clear. However, we may well ask what its quantities 
mean. What should we think when we learn that some outcome has such-
and-such a chance value? This question asks less than is usually asked in 
the analogous circumstance when we seek an interpretation of probabil-
ity. It does not ask for an explicit definition, such as would be sought by 
a relative frequency interpretation of probability or from the subjectivist 
Bayesian definition of probability in terms of betting quotients. One can 
have an understanding of a magnitude, adequate for practical applica-
tions, without an explicit definition of it. Since the values of the chance 
function (10) are so unfamiliar, that is all that is sought here.

13.8.1. The Probabilistic Model
The problem of developing some informal understanding of an initial-
ly abstruse quantity arises also for ordinary probabilities. We can use its 
solution as a model for the new chance function. Take the simple case of a 
coin toss whose outcome can be heads H or tails T. How are we to under-
stand the probability assertion that P(H) = 0.5? How are we to distinguish 
that probability assertion from nearby assertions like P(H) = 0.4 or P(H) = 
0.6? To be told that a probability of 0.4 is weaker than a probability of 0.5 is 
true but merely qualitative and falls well short of the precision we expect.

We gain a better understanding of such assertions, sufficient to dis-
criminate among them, by contriving associated circumstances of either 
very high or very low probability. For example,
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If P(H) = 0.5, then, with probability near one, the frequency of H 
among many, independent coin tosses will be close to 0.5.

If P(H) = 0.4, then, with probability near one, the frequency of H 
among many, independent coin tosses will be close to 0.4.

Sentences like these, by themselves, are not sufficient to give informal 
meaning to the quantity P(.). All we have is one probability statement, 
that P(H) = 0.5, associated with another statement concerning an out-
come with a probability near one. Without something further, we will 
be trapped forever in a self-referential web of statements in which prob-
abilistic assertions are made about other probabilistic assertions, without 
otherwise clarifying what any probabilistic assertion means. The axioms 
and definitions used to deduce all of these assertions can be modeled in 
many systems with an extensive quantity whose magnitude is additive. To 
break out of the self-referential trap, we use a rule that coordinates large 
and small values of probability with informal judgments of expectation 
about chance outcomes:

Rule of coordination for probability. Very low probability 
outcomes generally do not happen; and very high 
probability outcomes generally do.

Thus, we come to some understanding of the difference between P(H) = 
0.5 and P(H) = 0.4: we expect each to deliver roughly 50% or 40% H, re-
spectively, in repeated independent coin tosses.

This interpretive rule, in various forms, has a long history and has 
come to be known as “Cournot’s Principle.”9 In Andrey Kolmogorov’s 
(1950, p. 4) canonical treatment of the foundations of probability theory, 
he has a version of this rule that employs the locution “practically certain”: 

(a) One can be practically certain that if the complex of 
conditions S is repeated a large number of times, n, then if 

9 For a brief survey, see Shafer (2008, §2). One must be careful to treat the rule as nothing 
more than an informal guide. Otherwise, the danger is that one misidentifies very low probability 
events as strictly impossible and very high probability events as necessary. For de Finetti’s view of 
the rule, see de Finetti (1974, pp. 180–81). My use of the term “rule of coordination” is intended to 
recall Reichenbach’s notion of a coordinative principle.
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m be the number of occurrences of event A, the ratio m/n 
will differ slightly from P(A).

(b) If P(A) is very small, one can be practically certain that
when conditions S are realized only once, the event A
would not occur at all.

This process of conveying meaning should not be confused with subject-
ive Bayesians’ process of elicitation of probabilities. They determine, for 
example, that a subject has assigned probability 0.5 to H when the subject 
accepts even odds on either H or T. The present concern is how the subject, 
prior to the elicitation, came to judge that 0.5 was the appropriate prob-
ability to assign. This in turn requires some prior understanding by the 
subject of what probability 0.5 means.

13.8.2. The Analogous Analysis for the Chance Function
This same strategy can be used both to interpret the values of the chance 
function (10) and, at the same time, to display the predictive powers of the 
logic. The analogs of very low probability and very high probability out-
comes are those with chance Vn and chance V−n. A chance Vn outcome is 
realized when the number drawn resides in a finite set among the infinite 
possibilities. This is not an outcome we should expect to happen, since it 
is thoroughly swamped by the infinite numbers outside the set. A chance 
V−n happens when the number drawn lies outside some finite set. Since 
there are infinite possibilities outside the finite set that realize it, this is an 
outcome we should expect. That is, we have the following interpretive rule:

Rule of coordination for chance. Very low chance outcomes with 
chance Vn generally do not happen; and very high chance 
outcomes with chance V−n generally do.

The rule divides outcomes sharply into three sets:

• outcomes in one of the finiten sets, which we do not expect;

• outcomes in infiniteco-infinite sets, which may or may not
happen “as likely as not”; and

• outcomes in one of the infiniteco-finite-n sets, which we do
expect.
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The application of this rule is simpler than in the probabilistic case for two 
reasons. First, in the present case, the division of outcomes into unexpect-
ed, intermediate, and expected is sharp. This sharpness makes it natural 
to replace the inequalities of (11) by strict inequalities. In the probabilistic 
case, the division was muddier. Just how low should a probability be before 
its outcome is not to be expected? If one is pressed, one eventually intro-
duces some arbitrary cutoff, knowing that any cutoff can be challenged if 
sufficient contrivance is allowed.

Second, the intermediate co-infinite infinite outcomes all are assigned 
the same chance values of V∞. The intermediate outcomes in the prob-
abilistic case, however, are assigned a range of probabilities, and further 
work is needed to distinguish them. For example, we separated the cases 
of probability 0.5 and 0.4 by considering a large number of independent 
trials. The comparable analysis is not needed for the chance function. 
However, as an exercise in applying the chance function, in Section 13.8.4 
below, it is used to determine the chance of various frequencies of out-
comes of even and odd numbers in many independent drawings of an 
infinite fair lottery.

