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The Use of Hypotheses in Determining 
Distances in Our Planetary System

1. Introduction
How distant from us are our nearest neighbors in space: the Moon, the Sun, 
and the planets?1 This basic problem of astronomy proved to be a most chal-
lenging one that exercised astronomers from antiquity to as late as the nine-
teenth century. It provides a revealing case study of how hypotheses are used 
to extend the otherwise limited inductive reach of evidence.

One might expect that these distances could be determined by simple 
measurement, much as a terrestrial surveyor can determine the location and 
height of an inaccessible mountain peak. However, distances even to our 
closest body, the Moon, are so great that they present formidable challenges. 
Accurate triangulation of great distances requires extremely accurate angular 
measurements that were mostly beyond ancient astronomers, except perhaps 
for the closest body, the Moon. Even then, the ancient astronomers needed to 
await the opportunities provided by solar and lunar eclipses to break other-
wise fatal evidential circles. The difficulty of making precise enough meas-
urements meant that these methods were able to estimate distances only to 
the Moon and, so some extent, the Sun. These early efforts are described in 
Sections 2, 3, and 4 below.

The introduction of telescopes to astronomy in the seventeenth century 
made possible more accurate angular measurements. However, measure-
ments of distance by means of triangulation, or parallax, as it is called in the 

1	 I thank Bernard Goldstein for helpful comments on an earlier draft.
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astronomical literature, were limited at best to our closest planets, Mars and 
Venus. In Section 5, I recount the seventeenth-century measurement of the 
parallax of Mars, and in Section 6 I recount the eighteenth-century observa-
tions of the transits of Venus across the face of the Sun.

We find from all of these efforts that triangulation by itself is unable to 
provide much. This remains true even with careful telescopic measurements 
and a willingness to sail to distant parts of the globe to make them. The  
eighteenth-century measurements of the transits of Venus, by themselves, 
gave only angular displacements. Something more was needed if they were to 
deliver the distances to Venus and the Sun.

That essential extra was provided by hypotheses about the configuration 
of these celestial bodies. These hypotheses could extend the inductive reach of 
the few measurements available, and determinations of the distances to all 
of the celestial bodies mentioned became possible. This approach had been 
used from the first moments of ancient Greek astronomy and remained the 
primary approach used to the end of the nineteenth century. In the following 
sections, I review three different types of hypotheses used: Pythagorean and 
Platonic harmonies (Section 8), Ptolemy’s Planetary Hypotheses (Section 9), 
and Copernicus’ hypothesis of a heliocentric planetary system (Sections 10 
and 11).

Examination of these three different hypothetical supplements gives us 
an opportunity to see how the hypotheses were used and should be used. The 
use of a hypothetical supplement takes on an evidential debt that must be 
discharged by finding independent evidence for the hypotheses. Only then 
have the results of the investigation been given proper inductive support. The 
need to discharge this debt is underscored by the fact that each hypothetical 
supplement reviewed leads to a different system of distances. Further evi-
dence for the harmonic and Ptolemaic hypotheses was not secured, and they 
were discarded. The Copernican hypothesis, however, accrued considerable 
support. The most important was Newton’s discovery of a mechanics that 
gave a dynamical foundation for the motions hypothesized in heliocentric 
astronomy.

What resulted was the edifice of classical mechanics. It combined astron-
omy and celestial and terrestrial mechanics in a single system, in which each 
part provided evidential support for the others. This crossing over of relations 
of inductive support is illustrated in the particular case of Kepler’s third law 
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and the inverse square law of gravity. Each, as I show in Section 12, provides 
inductive support for the other.

This reliance on hypotheses to enable the determination of distances 
within the planetary system persisted up to the nineteenth century, the latest 
extent of the history reviewed here. With the twentieth century, direct meas-
urements of distances to celestial bodies became possible through laser and 
radar ranging.

2. An Evidential Circle: The Distances and Sizes of the 
Moon and Sun
How distant from us is the Moon? To appreciate just how formidable a ques-
tion it was for ancient astronomers to answer, consider the majestic splendor 
of a full Moon rising over the eastern horizon at sunset. It is easy to imagine 
that the Moon is small and rises from a nearby place just over the horizon. 
That misapprehension is soon dispelled.2 A house on a distant hill becomes 
larger as we approach it. But the Moon does not. No matter how far east we 
might venture, we see the Moon of the same size rising. Our eastward trav-
els, from horizon to horizon, do not perceptibly diminish the distance to the 
Moon. We then realize that it is much more distant than we first thought. 
That means that it must be much larger than we first thought. How much 
larger is it?

That question leads to the first evidential circle. The disk of the full Moon 
fills about half a degree in our visual field. If we knew the size of the Moon, 
then we could calculate its distance by simple geometry. But if it were two, 
three, or four times larger, then it must be two, three, or four times more dis-
tant. As Figure 12.1 shows, many pairs of distances and sizes yield the same 
angular size in our visual field of half a degree. We cannot know the distance 
to the Moon until we know its size. But we cannot know its size until we know 
its distance.

2	 This misapprehension is compounded by the “Moon illusion,” in which it appears larger 
when near the horizon, although its measurable angular size is unchanged.
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Figure 12.1. Many size-distance pairs for the Moon yield half a degree of 
angular size

All that these simple observations tell us is that the distance to the Moon 
must be large but otherwise leave it undetermined.

What of the relative distances of the Sun and Moon? We observe that the 
Sun has about the same angular size as the Moon of about half a degree. This 
equality is most easily learned from eclipses of the Sun. Then the Moon aligns 
with the Sun and almost perfectly obstructs it. Sometimes the Moon blocks 
out the Sun completely. Sometimes there is an “annular” eclipse in which the 
Moon blocks out the Sun, except for a thin annular ring of the Sun’s surface 
encircling the Moon.

