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Large-Scale Structure: Four Claims

1. Introduction
In the previous chapter, I recounted how the material theory of induction 
treats relations of inductive support individually. That is, to what extent does 
this specific item of evidence support that proposition? If we think of induct-
ive inference formally, this purely local examination might be sufficient. All 
that we need for a valid inference, according to a formal theory, is that the 
evidence and the supported proposition fit appropriately into the empty slots 
of some licit schema. This local appraisal is incomplete, however, when in-
ductive inference is understood materially. In this approach, there is no fixed 
repertoire of warranted schemas applicable in all domains. In their place, 
(true) background facts in each domain warrant the inductive inferences 
supported in that domain. It follows that the affirmation that some inductive 
inference is licit requires a further affirmation of the truth of the background 
fact or facts that warrant the inference. These last facts themselves are con-
tingent and, in the fullest account, must also be secured inductively with 
appropriate evidence.

Thus, when understood materially, the cogency of inductive inferences 
and relations of inductive support cannot be appraised fully in isolation. 
They must be appraised within the context of a larger ecology of relations 
of inductive support. In this book, I investigate how that larger ecology is 
configured. In this chapter, I lay the foundation of the material analysis of 
this large-scale structure. It consists of the following four claims, which I will 
introduce and defend in this chapter.

1. Relations of inductive support have a nonhierarchical 
structure.
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2. Hypotheses, initially without known support, are used to 
erect nonhierarchical structures.

3. Locally deductive relations of support can be combined to 
produce an inductive totality.

4. There are self-supporting inductive structures.

In my defense of these four claims, I will employ extended examples drawn 
from the history of science. Providing a sufficiently detailed account of these 
examples within the confines of this chapter is impractical. My approach is to 
give these accounts in later chapters in Part II, with chapters devoted to each 
of the case studies. I will recall their results in this chapter briefly only insofar 
as they are needed.

In Section 2 of this chapter, I argue for the first and most important of the 
foundational claims listed above, the nonhierarchical structure of relations 
of inductive support. I address a supposition that relations of inductive sup-
port in science or in individual sciences are unidirectional, always proceed-
ing from the less general to the more general. Under this supposition, these 
relations of support are akin to the relations of support among the successive 
courses of stones in a tower. Each course is supported only by those beneath 
it. In its place is a conception of greatly tangled relations of support that cross 
over one another, failing to respect any orderly hierarchy. They are akin to the 
relations of support in an arch or vaulted ceiling. Each stone is supported by 
those beneath it and many others above it and elsewhere distributed over the 
whole structure. That relations of inductive support form such a massively 
entangled system is the most prominent feature of the large-scale structure of 
relations of inductive support according to the material theory. Many further 
features will depend on it.

In Section 3, I ask how these entangled structures can be discovered.  
A central result of the material theory is that we first need to know something 
before we can infer inductively. Otherwise, we have no secure warranting 
facts for inductive inferences. If initially we know nothing in some domain, 
then how can we ever learn inductively generalities of infinite scope in the 
domain? An examination of episodes of scientific discovery gives the answer 
of the second claim: we proceed by hypothesis. That is, we introduce as hy-
potheses the facts that would be needed to warrant suitable inductive infer-
ences, and then we make the inferences. In proceeding this way, however, 
we take on the obligation eventually to return to the hypotheses and provide 



612 | Large-Scale Structure: Four Claims

independent support for them. Only then are our inductive inferences prop-
erly secured. The arches or vaulted ceilings of the analogy cannot be con-
structed simply by piling one stone upon another. To build them, we prop up 
some stones provisionally by scaffolding and complete the construction. Only 
then can the scaffolding be removed. The result is a structure each of whose 
stones, examined individually, is properly supported by masonry. This use of 
hypotheses is distinct from their use in hypothetico-deductive confirmation. 
There they are introduced in order to be confirmed themselves. Here they are 
introduced to mediate in the confirmation of other propositions.

In Section 4, I analyze the intriguing possibility asserted in the third 
claim found repeatedly realized in cases of inductive support in science. In 
many cases, the component relations among propositions are individually 
deductive, even though their combined import is inductive. In this section, I 
will recall some examples that show how combinations of deductive relations 
among propositions can, overall, have inductive import.

As a prelude to discussion of the fourth claim, in Section 5 I characterize 
a mature science as inductively rigid. That means that each proposition of the 
mature science enjoys strong inductive support from the evidence and that 
the evidence admits no alternatives. Such a system is intolerant of challenges 
and generally repels them. If they are successful, then they have a destructive, 
revolutionary effect. A cascade of strong relations of evidential support 
propagating through the science will have to be undone.

In Section 6, I develop the fourth claim of the possibility of a self- 
supporting inductive structure. It is a closed structure in which each prop-
osition is well supported inductively by evidence in the structure through 
warranting propositions also in the structure. A mature science forms such 
a structure if we expand its compass to include all of the propositions war-
ranting its inductive inferences, and the evidence and warrants for them, 
and so on to closure. To see the self-supporting inductive structure, pick any 
proposition in the science. All of the evidence and warranting propositions 
needed for its inductive support will be in the structure. That is just the con-
dition that it is inductively self-supporting.

In Section 7, I consider the possibility of nonempirical conditions that 
might be a necessary supplement to a complete account of the large-scale 
structure of inductive inference. One might look to a priori principles such as 
a principle of causality or to the remarkable success of mathematics in formu-
lating physical theories. Such added components, it is argued, fail insofar as 
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they have no empirical foundation; if they do have an empirical foundation, 
then they lie within the material theory.

In Section 8, I provide a brief preview of what is to come.

2. Nonhierarchical Relations of Inductive Support
Relations of inductive support have a nonhierarchical structure.

2.1. The Hierarchical Conception: The Tower
The original and simplest notion of inductive inference is the notion of gen-
eralization from instances. It is codified in the schema of enumerative induc-
tion and employed in embellished form by time-honored procedures such as 
Bacon’s tables and Mill’s methods. It promotes an oversimplified image of 
science as an accumulation of generalizations of successively broader scope.

Here is how it looks. In biology, we might start with the particular ob-
servations of the flora and fauna of Europe and form generalizations from 
them. We might then expand our inductive base with particular observations 
of the flora and fauna of the Middle East, Africa, and Asia. Generalizations 
concerning them are combined with the earlier generalizations concerning 
European flora and fauna. We then expand our inductive base even further 
by introducing knowledge of biological species in the Americas and then the 
Antipodes. New generalizations concerning them are combined with those 
achieved earlier to yield generalizations of still greater scope.