13.8.3. Applying the Rule of Coordination
To illustrate how the rule of coordination is used, we apply it to a simple 
case. Consider the chance that the number drawn is less than or equal 
to some large number N. This outcome set has N members and thus has 
chance VN. It is an outcome not to be expected. The outcome that the 
number is greater than N, however, is in the complement set and thus has 
chance V−N. It is an outcome we do expect. This must appear strange at 
first; for it tells us that no matter how large we make N—one million, one 
quadrillion, one millionmillion—we are sure the number drawn is greater, 
even though we are certain that some definite, finite number is drawn. 
There is only strangeness here, but no problem. It is how the chances are in 
an infinite lottery. All our calculus does is to relate the fact to us.
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13.9. Repeated, Independent, Infinite Lottery 
Drawings10

13.9.1. Applying Label Independence
To explore the application of the rule of coordination further and to see 
how the chance function behaves, consider the case of repeated independ-
ent drawings from a sequence of identical infinite lottery machines. We 
will consider the case of N independent drawings from N machines: ma-
chine1, machine2, …, machineN. The combined outcome of N drawings 
will form an N-tuple such as 

where the subscript N reminds us that there are N elements in the tuple. 
The set of all such outcomes is WN. It is countably infinite, since it is formed 
as a finite tuple of elements of a countably infinite set.

Label independence can be implemented once again. We consider 
permutations of the labels on the outcomes of each lottery machine in-
dividually. Under such permutations, any N-tuple can be mapped to any 
other N-tuple. Thus, label independence requires that the outcome repre-
sented by each N-tuple each has a chance.

Label independence allows us to form equal chance sets of outcome 
sets, analogous to the equal chance sets of Section 13.7.1. Consider, for ex-
ample, the set of all N-tuples such that every element in each of the mem-
ber N-tuples is an even number. We will write this as11 

Analogously we have 

10 The analysis of Sections 13.8 and 13.9 was decisively advanced by ideas that emerged 
in an energetic email exchange with Matthew W. Parker. I thank him for this and also for helpful 
remarks on the present text.

11 The square bracket notation [ … ] is used to preclude the misreading that all-even is 
an N-tuple of sets, whose first, second, third, … members are each the sets of even drawings on 
machine1, machine2, machine3, ….
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When it happens that two sets of outcomes can be mapped onto each other 
by a label permutation, then label independence requires that the two sets 
have the same chance. Since they can be so mapped, all-even and all-odd 
have the same chance. They belong to the same equal chance set of out-
come sets.

This shows that the inductive logic induced by label independence on 
repeated, independent drawings is similar in structure to that induced on 
single drawings. We shall see below that the full structure induced for 
the repeated case is more complicated. However, there are simple sectors 
in the logic that are formally the same as the logic that applies to single 
drawings.

13.9.2. A Simple Sector
A simple sector consists of a set of equal chance sets, where those equal 
chance sets can be totally ordered by set inclusion. That is, the equal 
chance sets form a chain such that the outcomes of each equal chance 
set is a subset of those higher in the chain. Since the set of all outcomes 
WN is countably infinite, the equal chance sets will be of the type familiar 
from Section 13.7.1, namely finiten, infiniteco-infinite, and infiniteco-finite-n. 
Because they are also totally ordered, we can assign the chance values V0, 
V1, …, V∞, … V−1, V−0 of (34). If all the cardinalities are not realized by the 
equal chance sets, then the sector will only have a subset of these values. 
Thus the equal chance sets of a simple sector follow the same logic as that 
governing equal chance sets of single drawings.

A note of caution is in order: there are many simple sectors in the 
outcome space of repeated drawings. The chance values only have a mean-
ing within the sector in which they are defined relative to the chance of 
the other outcomes in the sector. Without further justification, we can-
not assume that the chance of Vsomething in the outcome space of a single 
drawing has the same meaning chance of Vsomething in a simple sector of 
the outcome space of repeated drawings.

An example of a simple sector is the set of all outcomes in which all 
drawings return the same number. The outcome in which number 1 is 
drawn every time is 
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with an obvious extension of the notation to all 2, all 3, … outcomes. Set 
complementation with the simple sector gives a notion of negation. For 
example12

The outcome 1N has a single member and is of type finite1. The comple-
ment not 1 N is of type infiniteco-finite-1. Thus, 

Applying the rule of coordination, we infer that an outcome in which all 
numbers drawn in N independent repetitions are 1 is not to be expected in 
relation to other outcomes in the sector. Correspondingly, an outcome in 
which none of the numbers drawn is 1 is to be expected. 

To identify further members in the sector, we ask whether we should 
expect all the N drawings to yield the same number, where the same num-
ber is found in some finite set, say {1, 2, 3}. That is, the outcome is (1N or 
2N or 3N). Proceeding as above, we find this outcome is not to be expected, 
since

We get a different result if we ask about the outcome in which all the num-
bers drawn are the same, but that the number can be any in an infinite set 
of type infiniteco-infinite, such as the set of all even numbers or the set of all 
odd numbers. These two outcomes are (2N or 4 N or 6 N or …) and (1 N or 
2 N or 3 N or …). Since these two outcomes can be mapped onto each other 
by a permutation of labels and because they are of type infiniteco-infinite, 
we assign the same value

These outcomes are “as likely as not” in this sector.

12 As before, I move without warning between the set representation of the outcome not 
1N = {2N, 3N, 4N, …} and its equivalent propositional representation not 1N = 2N or 3N or 4N or … 
.
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13.9.3. A Finite Simple Sector
All the finite outcome sets in the last simple sector above are subsets of 
another simple sector. Consider the outcome in which all the numbers 
drawn in N repetitions are less than or equal to some big, finite number 
Big, where the numbers drawn need not be the same. This outcome corres-
ponds to a set of BigN tuples in the outcome set WN. Thus, we have

That is, since BigN is finite, the outcome is one that will generally not hap-
pen according to the rule of coordination.

This is a new sector since a permutation of labels cannot map the set 
of tuples here assigned the value VBigN onto the set assigned the value 
VBigN in the simple sector of Section 13.9.2. For example, consider the 
finite2 equal chance sets in each sector. The sector in this section will have 
outcomes like

No permutation of labels can map these onto the tuples, such as

in the corresponding finite2 equal chance sets of the simple sector of 
Section 13.9.2. 

We cannot directly compare chance values across different sectors. 
However, our rule of coordination enables us to make some coarser 
judgments. What of the outcome that at least one of the numbers in N 
independent drawings is greater than Big? This outcome set is the com-
plement of the last set considered with BigN members. Thus, this outcome 
set is co-finite infinite so that the outcome is to be expected according to 
the rule of coordination. That is, no matter how big we make Big, we must 
always expect that at least one of the numbers drawn in N drawings will 
be greater.

Similarly, we cannot directly compare the chance values across the 
different sectors of Sections 13.9.2 and 13.9.3. However, our rule of co-
ordination, applied to tuples of drawings, tells us that outcomes realized 
by finitely many tuples of drawings generally do not happen. If we now 
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assume that outcomes realized by infinitely many tuples of drawings are 
more likely than the finite case, we arrive at a result that is surely surpris-
ing to someone whose intuitions about chance have been tutored by the 
probability calculus. It is more likely that all N numbers drawn are the 
same than it is that all N numbers drawn are less than or equal to some 
number Big, no matter how big we make it. This holds no matter how large 
we make N. 