That the Moon eclipses the Sun shows that the Moon must be closer to 
us than the Sun. Are they roughly the same distance from us? If they are 
the same size, then they must be roughly the same distance from us. But if 
the Sun is two, three, or four times larger than the Moon, then by simple 
geometry the Sun must be two, three, or four times more distant from us 
than the Moon. As Figure 12.2 shows, we cannot know which until we know 
the true size ratio of the Sun to the Moon. But we cannot know that ratio 
until we know the ratio of the distances. We are trapped once again in an 
evidential circle.
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Figure 12.2. Many possible ratios of distances to the Sun and Moon

3. Aristarchus: Breaking the Evidential Circles
Both circles can be broken if we expand the evidence considered and are in-
genious enough to do it in just the right way. This was the principal content of 
a remarkable document authored by Aristarchus of Samos, who lived roughly 
from 310 to 230 BCE. The work is presented in Greek and English translation 
in Heath (1913) under the title “Aristarchus on the Sizes and Distances of the 
Sun and Moon.” Aristarchus breaks the evidential circle with two expansions 
of the evidence brought to bear. First, he introduces the angular positions of 
the Sun and Moon when the latter is precisely half illuminated: that is, at “di-
chotomy.” Second, he introduces the behavior of the Moon during an eclipse 
of it, when it passes through the Earth’s shadow.

When the Moon is exactly half full, the Sun, Earth, and Moon form a 
right-angled triangle, with the right angle at the Moon. The angle at the Earth 
is recoverable as the observable angular separation of the Sun and Moon. The 
shape of the triangle, shown in Figure 12.3, is thereby fixed, and the ratio of 
the Earth-Sun to Earth-Moon distance can be read from it.
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Figure 12.3. The Earth, Moon, and Sun at lunar dichotomy (not drawn to scale)

All that is needed is the angular separation of the Sun and Moon at dichot-
omy, as seen from the Earth. That is provided by the fourth of six hypotheses 
announced by Aristarchus (as given in Heath 1913, 353):

That, when the moon appears to us halved, its distance from 
the sun is then less than a quadrant by one-thirtieth of a 
quadrant.

Since a quadrant is 90º, Aristarchus reports here that the angular separation 
of the Sun and Moon is 87º. After some analysis, he arrives at a ratio for the 
Earth-Sun to Earth-Moon distance that lies between 18:1 and 20:1.3

The method is ingenious and correct. However, it required the unattain-
able: an accurate measurement of the angular separation of the Sun and 
Moon at the moment of dichotomy. Aristarchus greatly underestimated the 
true ratio of 389:1.4

As far as the ratios of distances were concerned, Aristarchus had broken 
the evidential circle. He had established, he believed, the ratio of distances 

3	 Aristarchus did not have tables of tangents to consult, which now makes our 
computation trivial. The exact result is tan 87 = 19.08.

4	 Dreyer (1953, 136) diagnoses the error as follows: “The method, though theoretically 
correct, is not practical, as the moment when the moon is half illuminated cannot be determined 
accurately. The angle of ‘dichotomy’ is in reality 89º 50' instead of 87º.”
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to the Sun and Moon. He could then infer directly to the ratio of the diam-
eters of the Sun and Moon. It must be the same. It must also lie between 
18:1 and 20:1.

Aristarchus then turned to determine not just the ratios of the distances 
to the Sun and Moon but also their individual values. They were expressed 
as ratios with the diameter of the Earth, whose value was then known well 
enough. Heath (1913, 399) presumes that Aristarchus did as Archimedes did 
and accepted Dicaearchus’ estimate of a circumference of 300,000 stades. 
Eratosthenes’ famous measurement of the Earth’s size came later. Aristarchus 
realized that these individual distances could be recovered from phenomena 
observable at the time of an eclipse of the Moon. To determine these individ-
ual distances, he introduced a decisive new datum concerning an eclipse of 
the Moon (Heath 1913, 353):

That the breadth of the [Earth’s] shadow is [that] of two moons.

That is, as the Moon passes through the umbra, the conically shaped, full 
shadow of the Earth, the Moon’s diameter is just half that of the umbra, as 
Figure 12.4 shows. What results is a complicated geometric figure that has 
been reproduced in many old manuscripts and modern treatises and is not 
drawn to scale in Figure 12.4. The lower figure depicts the essential geometry 
and is reproduced from Heath’s (1913, 330) analysis.5

5	 This work is in the public domain.
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Figure 12.4. Aristarchus’ figure for determining the distances to the Sun and Moon

Since the ratio of the diameters of the Sun s and Moon l are known, as 
are the ratios of the distances from the Earth to Sun S and Earth to Moon L, 
it turns out that the geometry of Aristarchus’ figure is fixed. This might not 
be obvious from inspection of the figure, and it takes some calculations to 
determine it. Since they are tedious and not especially illuminating, I refer 
the reader to Heath’s (1913, 330–31) reconstruction. Aristarchus arrived at a 
diameter for the Sun as a ratio of the Earth’s diameter that lies between 19/3 
and 43/6 and a diameter for the Moon as a ratio of the Earth’s diameter that 
lies between 19/60 and 43/108. Once again, with the diameters of the Sun and 
Moon determined, it was a simple matter to determine the distances to the 
Sun and Moon from the known angular size of each as seen from the Earth.
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The actual numbers reported by Aristarchus are quite far from the actual 
ratios in our Sun-Moon-Earth system.6 His calculations depended on his ear-
lier underestimate of the ratio S/L of the Earth-Sun and Moon-Sun distances. 
They were compounded by his taking erroneously that the angular size of 
the Moon is 2º, whereas Archimedes in the Sand-Reckoner had attributed the 
correct 1/2º to Aristarchus.7

Although Aristarchus’ final numbers differ greatly from the actual val-
ues, his methods were correct and ingenious, marred only by the need for an 
impractical datum and a curious error in estimating the Moon’s size. Van 
Helden (1985, 7) singles out Aristarchus’ second Moon eclipse technique as

. . . a method that, when fully developed by Hipparchus and 
Ptolemy, was to be the centerpiece of all determinations of ab-
solute celestial distances until the seventeenth century.

