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Newton on Universal Gravitation

1. Introduction
Isaac Newton’s reasoning in his seventeenth-century Mathematical Principles 
of Natural Philosophy ([1726] 1962) remains to this day a model of tight, care-
fully controlled argumentation. Its inductive centerpiece lays out the eviden-
tial case for his theory of universal gravitation with exemplary caution and 
discipline. Within his argumentation, there are two cases of pairs of prop-
ositions in which relations of inductive support cross over each other, in an-
alogy to the relations of structural support in an arch. The first pair comprises 
the two core propositions of Newton’s celebrated “Moon test.” The second 
pair comprises the propositions of an inverse square law of gravity and of the 
elliptical orbits of the planets.

In both cases, the individual relations of support have the following 
structure: the observed evidence supports a proposition by means of a war-
ranting hypothesis. Schematically, this can be written as

Observed evidence

(warrant) Hypothesis

__________________(deduce)

Proposition

The crossing over of relations of support arises in both cases in the following 
way. We have two propositions, proposition1 and proposition2, such that
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Observed evidence			   Observed evidence

(warrant) Proposition1		  (warrant) Proposition2

_______________(deduce)		  _______________(deduce)

Proposition2					    Proposition2

Finally, each of the individual inferences above is deductive. They combine 
to give a totality in which the observed evidence inductively supports both 
propositions. That is, the relations of support are locally deductive but induct-
ive in their combination.

Observed evidence

_______________(induction)

Proposition1 & Proposition2

The two examples are treated in turn in the sections that follow.

2. The Moon Test
One of Newton’s more remarkable discoveries in his theory of universal gravi-
tation is the identity of two forces. The first is the celestial force that deflects 
planets into orbit around the Sun and deflects moons into orbits around their 
planets. The second is the force of gravity that leads to the fall of free bodies 
at the Earth’s surface, such as hurled stones. That these forces are the same 
is now a commonplace. It was a major discovery in the seventeenth century, 
for the ancient tradition had been that the physics of terrestrial bodies differs 
from the physics of celestial matter. Newton needed a strong argument to 
establish the identity.

The identity of the two forces was established early by Newton in Book III 
of his Principia ([1726] 1962). That book presents a sequence of propositions 
laying out his argument for universal gravitation. The first three propositions 
establish that the celestial force of attraction acting on an orbiting body varies 
with the inverse square of distance from the center of the attracting body 
in three cases: the orbits of Jupiter’s moons about the center of Jupiter, the 
orbits of the planets about the Sun’s center, and the orbit of the Moon about 
the Earth’s center. The fourth proposition asserts the identity of terrestrial 
gravity and the celestial force acting on the Earth’s Moon.
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To arrive at this fourth proposition, Newton determined the acceleration 
of the Moon toward the Earth. It is this acceleration that deflects the Moon 
from its linear, inertial motion and brings it into orbit around the Earth. We 
would now represent this acceleration directly as so many feet/second2 or 
meters/second2. Newton proceeded indirectly. A body falling with constant 
acceleration a from rest will cover a distance at2/2 in time t. Newton used this 
distance as the measure of acceleration.

As a result of its orbital motion, Newton noted, the Moon falls 15 Paris 
feet 1 inch 1 4/9 lines (1/12 of an inch) in one minute. That is, it falls 15.0934 
Paris feet in one minute. The Moon is roughly 60 times farther away from 
the center of the Earth than a point on the Earth’s surface. Hence, if the 
celestial force acting on the Moon is governed by an inverse square law all 
the way down to the Earth’s surface, then it would be 602 times greater on the 
Earth’s surface. This means that a body falling under its action at the Earth’s 
surface would fall 15.0934 x 602 Paris feet in one minute. One minute is a 
time unfamiliar in our experience for bodies to fall above the surface of the 
Earth. So Newton scaled the time of fall to one second. Conveniently, one 
second is 1/60th of a minute. Since the distance fallen varies with the square 
of time t, a body falling under the celestial force at the Earth’s surface for 
one second would fall 1/602 of 15.0934 x 602 Paris feet: that is, 15.0934 Paris 
feet. This matches well how bodies fall on the surface of the Earth under 
gravity, as measured by experiments on pendula. Newton ([1726] 1962, 408) 
concluded:

And therefore the force by which the Moon is retained in its 
orbit becomes, at the very surface of the Earth, equal to the 
force of gravity which we observe in heavy bodies there. And 
therefore (by Rule 1 & 2) the force by which the Moon is re-
tained in its orbit is that very same force which we commonly 
call gravity; for were gravity another force different from that, 
then bodies descending to the Earth with the joint impulse of 
both forces would fall with a double velocity. . . .