13.9.4. A “Likely As Not” Sector
Here are examples that illustrate outcomes to which the “as likely as not” 
chance of V∞ is assigned. Consider the numbers drawn in N independent 
repetitions of the infinite lottery:

all-even: all numbers drawn are even numbers
all-odd: all numbers drawn are odd numbers
all-powers: all numbers drawn are powers of 10, 

that is, 10, 102, 103, 104, …
not-all-powers: all numbers drawn are NOT powers of 10, 

that is, not and of 10, 102, 103, 104, …

Each of these outcomes corresponds to sets of tuples in WN of type in-
finiteco-infinite. They can each be mapped onto any other by a permutation 
of the labels on the individual lottery machines. It follows that they have 
equal chance:

This will seem surprising if we think that there are vastly fewer outcomes 
in all-powers than in not-all-powers, since there are vastly fewer powers 
of ten than numbers that are not powers of ten. Any surprise should be 
dispelled by recalling that both of these sets are countably infinite. The 
impression that one is bigger than the other is purely an artifact of label-
ing. Label independence warns us that such artifacts of labeling should be 
ignored. The two sets in these examples are equinumerous and equinum-
erous in their complements, and they can be mapped onto each other by 
a label permutation.
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13.9.5. Further Sectors
The chance logic of repeated independent infinite lottery drawings in-
cludes further sectors with more complicated properties. An indication of 
the nature of these sectors follows from consideration of two independent 
drawings. Consider the outcome that the first number drawn is 1 and that 
the second number drawn is even—that is, [1, even]—and then another 
outcome [1 or 2, even]. Both can be mapped one-to-one by label permu-
tations onto infinite-co-infinite sets of pairs. However, no permutation of 
labels can map [1, even] to [1 or 2, even]. Thus, they cannot be required 
by label independence to have the same chance value. We would need to 
assign them different chance values. In an obvious notation, they might 
be V1,∞ and V2,∞. In this notation, the outcome [even, even] would be as-
signed the value V∞,∞. The applicable chance logic would then reside in 
relations analogous to those of (35), such as V1,∞ ≤ V2,∞ ≤ … ≤ V∞,∞; and 
V1,∞ = V∞,1; V2,∞ = V∞, 2; etc.

13.10. Relative Frequencies of “As Likely As Not” 
Outcomes

13.10.1. Can Frequencies Reintroduce Probabilities?
The inductive logic induced by label independence precludes an ordinary 
probabilistic logic. We might wonder, however, whether probabilities can 
be reintroduced indirectly by an empirical approach. We carry out many 
independent drawings and let the limiting behavior of the frequencies re-
introduce probabilities. This approach would succeed with a finite lottery. 
In independent repetitions, we expect with high probability that roughly 
half of the numbers drawn will be even and half of them odd. That is a 
consequence of the probabilistic fact that an even number is drawn with 
probability 1/2. 

We should not expect similar results in an infinite lottery, for the 
value V∞ assigned to both even and odd outcomes is quite removed in its 
formal properties from a probability 1/2. We shall see in this section by 
direct calculation that the chance function of the infinite lottery does not 
return the favoring of relative frequencies of odd and even outcomes such 
as would be needed to reintroduce a probability of one half for each.
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13.10.2. Odd and Even Outcomes
Consider N > 1 independent drawings of the lottery as in Section 13.9. The 
outcome sets that interest us are sets of N-tuples of the form

Since each odd and even are realized by infinitely many numbers, the set 
of N-tuples realizing any particular outcome set of the form [odd, odd, …, 
even, odd, even, even]N is infinite. Correspondingly, there are infinitely 
many ways that the complement set could be realized. Thus, the outcome 
is co-infinite infinite, and it has chance V∞ of the simple sector of Section 
13.9.3.

Permuting the labels on the individual lottery machine outcomes, we 
find that each of these outcome sets can be mapped onto any other. For 
example, the outcome set 

can be mapped onto the outcome set

We take the lottery machines in the positions marked “even” in the first 
outcome set and apply a permutation of labels that switches odd and even 
numbers. It follows that all the outcome sets of odd and even outcomes in 
this subsection have equal chances.

13.10.3. Frequencies of Even Outcomes
Our concern is not just the outcome sets of Section 13.10.2. We want to 
know the chances of n even numbers in N independent draws. These chan-
ces are assigned to larger outcome sets. The case of n = 0 is the all-odd 
tuple above. The case of n = 1 is realized as the union of N outcome sets
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In general, the number of these outcome sets to be joined to form the set 
of n even outcomes is given by the combinatorial factor C(N, n) = N!/(n! 
(N – n)!). This combinatorial factor is always finite for finite N and n. It 
follows that there are still infinitely many N-tuples of individual outcome 
numbers that realize the outcome of exactly n even numbers in any order 
among the N drawings; and also infinitely N-tuples in the complement set. 

As a result, it is natural to assign the chance value V∞ to each outcome 
of n even numbers among N draws for any n. We might then continue 
with the natural supposition that each outcome of n even numbers among 
N draws has the same chance for any n. This was a conclusion I drew in an 
earlier version of this chapter and reported in a paper (Norton 2018a, §9). 
Unfortunately, the inference to this conclusion is a fallacy, and I retract 
it. That the outcomes have the same chance requires that they be in the 
same sector of the infinite logic. The values V∞ reported might be drawn 
from different sectors. Then they would have an immediate meaning only 
within each sector. To conclude that they represent equal chances requires 
further argumentation. Ideally, we would need to show that permuting the 
labels takes us from one outcome of n even numbers to any other, which 
would show that they are within the same sector after all. This has not 
been shown and cannot be shown.

For it is easy to show that the outcome set of n = 0 even numbers 
drawn cannot be mapped by a label permutation onto the outcome set of n 
even numbers drawn, where 0 < n < N. To see this, for the purpose of a re-
ductio, assume otherwise: that there is such a mapping for some particular 
value of 0 < n < N. Then a permutation of labels must include mappings of 
N-tuples of the form
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Here, o1, 1, o1, 2, …, oN, N are odd numbers that enter into N-tuples that map 
to N-tuples with even numbers e1, 1, e2, 2, …, eN, N in the positions shown. 
The “?, ?, ?, …” represent further numbers that may be odd or even, but 
have at least one odd number in each N-tuple.