4. Measurements of Parallax
The methods reviewed so far require that the disks of the Sun and Moon be 
discernible. As long as astronomers use only naked-eye methods, they can-
not determine distances to the planets, for optical instruments are needed to 
resolve their disks. There is a general method that, in principle, is capable of 
determining the distance to any celestial object visible from the Earth. That is 
the measurement of its parallax. It is the difference in direction of some object 
as seen from different places on the Earth. Measuring it requires observations 
to be taken at two different places at the same time. For the case of a rotating 
Earth, parallax can also be measured from one position on the Earth when 
the rotation moves that position to another location in space.

Horizontal parallax uses the Earth’s radius as the baseline for measure-
ment.8 Figure 12.5 shows an observer at A on the Earth’s surface who finds 
the object at P to be at its zenith: that is, directly overhead. A second observer 
at B, located at a distance of one-quarter of the Earth’s circumference, finds 

6	 Aristarchus’ ratio for the Sun is 6.3 to 7.2, where the modern figure is 109. His ratio for 
the Moon is 0.31 to 0.40, where the modern figure is 0.27.

7	 See Heath (1913, 311–14) for an analysis of this curious error.
8	 It is distinguished from annual parallax, in which the radius of the Earth’s annual orbit 

around the Sun is used as the baseline for measurement. It is applied when considering distances 
to stars.
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the object to have just dipped below the horizon. If we draw BC parallel to AP, 
then the bearings of the object at P differ for these two observers by the angle 
of parallax, CBP. This angle is equal to the angle BPA, the angle subtended by 
the Earth’s radius from P.

Figure 12.5. Horizontal parallax

This angle is called “horizontal parallax” since the name reflects B’s observing 
P on the horizon. For a distant object, the angle is small9 and related inversely 
to the distance to the object by

distance = radius of the Earth / horizontal parallax in radians

In practice, horizontal parallax is not measured directly. A smaller displace-
ment on the Earth’s surface is used and horizontal parallax inferred from it.

Once again, eclipses provided opportunities for potentially informative 
measurements. An eclipse of the Sun will be total when seen from one part 
of the Earth’s surface yet only partial when seen from another part. Encoded 
in this difference is a measure of the parallax of the Moon. Hipparchus and 
Ptolemy after him applied this approach to records of lunar eclipses to esti-
mate lunar parallax.10 Although the method is correct in principle, its suc-
cessful application is difficult because of the need to measure angles precisely. 
The Moon’s parallax of about 1º is the largest for celestial objects. Others are 

9	 The figure greatly exaggerates the angle. For the Moon, the horizontal parallax varies 
about roughly a degree. For the Sun, it is about 8.8 seconds of arc: that is, 2.4 thousandths of a degree.

10	 For details, see Van Helden (1985, 10–19).
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dauntingly smaller. Measurement of the tiny solar parallax of 8.8 seconds of 
arc was beyond the reach of the ancient astronomers.

5. The Parallax of Mars
The difficulty of measuring tiny parallactic angles was only overcome centur-
ies later when telescopic observations were possible. Even then, the approach 
was indirect. The Earth-Sun distance was the most sought once heliocentric 
Copernican astronomy became established. It determined, as we shall see 
below, all of the other distances. However, direct measurement of the paral-
lax of the Sun remained beyond the astronomers’ reach, if only because the 
brilliance of the Sun precluded direct observations locating it against the stel-
lar background. Instead, it proved to be feasible to determine the parallax of 
Mars and, using the known ratio of sizes of the orbits of Mars and the Earth, 
then compute the Earth-Sun distance.

The best known of these measurements of parallax from the seventeenth 
century is Cassini and Richer’s measurement of the parallax of Mars in 1672 
using simultaneous measurements of the position of Mars from France and 
Cayenne in South America. The opportunity for the measurements was an 
opposition of Mars to the Sun. That meant that Mars was making one of its 
closest approaches to the Earth and thus susceptible to the most accurate 
measurements. Their efforts yielded the parallax of Mars at this time in its 
orbit and thus its distance from the Earth. Using the then known ratio of 
the sizes of the orbits of the Earth and Mars, the crucial Earth-Sun distance 
could be estimated. Cassini and Richer arrived at an Earth-Sun distance of 
87,000,000 miles, comfortably close to the modern value of about 93,000,000 
miles.11 Both Berry (1898, 205–09) and Van Helden (1985, Chapter 12) em-
phasize that the closeness of these numbers is less impressive once one recog-
nizes the large margin of error associated with the Cassini and Richer result.

6. The Transits of Venus
The ancient astronomers had found solar eclipses to afford opportunities to 
determine the parallax of the Moon. These eclipses arise when the Moon 
passes exactly between the Earth and the Sun. An analogous circumstance 

11	 See Long (1742, 290, 292) for an early account.
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arises when the planet Venus passes exactly between the Earth and the Sun. 
Since Venus is so much farther away from the Earth than the Moon, the effect 
is much less dramatic. Venus appears telescopically as a tiny dot migrating 
over the surface of the Sun. If this “transit of Venus” is observed from differ-
ent locations on the Earth’s surface, then Venus will be seen to transit across 
the disk of the Sun in different locations on the disk.

The path of Venus traces a chord across the circular disk of the sun. 
Determining the length of the chord fixes its location on the disk. The longest 
chords are diameters of the circle; the shorter the chord, the farther it is from 
a diameter. The most accurate way to estimate the difference in chord lengths 
was to time how long the transit took, when viewed from different locations. 
Since a transit requires about six hours, accurate times of transit were well 
within the grasp of measurement of early clocks. The transit times reflect dir-
ectly the chord lengths and thus reveal differences of location of the transits 
against the Sun’s disk.

