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7

Simplicity in Model Selection

7.1. Introduction
In philosophical analyses, simplicity is most commonly introduced as a 
rather abstruse metaphysical notion whose application in theory appraisal 
is important but troublesome. For the invocation of simplicity seems to 
require the highest level of human insight, as opposed to the mechanical 
application of an unambiguous, even algorithmic rule. Hence, it was quite 
a revelation in the philosophy of science literature when Malcolm Forster 
and Elliott Sober (1994) pointed out that the model selection literature 
in statistics had succeeded in incorporating a simplicity condition into 
rules for model selection that are applied mechanically—that is, without 
the need for higher-level human insight.

This example of model selection is important and interesting. 
However, my sense is that Forster and Sober were too optimistic in just 
what they thought we could learn from it. They passed too readily from 
the case of model selection to broader morals pertaining to other cases in 
which there were invocations of simplicity, such as the decision between 
Copernican and Ptolemaic astronomy. This was an overreach. The model 
selection literature shows how simplicity considerations arise in solving 
a quite specific problem: the discerning of the true relation obscured by 
random, statistical noise. The simplicity considerations in Copernican 
and Ptolemaic astronomy are not dependent essentially on error noise. 
There is a loose similarity between the two cases, but much more needs to 
be said before general morals can be recovered from the one case of model 
selection.
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My goal in this chapter is more modest. Instead of seeking to recover 
universal claims about simplicity from the example of model selection, I 
merely want to show how the literature on model selection provides an 
important illustration of the central claim of the last chapter: that there is 
no epistemically potent, universal principle of parsimony, and that sim-
plicity considerations in theory appraisal are really surrogates for back-
ground facts. I will look at hypothesis selection governed by the Akaike 
Information Criterion (AIC), discussed by Forster and Sober. The criter-
ion directs us to evaluate a hypothesis by determining how likely it makes 
the data at hand. The danger of overfitting is greater the larger the hypoth-
esis space of the model from which the hypothesis is drawn. The criterion 
directs us to correct for this overfitting by subtracting the dimension of 
the hypothesis space from the statistic that expresses the likelihood of the 
data. This correction is its notable property, for it rewards models for their 
simplicity. However, I will argue, the criterion provides no comfort for 
metaphysicians of simplicity, for the following reasons:

•  The criterion is deduced from straightforward assumptions 
about the systems investigated. These assumptions include 
no posit of simplicity and no principle of the parsimony of 
nature.

•  The criterion deduced is simply a formula used to weight 
the performance of various models in narrowly specified 
conditions. No general principle of parsimony is inferred 
such as could be applied elsewhere.

•  Considerations of simplicity need not enter into 
the discussion at all. They arise only because we 
metaphysically minded readers see a particular formula 
and find it comfortable to interpret one term in the 
formula as a reward for simplicity (or punishment for 
being complicated). 

Finally, we shall see that the simplicity correction is merely a surrogate for 
a correction derived from a background assumption. The most potent of 
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the governing assumptions is that the data are generated by a hypothesis 
in the model being tested.1 This assumption proves strong enough to allow 
us to estimate how much overfitting the model permits and, as a result, to 
correct for it in an especially simple way. We then interpret this correc-
tion as what simplicity requires, although the notion played no role in its 
generation.

The chapter will introduce model selection and the AIC, which is one 
of many such criteria. For our purposes of identifying how generally sim-
plicity considerations enter model selection, it is as good as any.2 Sections 
7.2 to 7.5 will introduce model selection and try to explain how the criter-
ion is able to generate the simplicity correction. In Section 7.6, we will turn 
to a fully worked out example of the criterion in action and then conclude 
with an account of its relation to the material theory of induction.

7.2. Model Selection
Model selection deals with data generated by a probabilistic system. A 
model consists of a set of hypotheses such that each is a candidate de-
scription of the probabilistic system. A primary application is the example 
of curve fitting discussed in the last chapter. There, as we saw, data were 
generated by a function confounded by statistical noise. The models were 
the different families of functions that could be fitted: linear functions, 
quadratic function, and so on, and their associated error distributions. 
However, these methods can deal with more general cases, and they can 
be applied whenever data are generated probabilistically. If, for example, 
one samples the heights, weights, genders, and so on of a population, the 
resulting data are generated by a probability distribution that covers these 
features of the population. In this case, the models are sets of possible dis-
tributions, and the parameters sought are means, variances, covariances, 
and other parameters of the distributions.

1 For a good account of the Akaike Information Criterion, see Konishi and Kitagawa 
(2008, chap. 3) and especially their Section 3.3 for an account of additional terms needed if the 
truth is not assumed to be one of the hypotheses being tested.