We can find similar structures in other sciences. In physical astronomy, 
we note with Newton that all bodies on Earth gravitate and that all celestial 
bodies gravitate. We combine the two generalizations to arrive at the great-
er generalization that all matter gravitates. We note that our Moon and the 
moons visible to us are nearly spherical, so we infer that all moons are nearly 
spherical. We infer the same for planets and then eventually for suns and stars.

The result is a stratification of the propositions of a science according to 
their generality. At the bottom are the least general, the particular facts, com-
monly conceived as facts of experience or possible experience. As we ascend 
the hierarchy, we pass to generalizations from them, and then generalizations 
from them, and so on. The generalizations of the higher layers are supported 
inductively by those of the lower layers. We descend in the hierarchy by 
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making deductive inferences. They take us from generalizations higher in the 
hierarchy to those lower in it.

This hierarchy is analogous to the structural support relations among 
stones in a tower, shown in Figure 2.1. The first course of stones sits on firm 
ground. It supports the next course of stones, which supports the one above it, 
and so on to the top of the tower. The firm ground is analogous to experience. 
It supports the simplest propositions of experience, commonly conceived as 
propositions about particulars. Each course of stones structurally supports 
those above it, just as generalizations lower in the hierarchy inductively sup-
port those higher up in it.

Figure 2.1. A tower

Although a hierarchical structure of this sort sometimes appears in sci-
ence, overall it is a poor representation of the organization of propositions 
in science and the inductive relations among them. It fails for at least two 
reasons. First (to be developed in Section 2.2), contrary to the tacit suppos-
ition, relations of inductive support do not respect the hierarchy of general-
ity. Second (to be developed in Section 2.3), the propositions of science are 
sufficiently varied in content that their strict partitioning and ordering by 
generality are unsustainable.
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2.2. Relations of Inductive Support Do not Respect the 
Hierarchy
The hierarchical presumption is that relations of inductive support are uni-
directional: they proceed from the less general to the more general. A closer 
examination of the relations of inductive support within a science shows that 
this unidirectionality is not respected. Relations of support typically cross 
over one another. Speaking now only loosely of comparisons of greater and 
lesser generality, propositions at one level of generality can be supported by 
a combination of propositions of lesser, equal, or greater generality. The rela-
tions commonly are so tangled that no simple ordering of their direction by 
generality among the propositions of a science is possible.

We shall see more examples below of this lack of respect. It is worth paus-
ing here to visit an especially striking example. It is provided in Chapter 7, 
“The Recession of the Nebulae.” In 1929, Edwin Hubble announced the result 
that would become the observational foundation of modern cosmological 
models. Nebulae1 recede from us with velocities linearly proportional to their 
distances. Superficially, his analysis looks like the simplest of generalizations. 
Hubble reported as data the velocities of recession of individual nebulae, as 
inferred from red shifts in their light, and the distances to these nebulae. This 
is the level of lesser generality in the hierarchy. He then formed a generaliz-
ation about all nebulae: their velocities of recession vary linearly with their 
distances. This generalization resides at a higher level of greater generality in 
the hierarchy.

Hubble’s generalization, it seems, proceeded as we might naively expect, 
unidirectionally up the hierarchy. As the later chapter shows, his actual infer-
ences were far more complicated and quite unconstrained by this hierarchy. 
Most troublesome of several problems was that Hubble lacked almost half 
of the requisite independent distance measurements. His data set reported 
velocities for forty-six nebulae but included independently derived distance 
estimates for only twenty-four of them. Hubble was determined, however, to 
include all forty-six nebulae in his analysis and employed inductive strata-
gems of some ingenuity and complexity to proceed. In one prominent case, 
he assumed the generality of a linear relationship between the velocities and 
distances and used it to infer the unknown distances. This inference mixed 

1 Hubble’s “extragalactic nebulae” or just “nebulae” are, of course, now called “galaxies.”
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elements from the less general and more general levels to infer propositions 
in the less general level. Hubble could then test that the inference was suc-
cessful by using the inferred distances to recover the absolute magnitudes of 
the nebulae concerned. He checked that these inferred absolute magnitudes 
conformed to other nebulae of independently known absolute magnitudes.

2.3. The Hierarchy of Generalizations Is Unsustainable
The second false presumption in the hierarchical conception is that it is pos-
sible everywhere to partition and order the propositions of a science by gener-
ality. Although something like this might be possible in simpler contexts, the 
presumed partitioning and ordering become impossible to maintain as the 
propositions of science become more abstract and remote from the specific 
propositions of observation and experiment. No simple sequence of succes-
sive generalizations takes us from the chemical reactions observed in a lab-
oratory to the bonding theory of the complex molecules of organic chemistry, 
or from the observed emission spectra of gases to the quantum mechanics of 
the electrons of atoms, or from the motions of the planets to the curved space-
time geometry of general relativity. The inductive pathways from simpler ob-
servations and experimental results to the completed theories are sufficiently 
convoluted that there is no evident basis for comparisons of generality among 
the intermediate propositions.

For example, ordinary Newtonian mechanics in its various parts treats 
the distribution of stresses in bodies, the motions of terrestrial projectiles, the 
flows of fluids, the motions of planets, and much more. How do we rank their 
many propositions according to their generalities? Is the theory of the distri-
bution of the many stress forces in a complicated architectural structure more 
general than the analysis of the few gravitational forces acting in a simple 
problem in orbital mechanics? Or is the latter more general since it treats not 
just forces but also the motions that they produce? In chemistry, the energy 
states of a single hydrogen atom are treated by quantum mechanics. Prior to 
its quantum treatment, the chemistry of hydrogen is treated by a simple phe-
nomenological theory telling us that gaseous hydrogen consists of molecules 
in which two hydrogen atoms bond. Is the phenomenological theory of the 
hydrogen molecule more general because it treats bonded hydrogen, whereas 
the quantum theory of individual atoms does not? Or is the quantum treat-
ment of the hydrogen atom more general since it is part of the more advanced 
quantum treatment of chemical bonding in which the energy levels of the 



The Large-Scale Structure of Inductive Inference66

hydrogen atom play a central role? These questions, and many more like them 
across the sciences, admit no well-founded answers.

2.4. The Arch
There is no overall partitioning and ordering of the propositions of science 
by generality. Even when such local orderings appear, relations of inductive 
support do not respect them. Instead, relations of inductive support are dis-
tributed over the propositions of science in a massively entangled network. 
The simplest instances of this entangled network arise in a crossing over of 
relations of support whenever we have highly correlated properties. Then a 
proposition concerning one property can provide support for others at what 
we might loosely judge to be a comparable level of generality, and those others 
can provide support in reverse for the original proposition. These relations of 
support are warranted in turn by the more general proposition of the correla-
tion itself.