Observing a transit of Venus from different places on the Earth enabled 
the parallax of Venus and the Sun to be determined. Of the expeditions to 
observe the transit of Venus, the best known, especially to Australians, is that 
of Captain Cook, who sailed to Tahiti for this purpose in 1769. The measure-
ments of the Cook expedition were compared with those taken in other loca-
tions, notably Lapland. The resulting parallax of the Sun was determined to 
be in the range of eight to nine seconds of arc, in agreement with the modern 
value of about 8.8 seconds of arc.12 Subsequent transits were observed in 1874, 
1882, and more recently in 2004 and 2012.

The calculation of the parallax of Venus and the Sun from these observa-
tions must correct for many factors. The highly simplified analysis in Figure 
12.6 brings out the element most important for my purposes here.

12	 For accounts of the transits, associated measurements, and calculations, see Airy 
(1881, 144–60) and Newcomb (1892, 177–92). That these expeditions and measurements were of 
considerable popular interest in the nineteenth century is suggested by the publication of popular 
works such as Forbes (1874).
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Figure 12.6. Transit of Venus; redrawn from Airy (1881, 153)

Points A and B are the locations of two observers on the Earth’s surface. They 
are as widely separated as possible. A might be in the northern hemisphere. 
B might be in the southern hemisphere. The lines of sight AVD and BVC pass 
through Venus at V to different locations D and C on the Sun’s disk. The 
distance CD is the separation between the two transit paths observed. If the 
absolute distance of CD can be determined, then it can be scaled up to give 
the absolute diameter of the Sun. Since the angular size of the Sun as seen 
from the Earth is readily measured, the distance to the Sun can be recovered.

Triangle ABV and DCV are similar. Thus, the distance sought, CD, can 
be found from the formula

CD = (DV / AV) . AB

The distance AB is the known distance between the two observers on the 
Earth. The ratio DV/AV is determined by the ratios of the sizes of the planet-
ary orbits. These last ratios were given by Copernican astronomy, as we shall 
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see below.13 Without knowledge of this ratio, we would be trapped once again 
in the familiar evidential circle. A small ratio DV/AV would lead to a small 
distance CD and a small Earth-Sun distance. A large ratio DV/AV would lead 
to a large distance CD and a large Earth-Sun distance. Some further datum, 
such as the absolute length CD itself, would be needed to break the circle.

7. The Need for Hypotheses
The efforts recounted above reveal the limits of simple geometric triangula-
tion as a means of determining distances to bodies in our planetary system. 
This approach was able to arrive at a distance to the Moon and, when pressed 
to the extreme in the seventeenth century, a distance to Mars at its closest ap-
proach to the Earth. Even as late as the eighteenth and nineteenth centuries, 
these methods of triangulation had to be supplemented by further knowledge 
of the planetary system if their results were to be extended to a determina-
tion of the Earth-Sun distance. The seventeenth-century determination of the 
distance to Mars could be extended only to an estimate of the distance to the 
Sun by drawing from the known ratio of the sizes of the orbits of the Earth 
and Mars. The eighteenth-century and nineteenth-century observations of 
the transits of Venus were unable to return any absolute planetary distances 
until they were augmented by the known ratio of the sizes of the orbits of the 
Earth and Venus.

At the close of the nineteenth century, observations of the transit of Venus 
remained the best way to determine distances within the solar system. After 
a lengthy treatment of the transits of Venus, Simon Newcomb (1892, 192–99), 
then a leading authority in astronomy, added a discussion entitled “Other 
Methods of Determining the Sun’s Distance, and Their Results.” The promise 
of these “other methods” went unfulfilled. Newcomb could only say of them 
that “. . . at least two of which [methods] we may hope, ultimately, to attain a 
greater degree of accuracy than we can by measuring parallaxes” (192).14

13	 Hipparchus’ analogous determination of the parallax of the Moon at the time of a solar 
eclipse avoided the need for a corresponding ratio. Hipparchus could assume that the Sun was so 
much farther from us than the Moon that the Sun’s rays arrived in parallel lines on the Earth.

14	 How things change! Lasers, reflected off mirrors left on the Moon by manned and 
unmanned missions in the 1960s and early 1970s, now determine the distance to the Moon to 
within a few centimeters. We can now also use radar echoes to measure distances to the planets.
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From the earliest times, the sort of supplement needed was already 
present as hypotheses of various types. Our histories of astronomy treat the 
early ones dismissively since most of these early supplements were in error. 
Since my concern here is not the correctness of the results but the appropri-
ateness of the inductive strategies, we can arrive at a more favorable apprais-
al. Direct evidence, such as distance measurements by triangulation, can fail 
to give us the extent of the results sought, such as the distances to the Sun 
and distant planets. We can then conjecture or hypothesize those facts that 
would extend the inductive reach of the evidence available to us. This is an 
entirely responsible epistemic strategy as long as we remember that adopting 
a hypothesis takes on an inductive debt. It has to be discharged by further 
investigation that will provide independent inductive support for the hypoth-
esis. Only then have we given the new results a solid foundation inductively 
in evidence.

8. Pythagorean and Platonic Harmonies
The Pythagorean and Platonic tradition in antiquity provided a rich if chaotic 
set of hypotheses concerning the distances to the celestial bodies. Their basis 
was a combination of ideas in musical harmony and simple arithmetic rela-
tions. In his creation myth, Timaeus, for example, Plato offers the following 
relative distances:

Moon          1

Sun              2

Venus          3

Mercury      4

Mars            8

Jupiter         9

Saturn       27

These ratios arise from interleaving the numbers of two geometric progres-
sions: 1, 2, 4, 8 and 1, 3, 9, 27. They are just a small part of a rich collection of 
proposals.15

15	 For a terse review, see Dreyer (1953, 62, 178–82).
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If Plato’s ratios are correct, then the inductive benefit is immediate. We 
need only determine the absolute distance to any one of these celestial bodies. 
Then the absolute distances to all of the others can be determined from the 
ratios. What would suffice is just one of the later determinations of the dis-
tance to the Moon by Aristarchus or Hipparchus.