2 There is, for example, an extended version of the Akaike criterion modified to correct 
for small data sets and large numbers of parameters (Burnham and Anderson 2004). Other related 
criteria include the Bayes Information Criterion (BIC), which arises in a Bayesian analysis of 
model selection (Wasserman 2000).



The Material Theory of Induction226

The model selection literature seeks ways of looking past the statistical 
noise in the data to the true system that generated it. For any particular 
data set, one can always find a better fitting model by sacrificing simpli-
city. The more complicated models fit better since they can conform to 
confounding statistical noise. The larger the model—that is, the more hy-
potheses it contains—the greater its ability to conform to the data and the 
greater the danger of overfitting. The remedy is to forgo some goodness of 
fit in favor of a simpler model.

A crude illustration is the problem of identifying the daily arrival 
times of a bus. We may find the bus to arrive at 11:58, 12:04, and 12:02 on 
successive days. These data are accommodated well enough by the hypoth-
esis that the bus arrives roughly at 12:00. However, if we allow more com-
plicated descriptions, we can find a hypothesis that fits the data perfectly. 
We might propose that the bus arrival times cycle successively through 
11:58, 12:04, and 12:02, thereby eliminating any mismatch between our 
hypothesis and the data at hand. Informally, we would judge the improve-
ment in fit to be spurious, a result of overfitting, and revert to the “roughly 
12:00 arrival” hypothesis as simpler.

7.3. Maximum Likelihood Criterion
The AIC is an elaboration of another simpler criterion, the Maximum 
Likelihood Criterion (Akaike 1974). Assume we have a probabilistic sys-
tem that produces data, and we wish to infer back to the properties of the 
system. We identify the properties through the parameters characteristic 
of the system. These would be the coefficients in the functions we fit to 
the data in curve fitting; or they might be means and variances if we are 
trying to find the population parameters from the data of a population 
sample. To start, we presume some model—that is, some set of hypotheses 
indexed by the sorts of parameters we believe are characteristic of the sys-
tem. In curve fitting, the model would be, say, a linear or quadratic curve 
confounded by error noise. Different parameters in the model pick out 
different hypotheses that will make the data actually recovered more or 
less probable. This conditional probability is called the likelihood L:

L = P(data | model parameters).
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Which parameters should we choose? An obvious choice would be those 
parameters that make the data most probable; that is, we choose to maxi-
mize the likelihood L, and the resulting parameters are known as “max-
imum likelihood estimators.” It turns out to be convenient not to work 
with the likelihood L directly but with its logarithm, log L. Since the loga-
rithm function is strictly increasing, maximizing L is equivalent to maxi-
mizing log L. And maximizing log L is equivalent to minimizing –log L. 
This gives us

Maximum Likelihood Criterion: seek the parameters that 
maximize log L—that is, that minimize –log L.

This criterion works well until we try to use it to compare models with dif-
ferent numbers of parameters. You might expect that we can compare two 
models by looking at the maximum log-likelihood each supplies. What 
if best-fitting hypothesis H of model M1 yields a higher log-likelihood of 
the data than does best-fitting hypothesis K of model M2? It would seem 
straightforward that we should pick the H of model M1 over the K of mod-
el M2.

This straightforward conclusion is too hasty, because the log-likeli-
hood delivered by one model can be spuriously inflated by overfitting. For 
example, in curve fitting, if we use a model with linear functions y = A + 
Bx, we fit just two parameters, A and B, as well as any parameters charac-
terizing the error noise distribution. If we move to a model with quintic 
equations y = A + Bx + Cx2 + Dx3 + Ex4 + Fx5, these two parameters are 
replaced by six parameters, A, B, C, D, E, and F. The larger number of 
parameters in the second model gives it more flexibility, and that gives it 
an unfair advantage over the first model. The data is generated probabilis-
tically and, as a result, it will not perfectly reflect the probabilistic system 
that generated it. A sample mean will typically differ slightly from a popu-
lation mean. A maximum likelihood estimator can increase the likelihood 
of the data by tracking these slight deviations. Selecting the sample mean 
as the estimator for the population mean will render this particular data 
set more probable than selecting the true population mean. This unwant-
ed effect is overfitting, once again. As the number of parameters in the 
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model grow, the model becomes more flexible and the extent of overfitting 
increases. 

7.4. Akaike Information Criterion
How can we guard against overfitting? Qualitatively, we might seek to 
protect ourselves by favoring simpler models—that is, models with fewer 
parameters. This solution is correct at the level of vague generality, but it 
does not translate into a quantitative procedure with a precise justification 
that would tell us just when to abandon the models with more parameters. 