The case that Newton made here is a powerful one. In recollections recorded 
much later, he asserted that he had found the arguments of these first four 
propositions in 1666. He noted (1888, xviii) of the Moon test that
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At the same year [1666] I began to think of gravity extending 
to the orbit of the Moon, . . . and thereby compared the force 
requisite to keep the Moon in her orb with the force of gravity 
at the surface of the earth and found them answer pretty nearly.

3. The Inferences Summarized
The inference above can be summarized as follows:

Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hinv. square: The celestial force acting on the Moon is 
strengthened by an inverse square law with distance at the 
Earth’s surface.

_________________________________________________________(deduce)

Intermediate conclusion: Equality of accelerations at the Earth’s 
surface due to gravity and the celestial force.

(warrant) Rules 1 and 2 of Newton’s Rules of Reasoning in 
Philosophy

________________________________________________________________

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

The last step might seem to be superfluous. Newton found that the acceler-
ation because of gravity and the celestial force match at the Earth’s surface. 
Is that not enough to show the identity of the two forces? It is very close, but 
there is a loophole. It might just be that the force of gravity does not act on ce-
lestial matter such as comprises the Moon and that the celestial force does not 
act on ordinary, terrestrial matter. Newton closed the gap with the rules of 
reasoning that he had declared earlier in Principia ([1726] 1962). The relevant 
idea is that we are to assign the same cause to the same effect. I will not pursue 
this use of the rules further. In Chapter 6, “Simplicity,” of The Material Theory 



2618 | Newton on Universal Gravitation

of Induction (Norton 2021), I described my discomfort with the rules and 
indicated how they can be replaced in this case by a simple material fact: that 
the matter of the Moon would behave like terrestrial matter were it brought 
to the Earth’s surface. What results is the simpler inference:

Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hinv. square: The celestial force acting on the Moon is 
strengthened by an inverse square law with distance at the 
Earth’s surface.

_________________________________________________________(deduce)

Intermediate conclusion: Equality of accelerations at the Earth’s 
surface due to gravity and the celestial force.

(warrant) Terrestrial and lunar matter respond to the same forces.

_________________________________________________________(deduce)

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

For my purposes here, what matters is that the inverse square law, Hinv. square, 
is used as part of the inference to the identity result, Hidentity. This usage forms 
half of the arch shown in Figure 8.1.

There is a second inference here that Newton did not make explicit. He 
inferred that the celestial force is governed by an inverse square law in other 
parts of the solar system. But how did he know that this inverse square de-
pendence on distance would continue to hold when he moved out of the ce-
lestial realm down to the terrestrial realm? It is striking that the inference 
sketched above works so well. That the two forces “answer pretty nearly,” as 
Newton remarked, gives one confidence that the inverse square law, intro-
duced as a hypothesis above, is also supported by the successful outcome. 
Perhaps this was why Newton reported the agreement as a memorable phase 
in his discovery of universal gravitation. Although not given explicitly by 
Newton, we can summarize this naturally suggested argument as follows:
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Observed acceleration of fall of terrestrial bodies and the Moon.

(warrant) Hidentity: Terrestrial gravitation and the lunar celestial force 
are the same.

_________________________________________________________(deduce)

Intermediate conclusion: Celestial/gravitational accelerations at the 
Earth’s surface and the Moon’s orbit are in the ratio of an 
inverse square of distances to the Earth’s center.

(warrant) Terrestrial and lunar matter respond to the same forces.

_________________________________________________________(deduce)

Hinv. square: The celestial force acting on the Moon is strengthened by 
an inverse square law with distance at the Earth’s surface.

This second inference forms the second half of the relations of support dis-
played in Figure 8.1.

For my purposes here, we have two inferences each of whose conclusions 
is used as a warrant in the argument for the other. The corresponding arch 
can be drawn as follows.

Figure 8.1. The arch for the Moon test

Hidentity
Hinv. square

Observed acceleration of fall of 
terrestrial bodies and the Moon.
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Although the component relations of support are deductive, the combined 
result is that the observed accelerations provide inductive support for the two 
hypotheses:

Observed acceleration of fall of terrestrial bodies and the Moon.

_______________________________________________________(induction)

Hidentity: Terrestrial gravitation and the lunar celestial force are the 
same.

Hinv. square: The celestial force acting on the Moon is strengthened by 
an inverse square law with distance at the Earth’s surface.