For example, stars can vary in many properties, including their effect-
ive temperatures, masses, sizes, and elements. A class O star in the Harvard 
spectral classification system is rare, characterized by a very high effective 
temperature of the order of 30,000K or greater. Many other properties of stars 
are strongly correlated with this temperature. A class O star will also have a 
huge mass and a tremendous luminosity.

Exactly because all of these properties are highly correlated and other-
wise unusual, finding one of them in some new star is strong evidence for 
each of the others. For example, finding that a newly observed star has a very 
high effective temperature greater than 30,000K is strong evidence that the 
star is massive. The converse also holds: finding that the star is massive is 
strong evidence that it has a very high effective temperature. This crossing 
over of evidential support can be continued for other pairings of properties 
of class O stars.

There is an architectural analogy to this pair of propositions, each of 
which provides an inductive warrant for the other. It replaces the analogy to 
the tower. It is an arch, shown in Figure 2.2. Each side of the arch rests on the 
firm ground of experience. However, none of the stones higher in the arch is 
merely supported by the stones beneath it. The stones are also supported by 
those still higher in the arch and ultimately by those of the other side. One 
side of the arch, if built without the other, would simple fall down. The two 
sides mutually support one another.
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Figure 2.2. An arch

2.5. Arches Illustrated
In later chapters, I provide more examples of this arch-like crossing over 
of relations of inductive support. In Chapter 8, “Newton on Universal 
Gravitation,” I describe two cases of pairs of propositions that mutually sup-
port each other. The first arises in his “Moon test,” in which he argues for the 
identity of the force of gravity and the celestial force that holds the Moon in 
its orbit around the Earth. The evidence is the observed accelerations of the 
Moon toward the Earth and falling bodies at the surface of the Earth. Newton 
computes the acceleration that the celestial force would yield if it acted at the 
Earth’s surface while strengthening according to an inverse square law. He 
finds that acceleration to match the observed acceleration of bodies falling at 
the Earth’s surface.

Consider the proposition that the celestial force on the Moon strengthens 
according to an inverse square law with distance. In this first inference, it is 
used as an inferential warrant in arriving at the identity of the celestial and 
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terrestrial forces. This usage can be reversed. The proposition of the identity 
of the celestial and terrestrial forces can also be used as a warrant. Then one 
can infer from the observed motions that the celestial-gravitational force act-
ing on the Moon strengthens with distance according to an inverse square 
law. That is, the proposition of the identity of celestial and gravitational force 
and the proposition of the inverse square law mutually support one another.

In a second example in his account, Newton fits elliptical orbits to the 
observed positions of the planets. The inference from these positions to their 
specific elliptical orbits is warranted by the proposition that the planets are 
acted on by an inverse square law of gravity. Excluding perturbations, that 
law entails that planets move in conic sections: ellipses, hyperbolas, or para-
bolas. However, a second argument reverses the proposition that warrants 
the proposition supported. The key warranting fact is that the elliptical orbits 
are reentrant. Each planetary year a planet follows the same elliptical orbit. 
This reentrance, Newton shows, can arise only with an inverse square law 
of gravity. Taking them together, we find that the specific elliptical orbits of 
the planets support the inverse square law and that the inverse square law 
supports the specific elliptical orbits of the planets.

Radiocarbon dating of artifacts provides another illustration of this 
crossing over of relations of support. It is described in Chapter 10, “Mutually 
Supporting Evidence in Radiocarbon Dating.” In the simplest description, 
there are two sorts of propositions concerning the dating of artifacts. The H 
propositions date them by the traditional methods of historical analysis and 
archaeology. The R propositions date them by estimating how long it took 
for their content of the radioactively unstable isotope of 14C to decay to the 
measured levels. The R propositions depend on an accurate knowledge of the 
original content of 14C captured in artifacts at their formation in different 
epochs. This knowledge is provided by H propositions: the dating of artifacts 
by traditional methods. Here H propositions provide evidential support for R 
propositions. However, the reverse can also happen. Are we sure that no error 
has crept into the historical methods used to arrive at a traditionally estab-
lished dating? Then radiocarbon dating can reassure us or correct us. Now R 
propositions are providing evidential support for H propositions.

I provide more examples of mutually supporting pairs of hypotheses in 
other chapters. In Chapter 11, “The Determination of Atomic Weights,” we 
see how Avogadro’s hypothesis and the law of Dulong and Petit supported 
each other in chemical investigations of the early nineteenth century. The 
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same relation of mutual support later arose among the chemists’ version of 
Avogadro’s hypothesis and the physicists’ version of the hypothesis within 
the kinetic theory of gases. In Chapter 9, “Mutually Supporting Evidence in 
Atomic Spectra,” we find the Ritz combination principle providing support 
for the quantum theory. Then later the quantum theory provides support for 
a corrected version of the Ritz combination principle.

2.6. The Vaulted Ceiling
The examples above of pairs of mutually supporting propositions are excep-
tional for their simplicity. It is far more common for these relations of mutual 
support to be embedded within a much larger network of inductive relations 
of support in a science. The Newtonian example is not of an isolated structure 
since the various hypotheses in it figure in relations of support for other prop-
ositions in science.2 In general, relations of support cross over one another in 
many different ways and at many different levels. One then finds that even a 
small part of science can be part of a prodigious array of relations of support 
connecting it with neighboring sciences and then beyond them to the farthest 
reaches of science.

The analogy to a single arch does not capture this richness. An analogy 
to a dome is a little better. Stones in each part of the dome depend for their 
support on stones in many other parts. A still better analogy is to a massively 
complicated vaulted ceiling, as shown in Figure 2.3. It consists of many inter-
connected domes and arches. The integrity of the entire structure depends on 
the mutual support of all of its parts.

2 For example, an inverse square law is presumed in the computations associated with 
Cavendish-type experiments that determine the magnitude of the gravitational constant G. 
The law is also used to infer that spherical planets act gravitationally, as if their masses were 
concentrated at their centers; to infer that certain comets move on hyperbolas; and to compute the 
behavior of terrestrial tides.
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Figure 2.3. A vaulted ceiling in the Commons Room, Cathedral of  
Learning, University of Pittsburgh; image by John D. Norton

 
This interconnectedness of relations of inductive support provides mature 
science with its monolithic structure. One cannot reverse one part without 
destabilizing the remainder of the structure. A vivid example of an effort 
to reverse one part comes with the persistent creationist efforts to remove 
evolutionary theory from biology. The problem that creationists face is that 
evolutionary theory is inductively entangled with the other sciences. In their 
challenge to that theory, creationists find that they need to impugn the great 
age of the Earth in favor of a much younger Earth, whose age is determined 
from biblical scholarship. Hence, they must impugn modern uniformitarian 
geology. It is based on an old Earth whose major geological features were 
formed slowly over eons. They must impugn the radiological methods used to 
date both organic artifacts and rocks, which ultimately will lead to conflicts 
with radiochemistry. They must also dispute standard cosmology since it also 
calls for an ancient Earth. This forces them, then, to question observational 
and theoretical astronomy and the physics on which it depends.