Hirotugu Akaike approached the problem by considering not just 
performance with the particular data at hand. Instead, he asked that we 
choose estimators that perform well on average over all of the data sets 
that might be produced by the probabilistic system. The reason is that 
overfitting produces estimators that work well for one data set to which 
they are tuned, but they will generally fare worse for others that the prob-
abilistic system may produce. A model with a larger set of parameters is 
more flexible and thus more likely to be overfitted to the data. So, if we 
seek models that perform well on average, we must penalize the perform-
ance of models with larger numbers of parameters to compensate for the 
inflation in their performance due to overfitting. What Akaike found was 
that the requirement of best performance on average over all data sets led 
to a remarkably simple correction to the Maximum Likelihood Criterion. 
That is, he found that overfitting inflates the log-likelihood of the data by 
the dimension d of the parameter space. We correct the log-likelihood 
function for overfitting merely by subtracting this dimension d from it. 
This yields the following results:

Akaike Information Criterion (AIC): seek the parameters that 
maximize log L – d—that is, they minimize3 –log L + d.

The penalizing factor d automatically favors models with lower numbers 
of parameters. It expresses in quantitative form the qualitative notion that 
we should favor the simpler model over the more complicated one.

3 Akaike’s original proposal was to minimize − 2log L + 2d, but I have dropped the factor 
of two since it confounds the simplicity of the formula without any gain.
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7.4.1. How It Works: The Essential Assumption
The AIC works by asking not merely how well the estimator performs 
with the particular data set at hand. Rather, it asks how the estimator per-
forms on average with all possible data sets, and it rewards and penalizes 
the various models accordingly. For example, if we suspect a population 
is exactly 50% female, we would not be surprised to find that there are 
fifty-seven females in a random sample of one hundred people. We might 
be tempted by this datum to posit that 57% of the population overall is 
female. The posit would make the datum of fifty-seven females in the sam-
ple more probable than the supposition that 50% are female. However, 
we would likely hesitate. How representative is this one sample, we would 
wonder. What might happen if we were to draw another random sample 
of one hundred, and another, and another? Over the repeated samplings, 
if the 50% hypothesis is correct, we would find a range of sample results 
scattered around fifty females. The hypothesis of 57% would perform 
poorly over this range and, on average, the true hypothesis of 50% female 
would perform best.

The AIC arises when we correct the performance of an estimator for 
how it is likely to perform on average over all possible data sets. The great 
difficulty with this correction is that we do not know the full properties of 
the true probabilistic system; so, it would seem, we cannot know what all 
possible data sets are. It is true that we cannot know this without further 
assumption. We must assume something more. Otherwise, the analysis 
would be performing impossible magic.

The key assumption of the analysis is that the true probabilistic system 
lies within the model under consideration, where a model is simply some 
collection of hypotheses.4 So if we are fitting a linear curve y = A + Bx 
to data, then we assume that some values of A and B are the true values 
of the system. The remarkable thing about Akaike’s analysis is that this 
assumption is sufficient to allow the analysis to proceed. We do not need 
to know which values of A and B are the true values. We merely need to 
assume that there are some values of A and B that coincide with the truth.

4 This is an awkwardness of the application of AIC. This assumption can fail for at least 
some of the models we may compare. It must fail, for example, for all but one, when we compare 
models with disjoint sets of hypotheses.
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What results is a correction to the Maximum Likelihood Criterion 
of impressive simplicity. This simplicity comes at a cost, for it arises only 
after we have made strong assumptions about the background system and 
our sampling of it. In addition to the assumption noted above, we also 
assume that the data set is sufficiently large for the central limit theorem 
of statistics to be applicable. Nonetheless, it is striking that such a simple 
correction formula is possible under any conditions. The penalizing fac-
tor d merely records the dimension of the space of parameters. The two 
parameters A and B of the linear functions provide two dimensions; the 
six parameters A, B, C, D, E, and F of the quintic functions provide six 
parameters. Nothing else in the details of the space matters.