4. Elliptical Orbits and the Inverse Square Law
The next pair of mutually supporting propositions asserts that the planets 
move along elliptical orbits and that their motion is governed by an inverse 
square law of gravity. Planetary astronomy poses a curve-fitting problem. We 
have many observed positions of the planets. Which curve do we fit to them 
to recover their orbits? Prior to Newton, Kepler had found that elliptical or-
bits could be fitted to the observed positions of the planets. This result came 
to be known later as “Kepler’s second law.” It is called that, for example, in 
Maxwell’s Matter and Motion (1894, 110). From it, one can infer that each 
planet is attracted to the Sun by a force that varies inversely with the square of 
distance from the Sun as the planet moves through its orbit. That an elliptical 
motion is associated with this inverse square law is an early result proved by 
Newton in Book I of Principia ([1726] 1962, Proposition XI, Problem VI). 
Maxwell uses this result to infer from the elliptical motions of the planets to 
the inverse square law of gravity:

Hence the acceleration of the planet is in the direction of the 
sun, and is inversely as the square of the distance from the sun. 
This, therefore, is the law according to which the attraction of 
the sun on a planet varies as the planet moves in its orbit and 
alters its distance from the sun. (112)

That is, we have the following inference:
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Observed positions of the planets.

(warrant) Hellipses:  The planets move in their specific elliptical orbits.

_________________________________________________________(deduce)

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.

Newton himself, however, was more circumspect. This relation of support is 
straightforward only insofar as we assume that the fit of an ellipse to the ob-
served motions is exact. Newton knew that it is not exact, so he did not offer 
Maxwell’s inference in his Principia. That an elliptical motion is governed by 
an inverse square law of force is merely reported as a theorem of mathematics.

In its place, Newton ([1726] 1962) offered an inverted relation of sup-
port. The pertinent discussion comes later in Book III in his Proposition XIII, 
Theorem XIII. At this stage in the development, Newton had already inferred 
the inverse square law of gravity from other phenomena. He would now infer 
from the inverse square law to the elliptical motions of the planets. Noting the 
inversion explicitly, he wrote that

Now that we know the principles on which they [the motions 
of the planets] depend, from these principles we deduce the 
motions of the heavens a priori. Because the weights of the 
planets towards the sun are inversely as the squares of their 
distances from the sun’s centre, if the sun were at rest, and the 
other planets did not act one upon another, their orbits would 
be ellipses, having the sun in their common focus. . . . (420–21)

Newton offered here a relation of support that inverts the one given above by 
Maxwell:

Observed positions of the planets.

(warrant) Hinv. square: The planets are attracted to the Sun by a force 
that varies with the inverse square of distance.

_________________________________________________________(deduce)

Hellipses: The planets move in their specific elliptical orbits.
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The observed positions of the planets are still needed as a premise in 
the inference since an inverse square law of attraction from the Sun is also 
compatible with parabolic and hyperbolic trajectories. They are ruled out 
by the periodic motion of the planets. Then specific positions of the planets 
at specific times are needed to recover the specific ellipse that is the orbit of 
each planet.

Newton’s inference, however, is qualified by an idealization indicated in 
his remark above “if the sun were at rest, and the other planets did not act 
one upon another.” The orbits of the planets are not exactly elliptical because 
of perturbations from the gravitational attraction of the other planets. These 
deviations are generally negligible at the level of accuracy of Newton’s analy-
sis. However, a noticeable perturbation was produced by the massive planet 
Jupiter acting on the motion of Saturn.1 It is greatest when the two planets are 
nearest each other: that is, when they are in conjunction. “And hence arises,” 
Newton concluded, “a perturbation of the orbit of Saturn in every conjunc-
tion of this planet so sensible, that astronomers are puzzled with it” ([1726] 
1962, 421).

5. The Exactness of the Inverse Square Law
Newton ([1726] 1962) did not explicitly incorporate the inference from the 
elliptical orbits of the planets to the inverse square law in the carefully de-
veloped sequence of propositions in Book III of Principia. However, an im-
portant step in that sequence was something close to this inference. It con-
cerned the inverse square law of gravity. How did Newton know that the 
correct law is exactly an inverse square law? Might a similar law work as well 
or even better? Does gravity conform to the inverse square law only as an 
approximation? Perhaps the force varies with distance r according to 1/r2+δ, 
where δ is some small number close to zero?