Since the label permutations are carried out independently on each 
machine, it now follows that the label permutation on the set of machines 
must also include the map

However, this mapping is not included in the mapping supposed, for 
an N-tuple drawn from n = 0 even outcome set is mapped to an N-tuple 
drawn from the n = N even outcome set. This contradiction completes the 
reductio.

While not all outcome sets with n even numbers can be mapped onto 
each other. There are a few mappings that succeed. We can map the out-
come set with n even numbers among N draws onto the outcome set with 
N – n even outcomes merely by a permutation that switches everywhere 
odd and even numbers in each lottery machine. Thus we have

In Appendix 13.B, it is shown that this last possibility exhausts all the 
possibilities for equivalences under label permutation in the case of n even 
outcomes. That is, it is shown that a label permutation cannot map the 
outcome set n even to the outcome set m even unless n = N – m.

In the following two sections, we shall see that we can infer enough 
equivalences under label permutation to show that the essential point re-
ported is correct: the chances of n even outcomes do not make likely a 
stabilization of frequencies that accord with probabilistic expectations.
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13.10.4. The Chances of N Odd Versus N Even in N Drawings
The simplest case arises with the two extremes all-even and all-odd. They 
are in the same sector, since a permutation of the individual lottery labels 
can map one onto the other. To probe their chance behavior, consider an-
other property:

and its complement not div m. The outcomes even and odd are the special 
case of m = 2. We have from earlier that a permutation of labels can map 
each of even, odd, div m, not div m onto each other. So they individually 
have the same chance. It now follows immediately that the same is true of 
the N tuples:

They have equal chance, so we may write:

These equalities differ markedly from probabilistic expectations. Since we 
have P(div m) = 1/m and P(not-div m) = (m − 1)/m, we expect

That is, the outcome (N not-div m in N) is (m − 1)N times as probable as 
outcome (N div m in N). It is the basis of the probabilistic expectation that 
not-div m outcomes are likely to occur much more frequently than div 
m outcomes (for m > 2). The equalities of the chance function do not re-
flect this probabilistic favoring or the associated expectations concerning 
frequencies.

13.10.5. Chances of Intermediate N Even Drawings in N Drawings
The preceding section has shown that the chance of frequencies of div m 
in N drawings is independent of m for the extreme n = N case of all-div m. 
This independence of the chances from m holds for all values of n. That is, 
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the chance of 0, 1, 2, … occurrences of a div m number in N drawings is 
independent of the value of m. Below, I sketch a diagrammatic proof for 
the simple case of N = 2. The proof will then be generalized to all N.

In two independent drawings, we will represent the four possible out-
comes sets as

The frequency n = 0 corresponds to OO; n = 1 to (OE or EO); and n = 2 to 
EE. Figure 13.1 lays out the pairs of individual number outcomes in a grid. 
(It only shows a finite corner of the infinite grid.) The first number drawn 
is on the horizontal axis, and the second number drawn is on the vertical 
axis. The set of pairs that comprise OO is shown by the distribution of the 
labels “OO,” and so on for the remaining outcomes. 

Figure 13.1. Distribution of outcomes OO, OE, EO, and EE in a two-
lottery outcome space.
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We will permute the labels so that the outcome sets for n = 0, n = 1, and n 
= 2 even outcomes coincide with the outcome sets for n = 0, n = 1, and n = 
2 div 6 outcomes.

A permutation of the labels of the first lottery can be represented in 
the figure by leaving the labels in their positions on the axes and permut-
ing the columns associated with the first lottery’s numbers. The requisite 
permutation shifts the first five odd-numbered columns—1, 3, 5, 7, 9—to 
the left; and then places the first even-numbered column, 2, after it; and 
so on for the all the column numbers: five odd-numbered columns, then 
an even-numbered column, repeatedly. The result is shown in Figure 13.2.

Figure 13.2. Result of permuting the columns.

To complete the manipulation, we perform the same permutation on 
the labels of the second lottery. That is, we perform the corresponding 
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permutation of the rows to which the second lottery’s numbers are associ-
ated. The result is shown in Figure 13.3. 

Figure 13.3. Result of permuting the columns and rows.

We read from Figure 13.3 that the outcomes have been relocated as follows:

Thus, the chances of n even outcomes equals the chances of n div 6 out-
comes for all n.

The figure shows the manipulation for the case of m = 6. It is clear that 
it will succeed for any value of m > 2. It follows that the chances of the fre-
quencies are independent of whether we are asking about even numbers or 
numbers divisible by 6 or 10 or 100 or 1,000. That is, the chances of these 
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frequencies do not conform with the probabilistic expectations that even 
numbers appear in repeated trials roughly half of the time and that those 
divisible by 6 or 10 or 100 or 1,000 appear roughly 1/6 or 1/10 or 1/100 or 
1/1,000th of the time, respectively.

13.10.6. The General Case13

The general result is that the chances of n div m outcomes in N drawings is 
independent of the value of m for all 0 ≤ n ≤ N.

To see it, first note that there is a permutation of the label numbers 
of one lottery machine such that the set div m is mapped exactly onto 
the set div k for any m, k > 1. That is, under the permutation, all number 
labels divisible by m are switched with all number labels divisible by k. The 
construction of the N = 2 case displays the permutation for the case of m 
= 2 and k = 6.

Consider any N-tuple of outcomes that has exactly n outcomes divis-
ible by m—that is, drawn from the set div m. Under the permutation, this 
N-tuple is mapped to one that has exactly n outcomes divisible by k—that 
is, drawn from the set div k. Now consider the set of all N-tuples with 
exactly n outcomes divisible by m. The same permutation will map it to 
the set of all N-tuples with exactly n outcomes divisible by k. Thus, label 
independence entails that the two sets have the same chance, and we can 
write

for all 0 ≤ n ≤ N  and any m, k > 1. Since the outcomes of n even and N-n 
even may be mapped onto each other, we can extend these equalities of 
chances:

for all 0 ≤ n ≤ N. 

13.10.7. Frequencies Do Not Give Us Probabilities
What these results show is that the tempting strategy for reintroducing 
probabilities fails. The temptation is to say “Do the experiment. Run many 

13 I thank Matthew W. Parker for this proof.
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independent drawings from lottery machines. Read the limiting frequen-
cies in many drawings. They will reveal to you the probabilities hidden in 
the lottery machines!” 