7.4.2. Kullback-Leibler Discrepancy, Predictive Accuracy and 
the Truth
The foregoing discussion has been kept as simple as possible, so the tech-
nical note of this section is required for those who want it. The charac-
terization of how the AIC works will at first seem different from the way 
the criterion is normally motivated. Akaike (1974) and later authors (e.g., 
Zucchini 2000; Konishi and Kitagawa 2008, chap. 3) employ what is vari-
ously called the Kullback-Leibler discrepancy or the Kullback-Leibler in-
formation. In seeking to identify a probabilistic system, we seek to identify 
the probability that the system assigns to each possible outcome datum 
x, where the datum x is a vector, since it will generally consist of several 
numbers. This true but unknown probability is labeled as the probability 
density g(x). The models we fit are also probability densities over the same 
space of possible outcomes, f(x | q q ), where the vector valued qq is the set of 
parameters characterizing the model. The Kullback-Leibler discrepancy is

It measures how closely the model f(x | qq) comes to the target g(x). It 
achieves its minimum value of 0 when g(x) = f(x | qq) almost everywhere. 
The goal is to find the f(x | qq) that achieves this minimum value. Since the 
target g(x) is fixed, this goal is equivalent to maximizing the integral
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This integral computes a measure of average performance. The term log 
f(x | qq) is the log-likelihood of some particular datum x. The density g(x) 
tells us how frequently this datum will appear in repetitions of whatever 
procedure or experiment generates the data. So the integral is the average 
log-likehood of a datum over many repetitions. Selecting a parameter qq 
that maximizes the integral identifies that density f(x | qq) that will have the 
best performance on average in the sense that it renders the data we expect 
in multiple repetitions most probable.

The f(x | qq) that is selected by this performance criterion is commonly 
described as selecting the probability density that has the best “predictive 
accuracy.” In general, it will not be the distribution that makes the data 
at hand most probable. This distribution may have been eliminated by a 
penalty for a larger number of parameters. However, the one selected will 
have the property of making the accumulated data most probable over 
numerous repetitions of the procedure. Since these procedures have yet to 
happen, this feature is labeled “predictive accuracy.”

While predictive accuracy is a desirable goal, it is less than the goal of 
finding the truth. False theories can enjoy considerable predictive accur-
acy. The Demeter-Persephone myth of ancient Greece successfully pre-
dicted endless repetitions of fertile and barren seasons. Also, some model 
selection problems may preclude prediction. At an archaeological site, for 
instance, we may collect and map the positions of bone fragments. We 
want to know if their spatial distribution has one or two peaks, which 
would correspond to one or two sources. In this problem, we are indiffer-
ent to prediction, since there are no further bone fragment locations to be 
predicted. All we really want is the true distribution. 

In the particular case of the AIC, we can see that the maximization 
is a condition that will return the true probability distribution to us. For 
the AIC proceeds from the assumption that the true distribution g(x) co-
incides with one of the distributions in the model. That is, 

for qq0 the true parameter value. Then we seek to optimize the integral
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and this integral achieves its maximum value when we set f(x | qq) = f(x | qq0).5

The common justification of the AIC is that it selects the probability 
distribution that has the greatest predictive accuracy. We can now see that 
this undersells the criterion. It is designed to seek the true probability dis-
tribution. Its justification should be given in terms of truth not predictive 
accuracy.

7.5. How It Works: An Oversimplified Analogy
That the AIC can correct for overfitting may seem mysterious and even 
magical. It is not so. The correction results from implementing a prosaic 
standard: seek the best performance over all data on average. The correc-
tion does not explicitly set out to reward simplicity. That is does so is mere-
ly a consequence of the analysis. A greatly oversimplified analogy shows 
that this sort of correction is far from mysterious.

In this analogy, we will consider the near trivial problem of fitting 
linear, quadratic, cubic, and higher-order polynomial curves to data with-
out error. That is, the fitted curve must pass through all the data points 
without error. We seek a criterion that directs us to the unique curve ap-
propriate to the data. We might initially choose “number of hits” as a scor-
ing criterion. This is not a good criterion, however. For if we have three 
data points for (x, y): {(0, 0), (1, 1), (2, 2)}, then the straight line y = x scores 
three hits. But so do many cubic curves (as shown in Fig. 7.1) and so do 
many more quartics.

5 This follows since the Kullback-Leibler discrepancy I(g:f ) has its minimum value of 
zero when g(x) = f(x) almost everywhere.
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Figure 7.1. Linear and cubic curve fits.

They score equally—three hits—but they are not equally successful. We 
discount the cubic and quartic curves, since they are not uniquely select-
ed. Cubic curves y = A + Bx + Cx2 + Dx3 have four free parameters, and 
thus many cubic curves can hit just three data points, but there is only one 
that can hit four. Quartic curves have five free parameters. Many can hit 
three data points, but only one can hit five.

If our interest is uniqueness, instead of counting the number of hits, 
we should assess whether the number of hits are sufficient to ensure a 
unique curve. This leads to the new score:

Score = Number of hits – Number of parameters.

We have uniqueness if this score is greater than or equal to zero. For each 
of the d parameter families of curves mentioned above return a unique 
curve only when they have a curve that hits d or more points.