The size of the network of support relations in mature sciences leads to 
a combinatorial explosion in the number of support relations that directly 
or indirectly bear on the propositions of the component sciences. This effect 
gives depth to the inductive security of each part. A fully worked-out example 
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would help us to see this security more clearly. Unfortunately, displaying the 
complexity of such a network in all of its detail is a task too large for this 
chapter or this book. However, we can get a good sense of the density and 
richness of these structures by visiting just small pieces of them in the exam-
ples developed in the chapters that follow.

2.7. Vaulted Ceilings Illustrated
In Chapter 11, “The Determination of Atomic Weights,” I recount the im-
mense difficulties faced by chemists in the early nineteenth century in deter-
mining relative weights of atoms. The problem arose in Dalton’s New System 
of Chemical Philosophy of 1808 and 1810. Dalton knew, for example, that 8g 
of oxygen combines with 1g of hydrogen to make water. To infer from this 
that the molecular formula of water is H2O, he needed to know that an oxy-
gen atom is sixteen times as massive as a hydrogen atom. He had no table of 
atomic weights to consult and no way to determine them, so he just assumed 
that the ratio was 8-1. The result was that he arrived, famously, at the molecu-
lar formula for water of HO. Dalton was trapped in a circularity: to know 
the correct molecular formulae, he needed to know the relative weights of 
atoms, but he could learn the relative weights of atoms only from the molecu-
lar formulae.

One might imagine that this circularity was easily broken. It was not. The 
task required the efforts of chemists over roughly half a century. Chapter 11 
recounts Cannizzaro’s celebrated solution circulated at the Karlsruhe con-
ference of chemists in 1860. Cannizzaro relied on Avogadro’s hypothesis, the 
law of Dulong and Petit, and an extensive set of measurements of the physical 
properties of a wide range of substances to determine their molecular formu-
lae. The determinations were complicated, and I have done my best to present 
them in Chapter 11. For my purposes here, the key fact is that the molecular 
formulae were not just determined but also overdetermined. That means that 
some subset of them could be used to provide inductive support from some 
other part and vice versa.

For example, once Cannizzaro had determined that hydrogen and oxy-
gen gases are diatomic, H2 and O2, his gas density data enabled him to fix the 
molecular formula for water as H2O. Or he could start with this molecular 
formula for water and find that oxygen and hydrogen are diatomic. This is just 
a glimpse of a massive tangle of relations of inductive support in Cannizzaro’s 
analysis. For example, that hydrogen gas is diatomic entered into similar 
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overdetermined relations of support concerning compounds of the halogens: 
chlorine, bromine, and iodine.

In Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” I pro-
vide another illustration of this sort of tangle of relations of inductive sup-
port. Energetically excited hydrogen gas emits light. It emits only specific 
frequencies of light whose measurement became an important project for 
spectroscopists in the late nineteenth century and early twentieth century. 
Those frequencies divided into well-structured sets of lines, found in differ-
ent parts of the electromagnetic spectrum: the infrared, the visible, and the 
ultraviolet. These sets or “series” were named after the spectroscopists who 
measured them: the Lyman, Balmer, Paschen, Brackett, and Pfund series.

The series were connected by a simple arithmetic relationship first noted 
by Rydberg but exploited by Ritz in 1908 as his “principle of combination.” 
The key fact was that the lines of all of the series could be generated by tak-
ing the arithmetic differences of a set of terms. For Ritz, this fact provided a 
useful heuristic. He could apply his combination principle to the lines of a 
known series and predict a new, hitherto unobserved, series. The approach 
proved to be successful, and immediately Ritz could report a new line con-
forming with his prediction.

For my purposes, what is important is that the full set of lines in all of 
these series is overdetermined once one adopts Ritz’s principle. That means 
that one can take the lines of one series and infer from them to the exist-
ence of another series. What results is a tangle of relations of inductive sup-
port. This structure, fortunately, is much easier to comprehend, as Chapter 9 
shows, since it is recoverable by simple arithmetic additions and subtractions.

2.8. The Firm Ground of Experience
In the arch and vaulted ceiling analogies, the ground that supports the ma-
sonry corresponds to the empirical basis of the science. This basis does not 
depend on any simple-minded or strict distinction between observational 
and theoretical propositions, for I follow the now common view that a clear 
distinction between them cannot be made. Rather, I mean by it what is com-
monly taken in a present science as its supporting empirical facts. They can 
be far removed from direct human observations.

For example, one of the most stable and most important observational 
facts supporting modern cosmology is that space is filled with a 2.7K back-
ground of thermal radiation. This simple-sounding fact was secured over 
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decades only after extraordinary efforts, some of which are recounted in 
Chapter 9, “Inference to the Best Explanation: Examples,” of The Material 
Theory of Induction (Norton 2021). Among the difficulties faced, to establish 
a thermal character in a radiation field, one must have measurements made at 
many different frequencies. Only then can the energy distribution character-
istic of thermal radiation be established.

A related observational fact of modern cosmology is that galaxies are ob-
served to recede from us with a velocity that increases linearly with distance. 
Although the observation is now routinely reported without much hesita-
tion in modern treatments, it was subject to a searching critique in the later 
twentieth century by Halton Arp. He argued that the red shift in light from 
the galaxies could not be interpreted as resulting from a velocity of recession 
since objects with very different red shifts appeared to be connected spatial-
ly. An extensive debate was needed to refute his hesitations (for details, see 
Norton 2023).

The analysis of just what might be meant by the empirical facts of a sci-
ence is a project that goes beyond my concerns here. My view is that Nora 
Boyd’s (2018a, 2018b) analysis provides the best modern treatment. Boyd al-
lows that all such empirical facts are entangled with theory. However, she 
argues, these facts can still be used to decide among competing theories 
through a process of winding back to the provenance of the facts. When we 
seek to use some empirical fact to decide between two theories, we wind back 
through the various stages of the formation of the fact. If sufficient data have 
been preserved, then eventually we come to a point at which enough of the 
theoretical encumbrance has been removed for the fact to provide a neutral 
basis of comparison for the two theories.

3. The Role of Hypotheses in the Discovery of 
Inductive Relations of Support

Hypotheses, initially without known support, are used to erect  
nonhierarchical structures.