It is easy for us now to dismiss these harmonic hypotheses as wild specu-
lations.16 They were indeed highly speculative. That they were likely incorrect 
would have been apparent to Aristarchus and Hipparchus. Plato located the 
Sun at twice the distance from the Earth as the Moon, but both Aristarchus 
and Hipparchus determined that the Sun is much more distant. That does 
not make Plato’s conjectures epistemically irresponsible. Conjectures of some 
sort were the only way then available to advance the project of determining 
distances to celestial bodies beyond the distances accessible to measurement 
by triangulation. Might it just be that this particular implementation of the 
harmonic idea is flawed? Might further refinement produce a proposal that 
can survive independent scrutiny?

Johannes Kepler has unchallengeable credentials in astronomy. He be-
lieved that these harmonic ideas found their proper expression in the new 
heliocentric Copernican astronomy. His Mysterium cosmographicum of 1596 
accounted for the number of planets and the ratios of planetary orbits by a 
celebrated geometric construction involving the five Platonic solids, nestled 
between spheres. The image from that work, shown here as Figure 12.7, has 
been widely reproduced.

16	 Dreyer (1953, 181) writes that “in reality therefore we ought hardly to take the planetary 
intervals, as determined by the sphere-harmony, seriously; the whole doctrine is quite analogous 
to that of astrology, but is vastly more exalted in its conception than the latter, and it deserves 
honourable mention in the history of human progress.”
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Figure 12.7. Kepler’s construction

Kepler’s Harmonices mundi of 1619 proceeded to find musical harmonies 
in planetary motions. Although we now dismiss these parts of Kepler’s work 
as mistaken, they were part of a serious investigation. They were hypotheses 
that failed to find independent evidential support. Had they found such sup-
port, we would now be celebrating Kepler’s prescience.
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The tradition of seeking mathematical harmonies persists. In his Herbert 
Spencer lecture in 1933, an older Einstein revealed his conversion to a form of 
mathematical Platonism.17 He wrote that

Our experience hitherto justifies us in believing that nature is 
the realisation of the simplest conceivable mathematical ideas. 
I am convinced that we can discover by means of purely math-
ematical constructions the concepts and the laws connecting 
them with each other, which furnish the key to the under-
standing of natural phenomena. (1933, 274)

Lest there be any doubt that Einstein saw his formulation of these ideas as 
fulfilling the program initiated millennia ago in ancient Greece, he added

But the creative principle resides in mathematics. In a certain 
sense, therefore, I hold it true that pure thought can grasp re-
ality, as the ancients dreamed. (1933, 274)

9. Ptolemy’s Planetary Hypotheses
The supreme expression of geocentric astronomy in antiquity was Ptolemy’s 
second-century AD Almagest. It provides elaborate geometric constructions of 
the motions of the celestial bodies: the Moon, the Sun, and the planets. The con-
structions, however, were independent of the absolute size of the orbit of each 
body. Take, for example, the construction for Venus. This planet moves roughly 
with the Sun in its annual course around the heavens. But Venus is sometimes 
ahead of the Sun and sometimes behind it. This direct and retrograde motion 
was accounted for in Ptolemy’s construction by attaching the planet to a ro-
tating epicycle, as shown in Figure 12.8. The epicycle’s center moves along a 
deferent circle such that this center remains aligned with the mean Sun. (The 
actual motion of the Sun deviates slightly from the mean motion.)

17	 See Norton (2000) for an account of Einstein’s conversion.
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Figure 12.8. The Ptolemaic epicycle for Venus

The figure shows the motion of Venus drawn within that of the Sun. That is 
not needed to recover the retrograde motion of Venus. As long as the align-
ment of the center of the epicycle and the Sun is retained, the construction for 
Venus could be expanded so that its motion would be outside that of the Sun, 
Mars, Jupiter, or Saturn. The construction for each celestial body in Ptolemy’s 
Almagest could be scaled up or down so that any order of the Sun and planets 
was possible.

The determination of the absolute sizes of these trajectories was taken up 
in a later work by Ptolemy, Planetary Hypotheses. The portions of it dealing 
with these distances have been lost in the extant Greek texts. Goldstein (1967) 
found them in a later Arabic translation, and his paper presents an English 
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translation of the Arabic along with the original Arabic text.18 In addition to 
the geocentric supposition, Ptolemy’s analysis depended on two hypotheses:

Order. The celestial bodies increase in distance from the Earth in 
the order Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn.

Packing. The celestial bodies are packed together as closely as their 
geometrical constructions allow.

These hypotheses provided Ptolemy with the ratios of the distances to the celes-
tial bodies. He could then combine these ratios with his estimate of the absolute 
distance to the Moon to recover the distances to all of the celestial bodies.

These hypotheses did not derive from considerations of musical and 
mathematical harmony. Rather, they rested on prosaic, physical considera-
tions. To recover Order, we know that the Moon is closer to the Earth than the 
Sun and stars since the Moon eclipses them. The rest of the order was harder 
to pin down. The stars have the fastest motion in the Ptolemaic system, with 
Saturn, then Jupiter, and then Mars lagging successively more behind them. 
Assuming that proximity in speed reflects proximity in space, Ptolemy could 
conclude that Saturn is the closest to the stars; then comes Jupiter and then 
Mars. By this criterion, the Sun, Venus, and Mercury come next. However, 
the criterion could not give an order for them since their average motion 
against the stars was the same. Ptolemy settled on the order the Sun, then 
Venus closer to the Earth, and then Mercury closer still. He reasoned that 
the closeness of Mercury to the Moon was justified by the similarity of their 
eccentric motions and since the frequent retrograde motion of Mercury re-
sembled the turbulent motions of the air above the Earth’s surface. Similar 
reasoning placed Venus at the next distant position.