The strategy fails since the chances of different frequencies do not 
mass in a way that would reveal probabilities. Probabilistic intuitions 
would lead us to expect that drawing all N numbers divisible by 100 in N 
draws would be much less likely that drawing all N numbers not divisible 
by 100 in N draws. Yet they have the same chance, so we have no reason to 
expect the second over the first.

The same probabilistic intuitions would lead us to expect that the most 
likely numbers of even drawings in N drawings would cluster around N/2. 
Numbers of even drawings far from N/2 would be unlikely. From this 
clustering, we could recover a probability of one half for an even number. 
The trouble is that this same clustering around N/2 is likely for outcomes 
divisible by 10, 100, or 1,000. We would then have to infer that numbers 
divisible by 10, 100, or 1,000, or any other number greater than 2, also have 
a probability of one half. No ordinary probability distribution can realize 
these probabilities.14

The calculations reviewed in this section and in Appendix 13.B show 
that the chances of securing n or m even numbers in N repeated independ-
ent draws from infinite lottery machines are incomparable for most n and 
m. Thus, this section leaves open whether imposition of further back-
ground facts will lead to further relations that will lead to chances favor-
ing certain frequencies of outcomes. However, what has been shown is 
that if there is any favoring, it is not of a type that can be used to reveal 
underlying probabilities as long as the fair character of the infinite lottery 
is preserved.

14 Assume otherwise. Then the probability of drawing a number divisible by 2r is one half, 
for any r > 1. Since the probability of drawing a number divisible by 2 is also one half, it follows the 
probability of drawing numbers divisible only by 21, 22, …, 2r–1, is zero. But since r can be set as 
large as we like, we infer that the chance of a number divisible by any power of two is zero, which 
contradicts the probability of one half for even numbers.
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13.11. Failure of the Containment Principle
The infinite lottery logic will likely be discomforting for someone whose 
intuitions are guided by probability theory. One source of discomfort may 
be that the removal of elements from an outcome set commonly does not 
reduce the chances of the outcome. It would seem natural that the set of 
even-numbered outcomes {2, 4, 6, 8, …} must be assigned greater chance 
than the set of every fourth numbered outcome {4, 8, 12, 16,  …}. This 
second set is properly contained in the first. However, the present logic 
assigns the same chance to both. We might express the intuition more 
clearly as,

The containment principle. If a set of outcomes A is properly 
contained in a set of outcomes B, then the chance of A is 
strictly less than the chance of B: Ch(A) < Ch(B).

If the background facts support it, there is no problem with a logic that 
conforms with this principle. However, the principle cannot lay claim to 
a preferred status. As is always the case, whether a logic has some feature 
is decided by prevailing background facts. The background fact of label 
independence entails the failure of the containment principle.

Two further considerations reduce the appeal of the principle. First, 
the containment principle has not been uniformly respected in familiar 
probabilistic applications. There is a probability zero of a dart hitting any 
particular point on a dartboard that consists of a continuum of points. The 
same zero probability is assigned to the dart hitting any of a countable in-
finity of points on the dartboard, even if that set contains the single point 
originally considered. In another example, we follow de Finetti’s prescrip-
tion for the infinite lottery and employ a probability measure that is only 
finitely additive. Then, the probability of drawing a one is the same as the 
probability of drawing any number less than one hundred million. Both 
are zero probability outcomes.

Second, the containment principle by itself is insufficient to induce 
chances that can compare all sets of outcomes. Since the set of even-num-
bered outcomes is disjoint from the set of odd multiples of three {3, 9, 
15, 21, 27, …}, we are unable to compare their chances. In such cases, we 
may be inclined to retain the chance assignments of the present logic: if 
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disjoint outcome sets (and their complements) are equinumerous, then 
they are assigned the same chance. What results, however, is a non-tran-
sitive comparison relation for chances. We have from considerations of 
equinumerosity that

Ch({2, 4, 6, 8, …}) = Ch({3, 9, 15, 21, 27, …})

Ch({4, 8, 12, 16, …}) = Ch({3, 9, 15, 21, 27, …}).

If transitivity of the comparison relation for chances is supposed, it fol-
lows that

Ch({4, 8, 12, 16, …}) = Ch({2, 4, 6, 8, …}).

This equality contradicts the containment principle, which tells us that

Ch({4, 8, 12, 16, …}) < Ch({2, 4, 6, 8, …}).

If transitivity is dropped, we will be unable to assign a single value to each 
chance, but only assign pairwise comparisons of strength. Presumably, 
some accommodation of the two approaches can be found eventually, but 
it may not be pretty or simple.

In sum, we should use the containment principle when the back-
ground facts call for it. When they do not call for it, we should feel no 
special loss at its failure.

13.12. Is an Infinite Lottery Machine Physically 
Possible?
The discussion so far has presumed the physical possibility of an infinite 
lottery machine. But in what sense are they physically possible? Elsewhere 
(Norton, 2018; Norton and Pruss, 2018, Norton, 2020) I have pursued the 
question is greater detail. The answer proves to be more complicated and 
much more interesting than one might first imagine.

The natural starting point is to seek some design that employs ordin-
ary probabilistic randomizers, such as coin tosses, die throws, and point-
ers spun on dials. We run into difficulties immediately. We will need in-
finite powers of discrimination to distinguish among the infinitely many 
possible pointer outcomes crammed onto the scale etched onto the surface 
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of the dial. If we use coins or dice, we will need to use infinitely many of 
them to create an outcome space big enough to hold the countable infinity 
of outcomes of the infinite lottery machine.

If we are undaunted by the task of flipping infinitely many coins or 
reading pointer positions with infinite precision, the prospects for an in-
finite lottery machine seem good. Infinitely many coin tosses produce an 
outcome space of continuum size; that is, an order of infinity higher than 
that needed for the countably infinite outcomes of the infinite lottery ma-
chine. Somewhere in this much bigger space we would expect to find a 
countable infinity of outcomes that implement an infinite lottery machine.

However, in Norton (2018), as corrected by Norton and Pruss (2018), 
we found a maddening problem. With some ingenuity, we can use or-
dinary probabilistic randomizers to form infinite lottery machines. But 
in every design we could imagine, there was always a probability of zero 
that the machine would operate successfully. The persistence and recalci-
trance of the failure suggested that the problem was not merely one of an 
impoverished imagination for the design of the infinite lottery machines. 
There was some unidentified matter of principle defeating all attempts.