This new score discriminates the linear model from the others in the 
above case. The linear curve has a score of 3 – 2 = 1, the cubic 3 – 4 = –1, 
and the quartic 3 – 5 = –1. Only the linear curve has a score greater than 
or equal to zero.
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The example is elementary, but it presents two features of model se-
lection methods. First, the score was not derived from a metaphysics of 
simplicity that demands that more complicated models must be penalized 
for their lack of simplicity. Rather, all models were held to the same stan-
dard: the scoring rewards them only when they produce a unique curve. 
The result of this requirement was an automatic penalizing of the more 
complicated models. Second, the success of the scoring system depends 
on background assumptions. In this case, the curve scoring zero or more 
is assured to be unique only if the true curve lies in the same model. In 
the example, if the true curve were actually in the cubic model, then the 
uniqueness of the straight line y = x for the linear model would be insuffi-
cient to assure us that we have found the unique curve. Since we have only 
three data points, it could be any of the curves in the cubic model.

7.6. A Coin Tossing Illustration of the Akaike 
Information Criterion
That the simple correction of the AIC suffices does seem too good to be 
true. That it does suffice, under the right conditions, is found merely by 
working through the statistical analysis that leads to the result. Since this 
analysis is quite difficult, I have provided a simple application of AIC 
below and in the Appendix to display the full analysis and show how it is 
that a correction merely in the dimension of the parameter space d can be 
deduced from the requirement of maximizing average performance.

The example pertains to coin tosses. Let us say that we toss N coins 
and find n heads. What is the chance p of a single toss coming up heads? 
Our estimation problem is to find that chance. Let us consider models 
with differing numbers of parameters. Each model assumes independence 
of the tosses.

7.6.1. Zero-Parameter Model
The simplest model just posits that our best estimate of p,  , is 1/2. It is a 
rather inflexible model since it allows only one value, but just that is what 
makes it a zero-parameter model. The likelihood L of n heads in N tosses 
in this model is
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So we have the log-likelihood log L0(1/2) = N log (1/2). AIC directs us to 
maximize:

where no dimensional correction is applied since d = 0.

7.6.2. One-Parameter Model and Its Problems
The next simplest model has one parameter, p, which is the chance of a 
heads. The log-likelihood of n heads in N tosses is

and (as shown in the Appendix) the value of p that maximizes the log-like-
lihood is

This model already admits a small amount of overfitting. If, for example, 
the true value of p is 0.5 = 1/2 and we have N = 100 tosses, then n is less 
likely to be 50 exactly. Rather, it will be somewhere in the neighborhood 
of 50, say n = 42 or n = 55. Choosing  = 0.42 or 0.55 in these two cases 
will produce log-likelihoods that exceed the log-likelihood returned by 
the zero-parameter model, even though in this case our supposition is that 
the zero-parameter model happened to have hit upon the true value of p.

Here are the values. The zero-parameter model yields

The one-parameter estimators do better when employed with the data sets 
to which they are tuned:

The one-parameter estimators yield greater (i.e., less negative) log-likeli-
hoods than does the presumed true zero-parameter estimator.

The estimators  = 0.43 or 0.55 have performed better in these two 
cases of n = 43 or n = 55 since they have been tuned specifically to these 
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two cases, respectively. They each perform worse than the zero-parameter 
model, however, if we reverse cases and use  = 0.42 for the case of n = 55 
and use  = 0.55 for the case of n = 0.42:

That is, successes of  = 0.43 or 0.55 are inflated by overfitting to the 
specific data at hand. They will perform worse if we employ them with 
other data sets to which they are not tuned.

7.6.3. One-Parameter Model Repaired
These effects indicate how we can correct our assessments for overfitting. 
We give up the goal of merely maximizing log-likelihood for the data at 
hand. Instead, we seek to optimize the log-likelihood over all possible data 
sets, appropriately weighting each set for its probability. Finding the es-
timators that perform best by this standard is the basis of the AIC. This 
fundamental idea is important enough to bear restatement: 

Seek the estimator that gives the best log-likelihood when 
averaged over all possible data sets.

To proceed, we need to know which are all possible data sets. For that, we 
assume

There is a single true chance of a heads, p*, within the hypotheses 
of the one-parameter model.

As I noted above, this is the non-trivial assumption of the analysis, for 
it says that the truth lies somewhere within our present one-parameter 
space of hypotheses.6 Our calculations are also greatly simplified with the 
assumption that the number of tosses N in each data set is very large. This 
means the central limit theorem of statistics can be called up to assure us 

6 It could fail in many ways. The true chance of heads my vary with different tosses; or 
there may be correlations between successive toss outcomes.
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that the number of heads n is normally distributed around a mean of p✳N 
with a variance N p✳(1 − p✳).