To establish the absolute distances to these celestial bodies, Ptolemy em-
ployed the fact that his constructions would take each body nearer to and 
farther from the Earth. The epicycle shown in Figure 12.8 does this, as does 
Ptolemy’s use of eccentric circles: that is, circles whose centers are slightly 
displaced from the Earth. Ptolemy could determine from these constructions 
the ratio of the distances of closest approach to the Earth (perigee) and the 
farthest displacement (apogee). He now assumed (Packing) that all of the con-
structions were packed together as closely as the geometry allowed, without 

18	 For further analysis, see Van Helden (1985, 21–27).
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the danger of any of the trajectories intersecting. That is, the apogee of the 
Moon will coincide with the perigee of Mercury, the apogee of Mercury will 
coincide with the perigee of Venus, and so on.

Ptolemy could only offer the physical plausibility of this packing assump-
tion: “This arrangement,” he wrote, “is most plausible, for it is not conceiv-
able that there be in Nature a vacuum, or any meaningless and useless thing” 
(quoted in Goldstein, 1967, 8). He could not have been so certain of the as-
sumption, for he proceeded to allow that, if there are empty spaces, then the 
distances cannot be smaller than those that he had determined.

Starting with his value of 64 Earth radii for the apogee of the Moon, 
Ptolemy used the ratios of perigee to apogee to determine stepwise the dis-
tances to all of the celestial bodies. The perigee of Mercury is then 64 Earth 
radii. The ratio of perigee to apogee for Mercury is 34:88, so its apogee is at 64 
x (88/34) = 166 Earth radii. Continuing these calculations leads to the results 
summarized in Table 12.1.19

Table 12.1. Ptolemy’s distances in units of Earth radii

Perigee Apogee Ratio

Moon 33 64 33:64

Mercury 64 166 34:88

Venus 166 1,079 16:104

Sun 1,160 1,260 57.5:62.5

Mars 1,260 8,820 1:7

Jupiter 8,820 14,187 23:37

Saturn 14,187 19,865 5:7

Ptolemy encountered one discrepancy. His independent estimate of the 
perigee of the Sun is 1,160, which does not match the computed apogee of 
Venus of 1,079. He suggested that the discrepancy might derive merely from 
slight errors in the underlying observations. To continue, Ptolemy used the 
independently derived figure of 1,160 for the Sun’s perigee.

19	 Ptolemy’s text delivers these results in a continuous narrative. This convenient tabular 
summary is provided by Van Helden (1985, 27). He notes that the value of the apogee of Jupiter of 
14,187 is a small error of calculation and should be 14,189.
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Figure 12.9. Kepler’s drawing of the Ptolemaic system
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Kepler’s Mysterium cosmographicum of 1596 has a figure (Figure 12.9 
here) that includes all of these celestial bodies in Ptolemy’s system, with their 
epicycles, drawn approximately to the scale set by the distances of Table 12.1.

In assuming the geocentric configuration of celestial bodies and in mak-
ing the assumptions of order and packing, Ptolemy took on an inductive 
debt. Until it was discharged — that is, until independent evidence for the 
assumptions was found — the evidential case for his distances was incom-
plete. Ptolemy counted as evidence for his packing hypothesis the closeness 
of the two estimates of the distance to the Sun’s perigee: the packing-derived 
estimate of 1,079 and the independent estimate of 1,160. Although encour-
aging, that closeness was not enough to discharge the inductive debt. Further 
independent support was needed. Although Ptolemy’s system remained the 
authoritative system for over a millennium, that further independent support 
never came. His system was abandoned in favor of another whose inductive 
debts were discharged and with spectacular success.20

10. The Copernican Hypothesis
Nicolaus Copernicus’ On the Revolutions of the Heavenly Spheres of 1543 
is somewhat tame in purely astronomical terms. In the simplest concept, it 
merely rearranges the circles of Ptolemy’s geocentric system in a more ap-
posite way. It is in another sense Earth moving. That rearrangement sets the 
Earth into twofold motion: spinning on its axis and orbiting the sun.

This basic supposition of Copernican heliocentric astronomy was rou-
tinely known as the “Copernican hypothesis” or “hypotheses” in the sixteenth 
and seventeenth centuries. Moxon’s (1665) Tutor offered the reader on its title 
page an Explanation of the Copernican Hypothesis and Spheres. Hooke (1674) 
uses the expression liberally. In the sixteenth century, the term “hypothesis” 
was tainted by Osiander’s surreptitious insertion of an anonymous preface 
into Copernicus’ 1543 work. Osiander reduced Copernicus’ proposal to a 
mere convenience of calculation that did not reveal true causes. He wrote that 
“these hypotheses need not be true nor even probable. On the contrary, if they 
provide a calculus consistent with the observations, that alone is enough” 
(Dobrzycki 1978, xvi).

20	 For a survey of the persistence of Ptolemy’s packing hypothesis through to the time of 
Kepler in the sixteenth century, see Goldstein and Hon (2018).
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Copernicus himself made little use of the term but did not seem to be 
averse to it. Conveniently, he did equate the term in its usage by the Greeks 
with “principles and assumptions” (Dobrzycki 1978, 7).21 As far as I can 
see, the term “hypothesis” does not appear in his earlier draft manuscript 
“Commentariolus.” However, the main proposals of his heliocentric astron-
omy are called “assumptions” (Rosen 1971, 58). Rheticus uses the term 
“hypothesis” freely in his preliminary accounting of Copernicus’ proposal, 
Narratio prima, written prior to 1543.22 He goes to some pains to defend the 
truth of the hypotheses that he identifies in Copernicus’ system. His defense 
foreshadows the present notion of hypothetico-deductive confirmation: it is a 
mark of truth if a hypothesis has true consequences. Rheticus puts it this way: 
“Aristotle says: ‘That which causes derivative truths to be true is most true’” 
(Rosen 1971, 142).23 In this context, then, common use of the term “hypoth-
esis” referred to an adventurous proposal. Contrary to Osiander’s pessimism, 
its truth could be secured through argument and evidence, and it was thus 
secured as we moved from the sixteenth century to the seventeenth century.