In Norton (2020) the matter of principle is recovered from what I 
would otherwise have imagined to be the arcana of measure theory and 
axiomatic set theory. The probabilistic randomizers will provide us with 
an outcome space expansive enough to host the infinite lottery outcomes 
that encode results “1,” “2,” “3,” and so on. If a probability is defined for 
each of these outcomes, then that probability must be the same for each 
and can only be zero. For otherwise, if the probability is greater than zero, 
we need only sum finitely many of the equal, non-zero probabilities P(1), 
P(2), P(3), … to arrive at a sum greater than one. That sum contradicts the 
normalization of the probability measure to unity. If, however, we set each 
of the probabilities P(1), P(2), P(3), … to zero, then the probability that any 
one of the infinite lottery outcomes, 1, 2, 3, …, arises is zero. For it is given 
by the sum 

This means that the infinite lottery machine operates successfully only 
with probability zero.



50713 | Infinite Lottery Machines

The escape is to use infinite lottery outcomes to encode results “1,” 
“2,” “3,” … that are probabilistically nonmeasurable. Norton (2020) de-
scribes two designs that do this. The same difficulty besets both. Their 
designs presume the existence of the nonmeasurable outcome sets, but do 
not specify which those sets are. This means that, after the randomizers 
settle into some end state, we cannot know the outcome set to which they 
belong. The number selected as the infinite lottery outcome is inaccessible 
to the user, rendering the device useless.

It turns out that, as far as we know, this failure must always happen. 
For all known examples of nonmeasurable sets are non-constructive, and 
we have some reason to expect that none can be constructed. This means 
that we are allowed to assume their existence, commonly by virtue of the 
axiom of choice of axiomatic set theory, or something equivalent to it.15 
However, there is no explicit description for which they are. We are caught 
in a dilemma. If an infinite lottery machine based on ordinary probabilis-
tic randomizers is to return a result we can read, it will do so successfully 
only with probability zero. If we demand a probability of success greater 
than zero, then we can have it, but the result of the infinite lottery machine 
will be inaccessible to us.

These results apply only to infinite lottery machines constructed from 
ordinary probabilistic randomizers. They do not preclude other designs. 
Norton (2018, 2020) describes designs based on quantum mechanical 
systems. In the simplest such design, one takes a quantum particle in 
a definite momentum state. It consists of a wave uniformly distributed 
over space in the direction of the momentum. We divide that space into 
a countable infinity of intervals of the same size, numbered 1, 2, 3, …. 
If we now perform a measurement on the position of the particle, it will 
manifest with equal chances in each interval. An infinite lottery machine 
has been implemented.

While the exercise of designing these infinite lottery machines is en-
tertaining, I take a more permissive view of them. For hundreds of years, 
the paradigm of a probabilistic system in probability theory was the coin 
toss, die throw, and card shuffle. Yet prior to quantum theory, our best sci-
ence told us that none of these was a true randomizer. Probability theory 

15 For more on nonmeasurable sets and the axiom of choice, see Chapter 14.
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thrived merely by supposing that these real randomizers were imperfect 
surrogates for true but unrealizable probabilistic randomizers: idealized 
coin tosses, die throws, and card shuffles. We can, I propose, take the same 
attitude to infinite lottery machines. They are an idealized case that can be 
added to our repertoire of idealized randomizers. We can and should ask 
what inductive logic is adapted them.

Finally, we should separate the issue of the cogency of the design of 
an infinite lottery machine from the cogency of the infinite lottery logic 
described in this chapter. We may not be able to specify explicitly which 
are the infinite lottery outcomes of a probabilistically based machine. But, 
on the authority of the axiom of choice, they exist. So we can ask what 
chance each has of being realized; and we should expect a suitable logic of 
induction to tell us.

13.13. Conclusion
The infinite lottery remains one of the most popular arguments used to 
establish that the countable additivity of a probability measure must be 
reduced to mere finite additivity. What this chapter shows is that the im-
plications of the infinite lottery are still stronger. It requires also that we 
abandon finite additivity. The existing literature has been reluctant to ac-
cept this further conclusion for it requires abandoning probabilities as the 
gauge of the possibility of the various outcomes. However, as I argued in 
Section 13.6, to persist in the use of a finitely additive probability meas-
ure for this purpose is to change the problem posed by adding further 
conditions, such as a preferred numbering of the outcomes. The original 
infinite lottery problem is solved by a non-additive logic such as developed 
in Sections 13.7 and 13.8.

The new chance logic of these sections will seem strange to those al-
ready steeped in probabilistic thinking. The strangeness is merely a result 
of its unfamiliarity. It is easy to lose sight of how abstruse the notion of 
probability even is. It was once unfamiliar to all of us. Imagine trying to 
convey to someone new to it that there is a probability of 0.5 that their 
unborn child will be a girl. We may eventually convey the idea by saying, 
“What is the probability of a girl? It is the same as getting heads on a fair 
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coin toss.” This formulation uses a physical randomizer as a benchmark-
ing device.

Now consider the cosmologists described in Appendix 13.A. They 
consider the infinitely many like and unlike patches spawned by eternal 
inflation. They find the chance properties of the patches to conform with 
label independence; and they find themselves confused by the resulting 
chance behavior. We should be able to use the same benchmarking strat-
egy to clarify these chance properties for them: “What is the chance of a 
like patch? It is the same as the chance of an even number in an infinite, 
fair lottery.”

Appendix 13.A: The “Measure Problem” in Eternal 
Inflation16

13.A1 Inflation and Eternal Inflation
Inflation in cosmology is a brief period of very rapid expansion in the very 
early universe. It has the same effect as taking a wrinkled rubber sheet and 
stretching it to an enormous size. The wrinkles are all but eliminated. This 
smoothing process motivated in large part the introduction of inflation 
into cosmological theory in the 1980s. The smoothing would explain why 
the cosmic matter distribution is so uniform on the largest scale and why 
the geometry of space is so close to flat. It also explains why, contrary to 
expectations of exotic particle theories, we see no magnetic monopoles. 
The inflationary stretching of space exiles them to parts of the cosmos we 
cannot see.

Under continuing criticism, the status of inflation in modern cosmol-
ogy remains mixed. It was unclear that there ever was a pressing need to 
explain these features of the cosmos through further theory. The matter 
driving inflation was initially supposed to come from novel particle phys-
ics: a Grand Unified Theory (“GUT”). These efforts failed. The driving 
matter is now just a novel matter field, the inflation, posited ad hoc with 
just the right properties. Moreover, the search for a viable form of inflation 

16 For a fuller discussion of the measure problem and its inductive analysis, see Norton 
(2018a).
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has led to multiple versions so that it is not so much a single theory as a 
program of research.