Let us fix some particular maximum likelihood estimator  = p that 
is derived from one data set. We can ask how the log-likelihood of that 
particular value p will fare over all possible data sets. That is, we compute 
the expectation

where the Appendix gives the computation.
We are interested not just in the performance of one particular esti-

mator p, but in all. So we now average over all estimators. Since  = n/N, we 
know that  will inherit its distribution from n. It is normally distributed 
about a mean p✳ with variance p✳(1 − p✳)/N. The expectation over all data 
and over all  yields

The first term on the right is the average log-likelihood using the true 
chance p✳ over all data:

The average in (1) is the quantity that measures the success of the max-
imum likelihood estimators in the one-parameter family. It tells us how 
their log-likelihoods fare on average over all possible data sets and thus is 
corrected for overfitting. We compare this quantity with the correspond-
ing quantity from other families in choosing our final estimate. We read 
from (1) that the maximum likelihood estimators fare slightly worse over-
all than the true value p✳, indicating that we have successfully corrected 
the overfitting of the maximum likelihood estimators.

However, we are not yet in a position to use (1) since we do not know 
the value of Eall data(log L1(p✳)). We need to have some estimate of it since 
it will vary from parameter space to parameter space and thus affect our 
choices. We will not be able to determine it exactly. The true value p✳ is 
precisely what is unknown and sought. However, there is an indirect way 
that we can recover a good estimate of Eall data(log L1(p✳)). We use the 
fact that for each particular data set, the maximum likelihood estimator  
tuned to that data set will always outperform the true value p✳.
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The extent of overperformance will vary from case to case and will 
be unknown to us in any particular case; however, we can compute its 
average. To do this, we average over a different set from the one used in (1). 
That is, we average over pairs of data sets and the estimator best tuned to 
the data set. In so doing, we look at a data set and the estimator tuned to 
it and compare that estimator’s log-likelihood with that of the true value 
p✳; and we repeat for many cases. The average that results is expressed by 
the expectation

The AIC is recovered by combining equations (1) and (2). Equation (2) tells 
us that, on average in the data sets for which it is computed, the log-like-
lihood  will yield a log-likelihood greater by 1/2 than that of the true 
chance p✳ averaged over all data. Hence, we can use log L1( ) − 1/2 as 
an estimator of Eall data(log L1(p✳)). Inserting this into (1), we find that 
log L1( ) − 1/2 − 1/2 = log L1( ) − 1 is an estimator of the quantity we 
seek to optimize, Eall , data(log L1( )). That is, log L1( ) − 1 is an estima-
tor of the average log-likelihood of , averaged over all possible data sets. 
Maximizing this quantity log L1( ) − 1 is what AIC calls for in the case of 
a one-dimensional parameter space.

7.6.4. d-Parameter Model
It might seem that a major step must be taken from this last case of a 
one-parameter model to the case of a d-parameter model. However, all the 
hard work has already been done in computing the one-parameter case. It 
is a small step to a d-parameter case. To get there, we divide the N tosses 
into d subsets of tosses. We posit different true chances, p✳

1 for the first M1 
tosses, p✳

2 for the next M2 tosses, …, p✳
d for the final Md tosses. We have 

now introduced a d-parameter model, with parameters p1, p2, …, pd. Each 
subset of tosses can be treated as a separate one-dimensional parameter 
space problem. So, in each subset of tosses Mi, we estimate the average of 
the maximum likelihoods of i by computing log L1( i) − 1. The estimate 
for the average maximum likelihood associated with all d parameters is 
just the sum of these individual estimators, that is
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But this last quantity is just the quantity to be maximized in applying the 
AIC in the d-dimensional parameter space of a d-parameter model.

The result still depends upon restrictive assumptions: all of the Mi 
must be large enough for the central limit theorem to take effect; and we 
have assumed that some set of values for pi expresses the truth exactly. 
What the calculation also shows is that the character of the parameter 
space is of lesser importance. The particular magnitudes of the subsets 
Mi played no role in the final result. They can each be different in size, as 
long as they are each large enough to support an application of the central 
limit theorem. All that matters is that they open new dimensions in the 
parameter space. It is this fact that enables the criterion to be expressed so 
simply in terms of the parameter space dimension only.

7.6.5. Akaike Information Criterion Computed
The analysis is specific enough for us to be able to use AIC to compare 
the zero and one-parameter models in a context in which we have an in-
dependent, intuitive grasp of the competing factors. For one hundred coin 
tosses, if the coin is fair so that the chance of a head is 1/2, we expect the 
number of heads to lie in the range 40 to 60.7 When do we choose the 
hypothesis from the zero- or one-parameter models?