For my purposes here, what matters is that adoption of Copernicus’ 
heliocentric system proved to be the key step in expanding astronomers’ cap-
acity to determine the distances to celestial bodies. Ptolemy needed to add 
hypotheses, Order and Packing, to his geocentric constructions in order to 
fix the ratios of these distances. Copernicus needed no such additions to de-
termine the ratios of the orbital sizes. His heliocentric constructions already 
fixed them.

The recovery of these ratios followed from how Copernicus’ system re-
duced the number of independent assumptions needed compared with those 
required by Ptolemy. Consider, for example, Ptolemy’s construction for Venus 
as shown in Figure 12.8. Copernicus realized that two motions in Ptolemy’s 
system were really just one. That is, the annual motion of the center of the 
epicycle of Venus along the deferent and the annual motion of the Sun were 
not real motions at all. Rather, there was just the single annual motion of the 
Earth around a central point near the Sun and then around the Sun itself in 

21	 Copernicus writes that astronomy’s “principles and assumptions” were “called 
‘hypotheses’ by the Greeks.”

22	 Reproduced in translation in Rosen (1971).
23	 There is an extensive secondary literature on Copernicus’ attitude to hypotheses; see 

Rosen (1971, 22–33).
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later developments of heliocentrism, such as by Kepler. If an observer on the 
Earth was unaware of its motion, then it would appear that both the Sun and 
Venus were orbiting the Earth. These two circles were just apparent motions 
arising from displacing the true motion of the Earth to Venus and the Sun.

To accommodate this realization, Copernicus rearranged the circles in 
Figure 12.8 to recover those in Figure 12.10. As shown at the top of the latter 
figure, the two circles of the deferent of Venus and the Sun were collapsed into 
a single circle, and that circle was transposed to become the orbit of the Earth 
around the Sun. The epicycle of Venus now became its true orbit, centered on 
the Sun.

This new heliocentric construction for Venus no longer admitted the 
arbitrary rescaling of planetary distances that troubled Ptolemy’s system. 
The maximum elongation of Venus — the maximum angular distance that it 
strayed from the Sun — was about 45º. That fact of observation immediately 
fixed the ratio of the sizes of the orbits of Venus and the Earth. The line EV 
in Figure 12.11 traces the line of sight to Venus at its maximum elongation. 
Since EV is tangent to the circle of the orbit of Venus, EVS is a right angle. 
If we take the simplest case of the angle EVS equal to 45º, then the triangle 
EVS is right-angled, with equal sides EV and VS adjacent to the right angle of 
triangle EVS. Using Pythagoras’ theorem, it follows that the ratio of the size 
of the orbit of Venus to that of the orbit of the Earth, SV to SE, is 1 to 2 : 
that is, 0.71 to 1.

This last calculation is simplified by assuming that the orbit of Venus is 
a perfect circle centered on the Sun. The deviations from this simplification 
complicate the determination only slightly.24 A similar rearrangement gives the 
Copernican construction for Mercury and the determination of its orbital size.

The outer planets — Mars, Jupiter, and Saturn — required slightly dif-
ferent rearrangements. Their epicycles were not the representations of their 
true motions, merely the superposition of the Earth’s motion onto their true 
motions. A similar analysis within the circles of the Copernican rearrange-
ment gives the ratios of the sizes of these outer planetary orbits to that of 
the Earth. The analysis is a little more complicated. A greatly oversimplified 
version conveys the basic geometry of the analysis. Contrary to the reality, we 
assume that an outer planet is not moving. Then we can determine the ratio 

24	 For details, see Van Helden (1985, 43–44).
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Figure 12.10. Venus in the Copernican system
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Figure 12.11. Fixing the size of the orbit of Venus

Figure 12.12. Distance to an outer planet
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of the sizes of the orbits by checking how far the Earth progresses in its orbit 
between two orientations. First, the distant planet P is in direct opposition 
to the Sun S, indicated by the Earth at E ' in Figure 12.12; second, the distant 
planet P is at quadrature — that is, at a right angle to the Earth-Sun distance 
— indicated by the Earth at E in Figure 12.12.

The angle ESP is known from how far the Earth has moved in its orbit. 
Observing the change in which stars are directly overhead at midnight would 
give the angle directly. Simple trigonometry on the right-angle triangle SEP 
tells us that the ratio of sizes SP/SE is 1/cos(ESP). This method is inapplicable 
in practice since the planet P will move during the time that the Earth pro-
gresses from E ' to E. In the case of slow-moving Saturn, which has a period 
of 29.5 years, the movement will be slight. However, the analysis must correct 
for it. The correction is straightforward.25

11. Securing the Copernican Hypothesis
Copernican heliocentric astronomy and its later refinements proved to be key 
to the determination of planetary distances in the centuries that followed. It 
provided the ratios of the sizes of the orbits of the planets. All that astron-
omers needed was a single absolute measurement of one distance; then all 
of the rest could be recovered from the ratios. This was the procedure used 
after the seventeenth-century determination of the parallax of Mars and the 
eighteenth-century observations of the transits of Venus. This was the same 
strategy used by Ptolemy. His determination of the distance to the Moon 
triggered a cascade of computations that gave all of the distances. However, 
the difference was that independent evidence for Ptolemy’s hypotheses never 
emerged. His inductive debt was never discharged. The Copernican hypoth-
esis fared much better.