3.1. The Discovery Problem
The discussion in the previous section concerns relations of inductive sup-
port, independent of human knowledge of them. A further question of great 
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importance is how we can learn these relations. Only then do they assist us 
in our inductive exploration of the world. If the totality of facts connected by 
relations of inductive support were delivered to us as a completed whole, then 
it would be a straightforward matter to check that all of the requisite relations 
of inductive support obtain. This is a science fiction scenario. It is what would 
happen were we to stumble onto a copy of the fictional Encyclopedia Galactica 
of some advanced alien civilization. In it, entire sciences hitherto unknown 
to us would be delivered to us in their totality.

In real life, our explorations proceed more haltingly. The guiding rule of 
the material theory of induction is that “you must already know something to 
be able to infer inductively.” We cannot know that some inductive inference 
is licit unless we are assured of the truth of the warranting fact. Yet, if we 
are in the early stages of investigation in some new field, then commonly we 
know rather little, and it is likely too little to proceed with assured inductive 
inferences of any great reach.

This is a problem faced by all new sciences. The strategy used almost uni-
versally is to proceed provisionally. We might not know which are the general 
facts of some domain, but sometimes we can determine which propositions 
are plausible candidates for the facts that would warrant the inductive infer-
ences sought. To use a familiar term, these plausible propositions are “hy-
potheses.” We can then proceed provisionally under the supposition that our 
hypothesis is a fact and infer to the propositions that it would warrant were 
it a fact. The key element is that the supposition is provisional. Conclusions 
drawn or inductively supported using the hypothesis themselves have only 
provisional status. They remain so until we find inductive support for the 
warranting hypothesis. We have incurred an inductive debt in proceeding to 
the conclusions, and they are properly secured only when that inductive debt 
is discharged by finding support for the warranting hypothesis.

Hypotheses have a natural analogue in the procedures for building arch-
es, domes, and vaulted ceilings. A masonry arch, dome, or vaulted ceiling 
cannot be built simply by piling stones one upon another. As soon as a few 
stones have been placed, the highest ones would be without adequate sup-
port and would fall. The standard procedure is to use scaffolding, known 
technically as “centering.” As shown in Figure 2.4, traditionally it consists 
of a wooden framework. The stones are set on top of the framework. Prior 
to the completion of an arch, these stones are not properly supported by its 
other stones. Their support is only provisional since the wooden centering 
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will be removed eventually. Here they are analogous to hypotheses whose 
support is also only provisional. When all of the stones of the arch have been 
placed, the centering can be removed. Now the remaining stones of the arch 
fully support each other. This final stage of construction is analogous to dis-
charging the evidential debt taken by introducing the hypothesis. As the full 
investigation is completed, further inductive support, anchored eventually in 
experience, is provided for it.

Figure 2.4. Wooden centering used in the construction of the Waterloo Bridge

3.2. Hypotheses Illustrated
The chapters that follow provide illustrations of this use of hypotheses. In sev-
eral of them, the use of hypotheses is invited by a specific problem. Scientists 
find themselves trapped in an evidential circle. Commonly, there are two re-
lated quantities to be determined. To find the first, the scientists need to know 
the second, but initially it seems that they cannot know the second unless 
they already know the first. They are trapped. A suitably chosen hypothesis is 
used routinely to break the circle.

Chapter 12, “The Use of Hypotheses in Determining Distances in Our 
Planetary System,” is an extended study of this use of hypotheses. Consider 
the earliest efforts to determine distances to celestial bodies. The Moon 
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subtends an angle of about half a degree in our visual field. If we knew the 
diameter of the Moon, then simple geometry would let us compute the dis-
tance to the Moon. However, we do not know its diameter precisely because 
we do not know how far it is from us. Determining its distance and diameter 
forms the troublesome evidential circle. The Sun also subtends an angle of 
about half a degree in our visual field. Determining its distance from us is 
blocked by the same evidential circle. Determining distances to the planets is 
even harder since naked eye astronomy cannot resolve their disks. They are 
just points of light in the sky.

Chapter 12 recounts how ancient and later astronomers sought to break 
out of this evidential circle by ingenious geometrical triangulations or, as 
it is known in the astronomical context, measuring parallax. These efforts 
met with limited success. Ancient astronomers were unable to measure 
the tiny parallactic angles accurately enough. In the seventeenth century, 
using telescopic aids, a fairly good parallactic measurement of the distance 
to Mars was achieved. However, even with telescopic aids, direct parallactic 
measurements of the key Earth-Sun distance were not achieved as late as the 
nineteenth century.

From the outset, to fill the gaps, hypotheses were called into service. 
They were not used to fix the distances directly, only to provide hypothetical 
estimates of the ratios of the distances. Then all that was needed was a single 
distance determination, such as the distance to the Moon or to Mars, and the 
remaining distances could be computed from the ratios. What makes this 
case study revealing is that, in addition to a success story, it recounts fail-
ures. They arose when independent evidential support could not be secured 
for the hypotheses, and eventually they were rejected. The chapter recounts 
three attempts.

The earliest were Pythagorean/Platonic proposals that recovered the ratios 
from musical harmonies and simple arithmetic relations. A later proposal 
was incorporated into Ptolemy’s geocentric cosmology. Ptolemy proposed a 
plausible distance ordering for the celestial bodies. He recovered the ratios 
of their distances from the further hypothesis that their orbits are packed 
together as closely as the geometry of the compounded circles of his system 
allowed if intersections of the circles are precluded. Neither Pythagorean nor 
Ptolemaic proposals were able to secure independent evidence. Their induct-
ive debt was not discharged, and they were abandoned.
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They were replaced by Copernicus’ , heliocentric hypothesis. Through it, 
the ratios of the planetary orbital distances were readily recoverable from ter-
restrial measurements. Unlike the earlier systems, the Copernican hypoth-
eses gained evidential support from both within and without. Most import-
ant was its conformity with Newton’s mechanics. Newton had used the more 
fully developed heliocentric astronomy of his time as an essential premise of 
his argument for universal gravitation. In another example of the crossing 
over of relations of inductive support, the direction of inductive support was 
reversed. Newton’s mechanics soon became strong evidence for the details of 
Copernican astronomy.3

The dependence of solar system distance measurements on the helio-
centric theory persisted. The most accurate estimates of the key Earth-Sun 
distance in the eighteenth and nineteenth centuries came from careful meas-
urements of the transits of Venus across the face of the Sun. The Earth-Sun 
distance could then be recovered from them by geometric triangulations. 
These calculations still relied on the heliocentric theory’s determination of 
the ratios of the orbits of the Earth and Venus.