For the zero-parameter model, the quantity maximized in the AIC is

For the one-parameter model, it is

where n is the number of heads and  = n/100. If we plot these two quan-
tities as a function of n, we find Figure 7.2. 

7 The mean number is 50 and the standard deviation is , so the two 
standard deviation interval is 40–60 and will contain the outcome with probability 0.954.
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Figure 7.2. Comparing the zero- and one-parameter models.

We see in Figure 7.2 that the zero-parameter model returns a higher value 
when n lies between 43 and 57, so we choose the zero-parameter estimator 

 = 1/2 for those values. Otherwise, when n falls outside this range, we 
choose the one-parameter estimator  = n/100. 

Here is how we can interpret these results. When we have a datum 
n = 49, the outcome is close enough to the expected value n = 50 of the 
zero-parameter model that we prefer the zero-parameter model. The 
one-parameter model would give us  = 0.49 and, as a result, a log-likeli-
hood of the data slightly greater than that of  = 1/2. However, the gain is 
due to overfitting and not sufficiently great to lead us to switch from the 
zero-parameter value of  = 1/2. If, however, the outcome were to be n = 
40, then the situation would be reversed. The one-parameter model gives 
us  = 0.40 and a log-likelihood for the data that so exceeds the one from  
= 1/2 that we switch to the one-parameter model. These decisions conform 
with what our vaguer notions would dictate in this case.

7.7. Relation to the Material Theory of Induction
The main ideas of the connection between the AIC and the material theory 
of induction have already been reviewed above. I collect them and develop 
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them here. The material theory of induction denies that there is any uni-
versal schema for inductive logic. A candidate for such a schema is the idea 
that we should choose the simpler hypothesis over the more complicated. 
We have already seen the difficulty with positing this as an independent 
rule. We still lack any universal characterization of what is simple. At best, 
we can identify the simpler cases on an ad hoc basis according to the do-
mains we encounter. The schema also raises the deeper issue of whether 
it requires us to presume some sort of metaphysics of simplicity. It would 
assert that the world is, essentially, parsimonious. Are we willing to ac-
cept this metaphysics of simplicity? If not, how do we justify the universal 
schema just described?

The material theory of induction asserts that we should not accept this 
simplicity schema as universal. Rather, it asserts that any schema for in-
ductive inference is warranted by facts, and the schema is applicable only 
in the domains in which those facts obtain. In the case of the AIC, the 
essential posit is that the true hypothesis lies somewhere among the hy-
potheses of the model that we seek to fit. This assumption in turn gives us 
sufficient access to all possible data sets that the true probabilistic system 
may generate for us to correct for overfitting by the models.

The derivation of the criterion makes no prior supposition of parsi-
mony or simplicity of the world. It merely asks that we choose estimators 
that perform well over all possible data sets, not just the ones to which they 
were initially tuned. The AIC then follows. That there is any connection to 
simplicity understood as a general and abstract notion is an interpretation 
we supply after the analysis is complete. We look at the correction factor d 
applied to the log-likelihood. It reminds us of a vaguer idea that we find it 
apt to penalize more complicated models with larger numbers of param-
eters. So it may seem to us that the criterion is somehow vindicating some 
broader metaphysics of simplicity. This is an illusion and a mistake. The 
success of the criterion supplies nothing of the sort. We make a mistake in 
connecting a statistical data analysis procedure, grounded in quite specific 
assumptions about a given case, to some ill-formulated and dubious meta-
physics of simplicity.

The following consideration shows how dependent the approach is on 
the selection of models and how little it can be said to understand deeper 
notions of simplicity and complexity. Consider two models. The first is a 
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two-parameter model with parameters p1 and p2. Call the model M2(p1, 
p2) and assume that the AIC directs us to select the particular hypothesis 
with parameters 1 and 2, chosen since they maximize the penalized 
log-likelihood log L2(p1, p2) – 2. Now consider a second, one-parameter 
model M1 defined by

where the log-likelihoods of the two models will be related by

It is immediately clear that the AIC will direct us to favor the one-par-
ameter model M1 over the two-parameter model M2. We can readily find 
values for which the one-parameter model’s penalized log-likelihood out-
performs that of the two-parameter model. For example, if in both we set 
p1 to the same value 1 returned for the two-parameter model, we find

since 
From our elevated perspective, we know that the case is an unfair 

contrivance. The model M1 is really just the same as M2 with one of its 
parameters artificially hidden by the contrivance of setting it to the esti-
mator value in advance. We would want to say that it is unfair to ask any 
method to do well against examples precisely contrived to confound them. 
But that is the point. Calling up some higher perspective, we know that 
the example is contrived. The AIC analysis itself has no way of knowing 
that. All it can know is that there are two models, a one-parameter M1, and 
two-parameter M2, which it treats by its rules. The method has no access 
to which model is really simple and which is maliciously contrived to look 
simple and has no provisions for treating them differently.