In one of the most brilliant analyses of his Principia, Newton showed 
that we have strong evidence for the force of attraction conforming exactly 
with the inverse square law. Under such a law, Newton had shown, the unper-
turbed planets move along elliptical paths fixed in space. The aphelion of each 

1	 Less noticeable, Newton reported, are the perturbations in Jupiter’s motion because of 
the attraction of Saturn. He reported other perturbations as “yet far less” ([1726] 1962, 422). The 
exception was the sensible disturbance to the orbit of the Earth because of the Moon.
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planet — the point of greatest distance from the Sun — will be fixed in space, 
and the planet will return to it after a complete circuit of 360º around the Sun. 
The major axis of the ellipse, the line of the apsides connecting aphelion and 
perihelion, will be correspondingly fixed.

This fixity would be lost, Newton now showed, if the law differed from an 
inverse XLV square law. In Proposition XLV, Corollary 1, of Book I, he con-
sidered the case of bodies orbiting in near-circular orbits. He showed that, if the 
law of attraction differed from an inverse square law, then a planet would not 
return to its aphelion after a circuit of 360º around the Sun. It would need to 
complete more or less of the circuit according to how much the force deviated 
from an inverse square law. That is, for a 1/r 2+δ force law, the planet would re-
turn to its aphelion after passing 360º/√(1 – δ). The result was remarkably robust, 
holding even when the deviation from the inverse square law δ was not small.

Since the planets do move in near-circular orbits, Newton could apply 
his result to the motions of the planets. If we set aside known perturbations, 
then the planets do trace fixed elliptical orbits, returning to their aphelia after 
a 360º circuit around the Sun. Newton could conclude with satisfaction in 
Book III, Proposition II, Theorem II that

[The inverse square law] is, with great accuracy, demonstrable 
from the quiescence of the aphelion points; for a very small ab-
erration from the proportion according to the inverse square0 
law of the distances would (by Cor. 1, Prop. XLV, Book I) pro-
duce a motion of the apsides sensible enough in every single 
revolution, and in many of them enormously great. ([1726] 
1962, 406)

In summary form, this argument is a version of Maxwell’s argument since it 
infers from a property of the elliptical orbits of the planets to the exact inverse 
square law of gravity:

Observed positions of the planets.

(warrant) Hellipses: The planets move in their specific elliptical orbits.

Newton’s Proposition XLV, Corollary 1, Book I.

_________________________________________________________(deduce)

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.
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The overall structure of the relations of support displayed here is of the two 
hypotheses accruing support from the observed positions of the planets over 
time. Although the two component inferences are deductive, the combined 
relations of support are inductive and can be summarized as

Observed positions of the planets.

________________________________________________________(induction)

Hellipses: The planets move in their specific elliptical orbits.

Hinv. square: The planets are attracted to the Sun by a force that varies 
with the inverse square of distance.

In broad strokes, the relations of support recounted here in Sections 4 
and 5 are between the two hypotheses Hinv. square and Hellipses. They enter into 
the mutual relations of support pictured in the arch analogy of Figure 8.2.

Figure 8.2. Elliptical orbits and the inverse square law

Hellipses
Hinv. square

Observed positions of the planets.
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6. Conclusion
We have seen here two pairs of propositions in Newton’s Principia ([1726] 
1962) that mutually support one another. A close reading of his text is likely 
to reveal more. A natural candidate is Kepler’s harmonic rule that relates the 
period and mean radii of planetary and lunar orbits: (period)2 is directly pro-
portional to (radius)3. Newton infers from this harmonic rule to his inverse 
square law. We now routinely invert the inference and infer from the inverse 
square law to the harmonic law.

Such inversions are encouraged by a development common in matur-
ing theories. We are inclined initially to infer from the elliptical orbits of the 
planets to the inverse square law of attraction, for the elliptical orbits are clos-
er to observations. As the theory matures, we find multiple supports for the 
inverse square law. We also recognize that Newton’s fully elaborated system 
corrects the simple statement that the planets move in ellipses, for in some 
cases the perturbing effects of other celestial bodies move them away from 
their ellipses. Then it becomes more natural to invert the relation of support 
and see the inverse square law as supporting a corrected version of the origin-
al observations of elliptical orbits.

Another example of this inversion is found in the role of atomic spec-
tra in the foundation of quantum theory, as related in Chapter 9, “Mutually 
Supporting Evidence in Atomic Spectra.” Ritz’s combination principle sup-
ports the discrete energy levels of Bohr’s 1913 theory of the atom and thus 
the quantum theory that developed from it. The developed quantum theory, 
however, entails a version of the Ritz principle, corrected by selection rules. 
This complication indicates the inverted relation of support.
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