Further illustrations of the use of hypotheses to break evidential impasses 
have already appeared earlier in this chapter. We saw how Dalton was trapped 
in an evidential circle concerning atomic weights and molecular formulae. 
He sought to break the circularity by hypothesizing that the correct molecu-
lar formulae used the simplest ratios available. The hypothesis failed to secure 
independent support and was abandoned. The circularity was broken later 
through two hypotheses: Avogadro’s hypothesis and the law of Dulong and 
Petit. The evidential debt incurred in supposing them was discharged even-
tually through the mutual support of these two hypotheses and the support 
provided for them from the emergence of the statistical mechanical treatment 
of gases in physics.

We also saw that Hubble was stymied in his efforts to use the data from 
all forty-six nebulae for which he had measurements by a lack of independent 
distance measurements for twenty-two of them. Chapter 7, “The Recession of 

3 The inversion in this relationship is seen most clearly in the ability of the Newtonian 
system to provide corrections to the heliocentric astronomy of Newton’s time. The planets orbit 
not in ellipses but in precessing ellipses. What came to be known as Kepler’s third harmonic 
law was corrected to accommodate the finite mass of the Sun. The importance of successive 
approximations in Newton’s and later work has been explored by Smith (2002, 2014).
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the Nebulae,” recounts how Hubble was still able to incorporate these twenty-
two nebulae into his analysis by means of hypotheses that gave him indirect 
indications of their distances. At various stages of his analysis, he hypoth-
esized that the linear relationship among the other twenty-four nebulae also 
held for these twenty-two, that the absolute magnitude of the brightest star 
in each nebula is the same, and that the absolute magnitudes of nebulae in a 
cluster are confined to a small range common to all nebulae.

In the early-twentieth-century analysis of atomic spectra, we saw how 
the discovery of new series was advanced by the Ritz combination principle. 
It was introduced as a hypothesis. It gained the requisite independent eviden-
tial support with the emergence of modern quantum theory, in which it was 
recovered as a consequence of Bohr’s atomic theory.

These last illustrations have been mostly of successes secured at least 
eventually. This happy outcome is not assured. A prominent example of a 
failure is provided by the steady state cosmology of the mid-twentieth cen-
tury. It was based on the hypothesis of the “perfect cosmological principle,” 
first advanced by Bondi and Gold (1948). According to it, the universe is 
homogeneous on the large scale, not just spatially but also over time. The 
way in which we see the universe now, on the large scale, is the way in which 
it has always been and will always be. A definite cosmology now follows. Its 
most striking feature is the continuous creation of matter. Unless matter is 
continually created throughout space, expansion of the galaxies would lead 
to a dilution of its average matter density and violate the perfect cosmological 
principle. The steady state cosmologists took on a massive evidential debt 
in hypothesizing the perfect cosmological principle. They were never able 
to establish independent evidence for the hypothesis, and they were never 
able to repay the debt. Most notable was the failure of the steady state theor-
ists to accommodate Penzias and Wilson’s discovery in 1965 of the cosmic 
background radiation, and the competing “big bang” or “primeval fireball” 
hypothesis eventually proved to accommodate it handily.4

3.3. This is not Hypothetico-Deductive Confirmation
This use of hypotheses might appear to be similar to the hypothetico- 
deductive approach to confirmation. These are accounts of confirmation 
based on the principle that a hypothesis is inductively supported when it 

4 For a brief account of this last competition, see Norton (2021, Chapter 9).
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successfully entails true evidence deductively.5 The essential difference lies 
in the goal of introducing the hypotheses in an evidential analysis. In hypo-
thetico-deductive confirmation, hypotheses are introduced so that the evi-
dence can confirm them according to the hypothetico-deductive principle. 
In the applications within the material theory, hypotheses are introduced to 
mediate in the confirmation of other propositions. The confirmation of the 
hypothesis is a task reserved for later investigations. The hypothesis is ex-
pected to be confirmed not hypothetico-deductively but by other inductive 
inferences with their own material warranting facts.

4. Deductive Inferences in Inductive Structures
Locally deductive relations of support can be combined to  

produce an inductive totality.

4.1. Inferences that Are or Are Nearly Deductive
There is a striking feature of many of the inferences in this text and in my 
earlier text, The Material Theory of Induction (Norton 2021). Although the 
inferences contribute to relations of inductive support, many of them are 
close to being deductive inferences or might actually be deductive inferences. 
That is, when combined with the warranting fact, the inference from the evi-
dence to the conclusion to be supported is often deductive. The direction of 
the inference here is important. It is not merely the deductive inferences of 
hypothetico-deductive support. In the latter, the deduction passes from the 
hypothesis or theory to the evidence. That direction has now been reversed.

Here are some examples. Chapter 1 of The Material Theory of Induction 
(Norton 2021) recalled Curie’s inference from the crystallographic properties 
of the few samples of radium chloride at her disposal. Curie inferred to the 
generality of these crystallographic properties. I identified the warrant for her 
inference as 

(Weakened Haüy’s Principle) Generally, each crystalline substance 
has a single characteristic crystallographic form.

5 For an elaboration of this principle and the extensive problems associated with it, see 
Norton (2005).
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When this weakened principle is used to warrant Curie’s inference, it is the 
qualification “generally” that makes the inference inductive. It accommo-
dates the possibility of polymorphism, that one crystalline substance might 
manifest in more than one crystallographic form. The inductive risk taken 
by Curie is small, especially if we assume that her generalization was tacitly 
limited to crystals of radium chloride prepared under conditions comparable 
to those in her laboratory.6 If we drop this qualification and revert to Haüy’s 
original conception, the warranting fact would be

(Haüy’s Principle) Each crystalline substance has a single character-
istic crystallographic form.

Under this warrant, Curie’s inference would be a deduction.
Chapter 2 of The Material Theory of Induction (Norton 2021) recounted 

Galileo’s inference concerning his law of falling bodies. Galileo had found 
that, in equal time intervals, a body in free fall successively covers distan-
ces in the ratios of 1-3 to 5-7. He generalized this sequence of ratios to the 
sequence of odd numbers. In this inference, I argued that Galileo had used 
the warranting fact that the ratios of 1-3 to 5-7 were present no matter the 
time interval used in the measurement. It then followed, deductively, that  
the only possible general law was of the sequence of odd numbers. Indeed, the 
deductive inference needs as a premise only the ratio of 1-3 and its invariance 
under a change of the unit of time.