Finally, Forster and Sober’s introduction of the AIC into the philoso-
phy of science attracted some spirited responses. For example, Scott De 
Vito (1997) argued that it could not overcome the language dependence 
brought by “grue-like” problems. Wayne Myrvold and William Harper 
(2002) pointed out cases in which the AIC failed to pick hypotheses that 
successfully extrapolate.
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These are all worthy complaints in so far as they are leveled against 
the idea that the AIC has somehow vindicated a broader metaphysics of 
simplicity. Once one realizes that the real power and proper ambitions of 
the AIC analysis are much more modest, however, these concerns pass. 
Forster (1999) has responded that variant, grueified descriptions cannot 
change the dimension of the parameter space that is central to the AIC 
analysis. Also, I will note here, we can only expect the hypothesis selected 
by an AIC analysis to fare well in extrapolations if the true hypothesis 
lies within the models considered. Counterexamples in which the AIC 
selection fails in extrapolation are easily found by contriving examples in 
which the true hypothesis lies outside the models. Failure of extrapolation 
then is untroubling since the AIC approach, properly understood, has no 
power to estimate a truth that lies outside its compass. Understood mater-
ially, an AIC analysis can only achieve ends authorized by the assumptions 
made in the analysis. These assumptions fall far short of the positing of a 
metaphysics of simplicity that can provide universal guidance whenever 
philosophical issues of simplicity are raised.

Appendix 7.A. Computations for the Akaike 
Information Criterion in a Simple Coin Tossing 
Problem
A coin is tossed N times, where N is very large, and the outcome of n heads 
is reported as the data. In the one-parameter model, we assume that the 
probability of a heads in each toss is equal to some undermined prob-
ability p, so that the probability of a tails is (1 − p). With independence 
of the tosses, it now follows that the probability of n heads in N tosses is  
(p)n(1 − p)n−N. Hence, the one-parameter log-likelihood is

The maximum likelihood estimator is that value of p that maximizes this 
likelihood. That is,  solves the equation

which leads to
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Thus, the log-likelihood of any data set with n heads according to this 
estimator is

We now seek to assess how well some particular estimator, say  = p, fares 
when we consider all possible data sets. We assume that the true value of 
p is p✳ and that n/N will differ from its mean value p✳ by an amount d. 
Writing n/N = p✳+ d, we have

We now average this quantity over all possible data sets. The number of 
heads n/N is distributed about the mean p✳. Hence, d = n/N − p✳ has a 
mean of 0 and vanishes under the expectation operator Eall data. Thus we 
find:8

This expectation depends explicitly on the value of  = p. To suppress it, 
we now average over the possible values of . Writing  = p✳+ D where we 
now assume that D is small, we have

We expand the two log terms in a power series:

8 This computation does not require the assumption that N is large and that n is normally 
distributed.
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After substituting, multiplying terms and saving terms up to D2, we have

The quantity D is a random variable that inherits its probability distribu-
tion from n. When N is large, n is normally distributed9 with a mean p✳N 
and a variance Np✳(1 − p✳). Since  = n/N and D =  − p✳ = n/N − p✳ it 
now follows that  is a standard normal variable with 

mean 0 and variance 1. Hence,  is chi-squared distributed 

with one degree of freedom. This distribution has the property that its 
mean is unity. Hence, taking the expectation of Eall data(log L1(  )) over 
all values of  , we recover:

To identify the first term on the right-hand side, note that the likelihood of 
n heads according to the correct chance p✳ is

We also have the expectation

so that

Combining, we have

of the main text.
To arrive at (2) we compute the behavior of log L1( ) over the data sets 

to which each  is tuned. To limit ourselves to these data sets, we set n/N 
=  in

9 This follows since the exact distribution of n is a binomial distribution with these 
same parameters. The central limit theorem tells us that this distribution approaches a normal 
distribution of the same mean and variance for large N.
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and write  = p✳+ D as before, so that

Expanding the log terms as a power series in D as before, multiplying out 
terms and saving terms up to D2, we have

From above, we have that D is a standard normal variable with mean zero 
and N D2/(p✳(1 − p✳)) is chi-squared distributed with one degree of free-
dom and thus has a mean of 1. Hence, we recover the expectation:

The quantity to be maximized in the AIC is recovered from (1) and (2) as 
described in the main text.
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