Nonetheless, the notion has proven quite appealing and it has become 
a staple, if debated, topic in cosmology. The strongest argument for it 
comes from its treatment of quantum fluctuations. During inflation, tiny, 
evanescent quantum fluctuations are amplified to cosmic scales where 
they are “frozen in” as classical perturbations in matter density that match 
the non-uniformities we observe now.

The original idea was that there would be an early period of inflation, 
driven by the exotic matter of the inflaton field. This rapid expansion would 
cease and be followed by a more slowly expanding state, driven by familiar 
forms of matter and radiation. Eternal inflation is a variation in which 
this cessation of inflation never happens universally. Rather it happens 
in patches, with each patch reverting to a modestly expanding universe 
with ordinary matter. Each is a pocket universe or little island universe. 
Outside these patches, inflation continues. Since inflating space grows so 
much faster than the space of the patches, the universe overall persists 
eternally in an inflating state, continuously spawning non-inflating pock-
et universes. One of these pocket universes is our observable universe.

13.A2 The Measure Problem: Should We Be Here?
The immediate question asked of eternal inflation is whether we should 
expect a spawned pocket universe to be like our observable universe. It 
would count against eternal inflation if a universe like ours were excep-
tional among the non-inflating universes spawned. The measure problem 
is the problem of finding a way to quantify how much we should expect 
patches like ours.

The difficulty can be seen in a simplified version of the problem in 
which we introduce a binary classification: pocket universes like ours ver-
sus pocket universes unlike ours. We gauge the extent to which a universe 
like ours will come about in eternal inflation by asking after the distribu-
tion of like and unlike over the pocket universes. It is natural to ask for the 
probabilities of each. That query leads to trouble.

Alan Guth (2007) introduced inflation to cosmology in the early 
1980s. Here is his development of the problem:
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However, as soon as one attempts to define probabilities in 
an eternally inflating spacetime, one discovers ambiguities. 
The problem is that the sample space is infinite, in that an 
eternally inflating universe produces an infinite number of 
pocket universes. The fraction of universes with any partic-
ular property is therefore equal to infinity divided by infin-
ity—a meaningless ratio. To obtain a well-defined answer, 
one needs to invoke some method of regularization. (p. 11)

Since there is a countable infinity of these pocket universes, we can see 
the similarity to the infinite lottery problem. It is like asking after the dis-
tribution of even and odd tickets in the lottery. Guth continues the above 
remarks by making the following connection:

To understand the nature of the problem, it is useful to 
think about the integers as a model system with an infinite 
number of entities. We can ask, for example, what fraction 
of the integers are odd. Most people would presumably say 
that the answer is 1/2, since the integers alternate between 
odd and even. That is, if the string of integers is truncated 
after the Nth, then the fraction of odd integers in the string 
is exactly 1/2 if N is even, and is (N + 1)/2N if N is odd. In 
any case, the fraction approaches 1/2 as N approaches in-
finity.

However, the ambiguity of the answer can be seen if 
one imagines other orderings for the integers. One could, if 
one wished, order the integers as

always writing two odd integers followed by one even inte-
ger. This series includes each integer exactly once, just like 
the usual sequence (1, 2, 3, 4, …). The integers are just ar-
ranged in an unusual order. However, if we truncate the se-
quence shown in Eq. (14) after the Nth entry, and then take 
the limit N → ∞, we would conclude that 2/3 of the integers 
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are odd. Thus, we find that the definition of probability on 
an infinite set requires some method of truncation, and that 
the answer can depend non-trivially on the method that is 
used.

Guth correctly recognizes that recovering a well-defined probability re-
quires us to add something. He calls it “regularization,” and it corresponds 
to imposing an order on the set of outcomes quite analogous to that used 
in Section 13.6 above. The difficulty, of course, is that there are multiple 
choices for the ordering and each typically leads to a different probability 
measure.

In including regularization in the set up of the problem, Guth pre-
sumes more than is needed to arrive at it. The same problem is generated 
in Section 13.5 above merely by matching one-to-one infinite sets of the 
same cardinality. Paul Steinhardt is also one of the founding figures of 
inflationary cosmology and now one of its sternest critics. He sets up the 
problem using cardinality considerations alone:

In an eternally inflating universe, an infinite number of is-
lands will have properties like the ones we observe, but an 
infinite number will not. The true outcome of inflation was 
best summarized by Guth: “In an eternally inflating uni-
verse, anything that can happen will happen; in fact, it will 
happen an infinite number of times.”

So is our universe the exception or the rule? In an in-
finite collection of islands, it is hard to tell. As an analogy, 
suppose you have a sack containing a known finite number 
of quarters and pennies. If you reach in and pick a coin ran-
domly, you can make a firm prediction about which coin 
you are most likely to choose. If the sack contains an infinite 
number of quarter and pennies, though, you cannot. To try 
to assess the probabilities, you sort the coins into piles. You 
start by putting one quarter into the pile, then one penny, 
then a second quarter, then a second penny, and so on. This 
procedure gives you the impression that there is an equal 
number of each denomination. But then you try a differ-
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ent system, first piling 10 quarters, then one penny, then 10 
quarters, then another penny, and so on. Now you have the 
impression that there are 10 quarters for every penny.

Which method of counting out the coins is right? The 
answer is neither. For an infinite collection of coins, there 
are an infinite number of ways of sorting that produce an 
infinite range of probabilities. So there is no legitimate way 
to judge which coin is more likely. By the same reasoning, 
there is no way to judge which kind of island is more likely 
in an eternally inflating universe. (2001, p. 42)

13.A3 No Probabilities—No Predictions
Guth seems optimistic that there will be a solution to the measure prob-
lem. Steinhardt is pessimistic and uses his pessimism as grounds for criti-
cizing inflationary theory. However, they agree that securing probabilities 
is essential to eternal inflation as a predictive theory. Guth (2007, p. 11) 
writes: “To extract predictions from the theory, we must therefore learn to 
distinguish the probable from the improbable.” Steinhardt is more forth-
right in his concern:

Now you should be disturbed. What does it mean to say that 
inflation makes certain predictions—that, for example, the 
universe is uniform or has scale-invariant fluctuations—if 
anything that can happen will happen an infinite number 
of times? And if the theory does not make testable predic-
tions, how can cosmologists claim that the theory agrees 
with observations, as they routinely do? (2011, p. 42)

He then reviews with disdain the idea of imposing a measure on the 
islands:

An alternative strategy supposes that islands like our ob-
servable universe are the most likely outcome of inflation. 
Proponents of this approach impose a so-called measure, a 
specific rule for weighting which kinds of islands are most 
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likely—analogous to declaring that we must take three 
quarters for every five pennies when drawing coins from 
our sack. The notion of a measure, an ad hoc addition, is an 
open admission that in inflationary theory on its own does 
not explain or predict anything. (pp. 42–43)

Guth and Steinhardt share an all-or-nothing view: if probabilities cannot 
be secured, then the theory has failed as an instrument of prediction. This 
view is based on a widely accepted but false presumption: that the only 
precise way to deal with uncertainties is through probabilities. A major 
goal of this book is to show that this presumption is too severe and too 
narrow. We can still deal formally with uncertainty when probabilities 
are inapplicable. The background facts may merely warrant an inductive 
logic that is not probabilistic. In this case, the inductive logic warranted is 
summarized in the chance function (10).