There are, it turns out, other well-recognized, historically important ex-
amples in which the inference from evidence to our theories is deductive. 
These cases have been codified as “demonstrative inductions.” Their infer-
ences are demonstrative in the sense that they are deductions. However, they 
are called “inductions” to reflect an older usage of the term as referring to in-
ferences from particularities to generalities. My contribution to this literature 
in Norton (1993) was to trace how quantum discontinuity was established in 
the early decades of the twentieth century. The essential datum was Planck’s 
formula in 1900 for the distribution of energy over the different frequencies 
of black body radiation. In the early analysis, it was shown that assuming dis-
continuities in energies enabled one to deduce the Planck formula. Poincaré 
and Ehrenfest soon showed that the direction of deduction could be reversed. 

6 I thank Pat Corvini for emphasizing this point to me.
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With suitable background facts, it was possible to deduce quantum discon-
tinuity from the evidence of the Planck formula.

4.2. Support that Is Locally Deductive but Globally Inductive
In deductive inferences, the conclusions are at best logically equivalent de-
ductively to the premises or logically weaker than them. So it appears that 
deductive or near-deductive inferences to our conclusions cannot give what 
we seek from inductive investigations. We seek an expansion of our know-
ledge. These deductive inferences are merely rearranging and returning to us 
all or part of what we have already supposed.

This pessimistic expectation is not realized, however, once we recall that 
relations of support within inductive structures are not hierarchical but mas-
sively entangled. That enables the entangled relations of deductive support to 
combine to provide inductive support in the overall structure. This circum-
stance arises when we have sets of propositions that mutually support each 
other deductively. Nonetheless, to accept the totality is to accept propositions 
logically stronger than the evidence.

Striking examples of this combination of deductions arise in Newton’s 
arguments for universal gravitation and his inverse square law of gravity.  
I have already sketched them above and provide a more detailed exposition 
in Chapter 8, “Newton on Universal Gravitation.” To recall, the first example 
arises in his “Moon test.” In it, he showed that terrestrial gravity is the same 
force as the celestial force holding the Moon in its orbit around the Earth. To 
show it, Newton reckoned that, if the force acting on the Moon strengthens 
with the inverse square of distance as the Earth is approached, then it would 
accelerate terrestrial bodies with just the accelerations actually found at the 
Earth’s surface. The logic of the Moon test involves two hypotheses:

Hinv. square: The celestial force acting on the Moon is strengthened by    
                 an inverse square law with distance at the Earth’s surface.

Hidentity: Terrestrial gravitation and the lunar celestial force are the  
              same.

In the context of Newton’s Moon test, drawing from the evidence of the accel-
erations of the Moon and terrestrial bodies in free fall toward the Earth, each 
of these hypotheses can be deduced from the other. That is, each hypothesis 
provides a warrant for a deductive inference from the evidence to the other 
hypothesis. The two hypotheses combined are the result of the Moon test 
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analysis. Their conjunction is inductively supported by the evidence of lunar 
and terrestrial accelerations.

The second example has a similar structure. The most basic results of 
Newton’s celestial mechanics reside in two hypotheses:

Hellipses: The planets move in their specific elliptical orbits.

Hinv. square: The planets are attracted to the Sun by a force that varies  
                 with the inverse square of distance.

Against the background of the observed positions of the planets and the laws 
of Newton’s mechanics, each hypothesis could be deduced from the other. 
Indeed, Newton employed a subtle variant of the usual way of inferring be-
tween these two hypotheses. In the case of the near-circular orbits of the 
planets, he needed only the datum that the planetary orbits are reentrant. 
That is, in a planetary year, each planet returns to its starting point. He could 
then show that this reentrance was a sensitive test for deviations from the 
inverse square law. The observed exactness of the reentrance entailed the 
exactness of the inverse square law. Once again the overall inductive import 
of the analysis was that the evidence of the observed positions of the planets 
supported inductively the conjunction of the two hypotheses.

Chapter 9, “Mutually Supporting Evidence in Atomic Spectra,” provides 
another example with a similar structure. I noted above that the Ritz combin-
ation principle enables inferences of support among the different series of the 
hydrogen spectrum. As detailed in the chapter, these inferences are deductive. 
Using the Ritz combination principle as a premise, from the Balmer series, we 
can deduce the Paschen, Bracket, and Pfund series. These deductions can be 
reversed as well. Adding the premise of only a single line from the Balmer 
series, we can deduce the entire, infinite Balmer series from the Paschen ser-
ies. There are infinitely many series in the hydrogen spectrum, although only 
finitely many have been observed. The series are closely connected by further 
deductive relations such that we can infer deductively from any series to any 
other series by means of the Ritz combination principle and, if needed, the 
additional premise of a finite set of suitably selected lines. Although these 
interrelations are deductive, the final import is inductive. The Ritz combina-
tion principle and the finitely many spectral lines observed provide inductive 
support for the entire system of infinitely many series, each with infinitely 
many lines.
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There might be, for some, an air of paradox in the idea that we can com-
bine deductive relations to yield a structure with inductive import. That im-
pression is mistaken. These cases are actually more secure inductively than 
many of those considered in earlier sections. In those earlier cases, inductive 
relations of support are combined to produce structures with overall induct-
ive import. Inductive risk is introduced both in the component relations of in-
ductive support and in the combined structure. If those component relations 
of support are deductive, then this first source of inductive risk is eliminated.

5. The Maturity of a Science

5.1. Inductive Rigidity
A preparation for the discussion of the fourth and final claim is the char-
acterization of what constitutes mature sciences. They are characterized by 
inductive rigidity. That is, each proposition of the science is well supported 
evidentially so that a change in the proposition is not allowed by the evidence 
for the science. There is no assurance that a science can achieve maturity. 
In the early stages of the development of a science, important propositions 
are entertained hypothetically. They are not fixed rigidly. As the development 
continues, further relations of inductive support are found, the hypotheses 
gain evidential support, and their provisional status is discharged. If this pro-
cess is completed, then the science achieves maturity such that each of its 
propositions is well supported.

Once this maturity is achieved, the inductive rigidity of a mature science 
is widely recognized among its practitioners. Challenges to the science are 
treated as tiresome, moribund exercises. A skeptic might doubt some prop-
osition in a mature science. In response, someone competent in the science 
would be able to display the evidence that supports the proposition. In the 
case of special relativity, this is a dialogue with which I have some personal 
experience. The theory has been challenged routinely by critics since its in-
ception over a century ago. Many of its foundational propositions have been 
disputed, at one time or another, unsuccessfully. The light postulate of the 
theory asserts that all inertially moving observers find the same speed c for 
light in vacuo. It is initially a puzzling postulate. Imagine an inertially mov-
ing observer chasing at high speed after a light signal that moves at c. That 
observer will not find the light signal slowed from c, even in the slightest.  
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This perplexing result makes the postulate a favored target. However, that 
postulate has direct support from de Sitter’s analysis in 1913 of light emitted 
from distant double stars. Its deeper support derives from the Lorentz covar-
iance recoverable from Maxwell’s electrodynamics, in turn supported by a 
plethora of individual experiments in electricity and magnetism.7

This maturity is a goal that proponents of a theory strive to achieve, and 
standard textbook sciences commonly come close to achieving it. It is not 
uncommon, however, for the full achievement of the goal to be incomplete 
in parts of the theory. There propositions might achieve general acceptance 
while lacking proper support. The falsification of such a proposition is usual-
ly associated with great excitement and even a momentary sense of crisis. 
However, precisely because the falsified propositions never were strongly sup-
ported, their failure can be absorbed into theory.