To begin, the Copernican system had an advantage over the Ptolemaic 
system in the practical challenges of securing evidential support. The 
Copernican system needed fewer independent hypotheses and thus fewer in-
dependent items of evidence. Ptolemy had to posit as an independent hypoth-
esis that the centers of the epicycles of Mercury and Venus always aligned 
with the mean Sun, as shown in Figure 12.8. This alignment was automatic 
in the Copernican system since the center of the orbits of Mercury and Venus 

25	 For a simplified construction, see Crowe (2001, Chapter 6).
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simply was the mean Sun. Similarly, Ptolemy had to posit that the epicycles 
of the outer planets — Mars, Jupiter, and Saturn — moved in perfect concert 
with the motion of the Sun, such that their retrograde motion coincided with 
their opposition to the Sun. Copernicus needed no such posits. These effects 
followed automatically from his recognition that these epicycles were merely 
the superposition of the Earth’s annual motion on the true motions of the 
outer planets. Even just to recover an order for the planets in their distances 
from the Earth, Ptolemy had to posit additional hypotheses concerning their 
periods and motions. Copernicus needed no such additional posits. In his 
system, the relative distances of the planets from the Sun could be recovered 
from careful measurements of planetary positions.

As time passed, further evidence emerged. Galileo used his telescope to 
observe Venus in 1610, and he reported his results in his Letters on Sunspots of 
1613. He saw Venus exhibiting a variety of Moon-like phases that could only 
be if its motion took it both closer to the Earth than the Sun and farther from 
the Earth than the Sun. This contradicted Ptolemy’s system in which Venus 
is always closer to the Earth than the Sun but fit the Copernican hypothesis 
that Venus orbits the Sun.

It was Isaac Newton who made the decisive advance that fully discharged 
whatever residual inductive debt heliocentric astronomy might have carried. 
His Principia of 1687 provided a complete mechanics for the motions of the 
bodies in heliocentric astronomy. At the same time, celestial mechanics was 
combined with terrestrial mechanics in a single unified system. Any chal-
lenge to heliocentric cosmology would end up eventually having to challenge 
the entirety of this new physics.

12. Crossing of Relations of Support
The most useful relationship concerning the ratios of sizes of planetary orbits 
in the new astronomy is Kepler’s so-called third law.26 It asserts in its modern 
form that the square of the periods of a planet’s orbit T 2 is proportional to 
the cube of the semi-major axis of its elliptical orbit R3. Since the periods of 
two planets are accessible to measurement, the relationship provides a rapid 
determination of the ratios of their distances from the Sun. The relationship 

26	 Called thus, for example, by Maxwell (1894, 113).
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between this law and Newton’s mechanics provides a striking illustration of 
how relations of inductive support can cross over one another.

The distance-period relationship for the planets was first reported by 
Kepler for the mean distance from the Sun, among the many harmonies of 
his Harmonices mundi of 1619. In Book III of his Principia, Newton ([1726] 
1962, 401–05) enumerated the phenomena from which his system of the 
world would be inferred. Phenomenon IV was his relation for the planets, as-
serted in terms of the mean distances. Phenomena I and II asserted the same 
relation for the moons of Jupiter and Saturn. Within Newton’s mechanics, 
this relation could be translated almost immediately into a result central to 
his system: the acceleration due to the gravitational attraction of a body such 
as the Sun diminishes with the inverse square of distance. We can see how 
rapidly the result follows if we take the simple case of a planet or moon in a 
perfectly circular orbit of radius R with period T. It follows that the speed 
of the object is V = 2pR/T. Newton’s mechanics sets the centrally directed 
acceleration A of such a motion equal to V/R2. We can now combine these 
relations as

where Kepler’s third law allows us to set R3/T 2 to a constant.
Here we have the first relation of support:

from Kepler’s third law to Newton’s inverse square law of gravity.

It is possible to run the inferences in the above equalities in reverse and there-
by infer Kepler’s third law from the inverse square law:

We read from these equalities that R3/T 2 must be a constant if we first assume 
the inverse square law. Thus, it is possible to have a relation of support that 
proceeds in the other direction:

from Newton’s inverse square law of gravity to Kepler’s third law.
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Since the relation is a deduction, given the requisite background assumptions 
of Newton’s mechanics, it is especially strong.

This second inference is commonly given in mechanics texts. Is it mere-
ly a formal derivation purely of mathematical interest? Or should we also 
conceive of it as a relation of evidential support proceeding in a direction 
opposite to that of Newton’s original relation? That we can and should so 
conceive of it follows from a complication revealed by more careful analysis. 
The analysis above requires that the mass S of the central body, such as the 
Sun, should be considerably greater than the mass P of the orbiting body, such 
as a planet. When this assumption is relaxed, Maxwell (1894, 113–15) gives 
the correction that must be applied to the original form of Kepler’s third law:

R3 = constant (S+P) T 2

Deviations from the original law are small according to this formula as long 
as P is much smaller than S. However, for cases in which P becomes large in 
relation to S, the orbital periods will become smaller than predicted by the 
original relation from the orbital sizes. Maxwell proceeded to show that such 
deviations have been measured for the more massive planets Jupiter, Saturn, 
and Uranus.

Thus, Newton’s mechanics does not merely recover Kepler’s third law. 
Rather, it tells us the circumstances within which the law holds and gives a 
more general law that will hold when we deviate from those circumstances. 
In doing this, Newton’s mechanics provides evidential support for Kepler’s 
third law.

13. Conclusion
The determination of distances in our planetary system illustrates how hy-
potheses are used to extend the otherwise limited inductive reach of evidence. 
This is a procedure used widely in science. What makes the present case study 
revealing is that the investigations extended over millennia. That means that 
its stages are readily dissected. We can see in this slow development that evi-
dence unaided by hypotheses was limited in its reach. Direct measurements 
of distances to celestial bodies by triangulation returned very little in spite of 
the most energetic and ingenious efforts. This reach was decisively furthered 
by various systems of hypotheses: harmonic, Ptolemaic, and Copernican. 
That each of the three considered here yielded different results underscores 
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the provisional nature of the results. They are given a secure inductive foun-
dation only when independent evidence is found for the hypotheses used and 
the inductive debt taken on in assuming them is discharged.
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