We should separate the question of whether there is an inductive logic 
native to the situation from the question of whether we can secure the 
sorts of prediction we might like. In the case of eternal inflation, there 
is a well-defined inductive logic applicable. However, it turns out not to 
support the sorts of predictions the cosmologists seek. The difficulty is 
that the inductive logic assigns the same chance V∞ to any universe in 
which there are infinitely many like pocket universes and infinitely many 
unlike pocket universes. Since this combination encompasses virtually all 
the possibilities that can be realized,17 the logic is unable to discriminate 
among them usefully—that is, in a way that might privilege like universes.

Some prediction is still possible. The chance function (10) has predict-
ive powers, as shown in Sections 13.9 and 13.10 above. They may be weaker 
than the predictive powers of a full probability measure. But that is all that 
the specification of the infinite lottery permits.

More generally, we cannot demand that the universe gives us theories 
of the type that we happen to like. We may prefer theories of indeterministic 

17 There is an uncountable infinity of possible distributions of like and unlike over the 
countable infinity of pocket universes. The case in the main text occupies all of them except a 
countable infinity of exceptions that arise in universes finitely many like pocket universes, or in 
universes with finitely many unlike universes.
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processes always to be endowed with probabilities, for they enable strong 
predictions. However, the world is under no obligation to provide such 
theories. Probabilities are not provided by the indeterministic systems 
described in a later chapter; and the theories are correspondingly weak in 
predictions. That fact does not make them failures as theories. They just 
happen to be the best the world will give us.

Appendix 13.B: Inequivalences under Label 
Permutation of Outcomes of Many Independent 
Drawings
The numbers drawn independently from N infinite lottery machines form 
an N-tuple <n1, n2, n3, …, nN>N. These N-tuples can be grouped into “or-
dered parity sets” such as [odd, odd, …, even, odd, even, even]N defined in 
the main text in Section 13.10.2. The outcome sets of primary interest are 
those with n even numbers in any order. They are the “unordered parity 
sets,” written “(n, N)”:

where parity is either even or odd. The following is to be shown:

Theorem
No label permutation can map the unordered parity set (n, N) onto (m, N), 
for all 0 ≤ n ≤ N, excepting the trivial case of n = m, implemented by an 
identity map on labels, and the case of n = N – m, implemented by a label 
permutation that switches all odd with all even numbers.

Proof
The case of n = 0 and 0 < m < N has been shown in Section 13.10.3. 
Switching “even” for “odd” in that demonstration shows the case of n = N 
and 0 < m < N. Here we need only consider  0 < n, m < N in the theorem.

Assume for purposes of a reductio that there exists a label permuta-
tion f that maps the N-tuple <n1, n2, n3, …, nN>N to <f(n1), f(n2), f(n3), 
…, f(nN)>N such that unordered parity set (n, N) is mapped onto (m, N), 
where n does not equal N – m. 
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It may be the case that a label permutation maps every member of 
some ordered parity set of (n, N) onto elements of the same ordered parity 
set of (m, N). The mapping is “onto” so that the image of the ordered par-
ity set of (n, N) coincides with the ordered parity set of  (m, N). We shall 
say that the label permutation respects ordered parity sets just if this last 
property is true for every ordered parity set of (n, N).

There are N!/(n!(N − n)!) ordered parity sets that are subsets of (n, N); 
and N!/(m!(N − m)!) ordered parity sets that are subsets of (m, N). Unless 
we have the cases excepted in the theorem, n = m or n = N − m, these two 
combinatorial factors are unequal. It follows that there can be no one-
to-one label permutation that respects ordered parity sets for the cases 
considered in the theorem.

For example, there are four ordered parity sets for (1,4): EOOO, OEOO, 
OOEO, OOOE, written here in compact notation with “E” = even and “O” 
= odd. There are six ordered parity sets for (2, 4): EEOO, EOEO, EOOE, 
OEEO, OOEE. A label permutation that respects ordered parity sets would 
have to map the members of each of the EEOO, EOEO, … of (2, 4) onto 
distinct ordered parity sets EOOO, OEOO, … of (1, 4). Since there are six 
of the former and four of the latter, this is impossible.

Set n as the number of evens for which N!/(n!(N − n)!) > N!/(m!(N − 
m)!). (There will always be an inequality since the case of equality n = N 
– m is excluded.) Since the label permutation cannot respect ordered par-
ity sets, it follows that the permutation must “cross over” the boundaries 
somewhere of the ordered parity sets. That is, there must be two N-tuples 
that map as

where f(R) and f(S) belong to the same ordered parity set of (m, N), but R 
and S belong to different ordered parity sets of (n, N).

To proceed, we form a new N-tuple T = <t1, t2, t3, …, tN>N by the rule

Each of R and S have n even numbers in their tuples. However, the posi-
tioning of the even numbers in their N-tuples must be different somewhere, 
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since R and S come from different ordered parity sets. The definition of T 
is designed to collect all the even numbers from R and S such that T has at 
least one more even number than R and S. For example, if R = <1, 1, 2, 2> 
and S = <1, 2, 1, 2>, then T = <1, 2, 2, 2>. That is, T belongs to an unordered 
parity set, (n’, N), where n’ > n.

The label permutation f maps T as

Each f(ti) is either f(ri) or f(si). Since f(R) and f(S) are both members of 
the same ordered parity set (m, N), it follows that f(T) is a member of the 
same ordered parity set (m, N). That is, the label permutation f maps an 
N-tuple T in (n’, N), where n’ > n, to an N-tuple f(T) in (m, N). Since a label 
permutation is invertible, it follows that there is no N-tuple in (n, N) that 
the label permutation maps to f(T). This mapping of T contradicts the 
initial assumption that the label permutation maps (n, N) to (m, N) and 
completes the reductio needed to establish the theorem.
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