On September 19, 1957, Francis Crick announced what came to be called 
the “central dogma” of molecular biology. It speaks, in various forms, of a uni-
directional pathway of synthesis within cells from DNA to RNA to proteins. 
The reverse pathway is prohibited. Although the dogma was widely adopted, 
there was little real evidence for it. It was a simple and comfortable idea that 
fit with a denial of the Lamarckian inheritance of acquired characteristics.8 
When it was discovered that certain viruses could implement the reversed 
pathway from RNA to DNA, the result was readily incorporated into molecu-
lar biology. Nature published an excited editorial, “Central Dogma Reversed,” 
in 1970.

In the twentieth century, many new particles were discovered. It was as-
sumed routinely that the laws governing them would respect parity.  That is, 
they would not distinguish left from right. In retrospect, there was no good 
evidence for this assumption other than that it had become routine in the 
physical laws discovered earlier. Then, in 1964, Cronin and Fitch discov-
ered experimentally that the weak interaction in particle physics can violate 
charge-parity conservation. In another example, the hard-to-detect neutrinos 
had long been attributed to a zero rest mass. This had seemed to be a reason-
able assumption. The early determinations of the neutrino rest mass pointed 
to a quantity in the neighborhood of zero. However, as neutrino physics de-
veloped, it became clear that a tiny mass had to be attributed to neutrinos. 

7 For historical details, see Norton (2014).
8 Here I rely on Cobb (2017).
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That would enable the process of neutrino oscillation in which neutrinos 
migrate over the three different flavors in which neutrinos manifest. This os-
cillation explained experimental and observational anomalies, most notably 
a dearth of measured electron neutrinos emitted by the Sun.9

In these last cases, anomalous evidence could be absorbed into the 
existing theories since the propositions that they contradicted lacked the 
strength of evidential support of other parts of the theory. Had these other 
better-supported parts been contradicted, the outcome would have been 
more troublesome. A well-supported proposition is tightly bound with so 
much more of the theory. Should it fail, it would bring down much more of 
the theory with it.

Although particle physics could absorb nonzero neutrino masses, mat-
ters would have been quite different had the OPERA Collaboration (2011) 
measurement been correct. Its measurements, it announced, appeared to 
show that neutrinos were propagating faster than light. If correct, then this 
would have destabilized particle physics. It would have contradicted a funda-
mental posit of the governing quantum field theory, the locality of quantum 
field operators. Particle physics was saved for the time being.

The inductive rigidity of a mature science does not make the science in-
corrigible. It is simply a statement of the best that can be gleaned from the 
evidence. No matter how strong the inductive support of a science, some 
inductive risk is associated with it. When incontrovertible evidence does 
emerge that contradicts a well-supported proposition within a mature theory, 
the result can be and usually is a breakdown of the theory. Rigid steel cables 
have some elasticity, but they will snap if overextended. What ensues is a 
revolution in science, a popular topic of investigation in the history of science.

These revolutions commonly occur when the science is extended beyond 
domains in which it was first developed and in which its evidential base is 
found. Newton’s seventeenth-century mechanics was developed on an evi-
dential base of slow-moving objects, such as falling stones and orbiting plan-
ets. Special relativity emerged when developments in nineteenth-century 
electrodynamics gave reliable results concerning much faster propagations at 
the speed of light. Special relativity, in turn, fails when we move to domains of 
intense gravitation, as Einstein found through his general theory of relativity. 

9 For a review, see Gonzalez-Garcia (2003).
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All of these superseded theories, however, remain evidentially well supported 
as long as we consider only the evidence of the domains for which they were 
devised. Although general relativity and relativistic cosmology now tell us 
that Euclidean geometry can fail when applied to spaces of cosmic extent, 
Pythagoras’ ancient theorem remains as reliable as it ever was for the builders 
of houses, castles, and skyscrapers.

5.2. A Distributed Vindication
Although the inductive rigidity of a mature science is a commonplace for 
its practitioners, its demonstration would be a massive task. The network of 
interrelated propositions is enormous for any real science. A full display of 
the evidence and inductive relations supporting each goes well beyond what 
is possible in a book chapter. Indeed, for a well-developed science of great 
scope, displaying this rigidity in detail likely would be beyond the capacities 
of any single author. Rather, the requisite knowledge, though likely not fully 
known to any one scientist, is distributed over the full community.

This distribution is illustrated by our proper confidence in the laws of 
conservation of energy and momentum and our expectation that no proposal 
for a perpetual motion machine can succeed. Given the variety of types of 
proposals advanced over the centuries, a full inventory of the evidence against 
them would be prohibitively long. In each case, it is not enough merely to 
assert generically that the conservation of energy and momentum prohibits 
the operation of the machine. A full analysis requires us to display where 
the details of the mechanism proposed conflicts with other propositions in 
established science.10 Different proposals will call on different expertise in 
the different sciences in which the proposals are formulated. We can be con-
fident, however, that for each new proposal there is an expert in the commun-
ity familiar with the pertinent science and able to respond.

A recent illustration is the “EmDrive” proposal for spaceship propulsion 
brought to the attention of a larger scientific community by a New Scientist 
article (Mullins 2006). It consists of microwaves in a chamber such that, it is 
proposed, the forces exerted by the microwaves in many directions on the 
chamber walls do not entirely cancel out. They leave a small net force that 
can propel the chamber. In this, it is unlike any other scheme of propulsion 
known. All known schemes produce propulsion by driving some form of 

10 For a history of these proposals, see Ord-Hume (1977).
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matter in the opposite direction to the thrust sought. A rocket expels hot 
gases. An airplane projects a current of air or hot gases behind it. A ship’s 
propeller projects a stream of water behind it. The forward force on the rock-
et, airplane, or ship is balanced by an equal and opposite (reaction) force on 
the driven matter, as required by Newton’s third law of motion. This driven 
matter carries rearward momentum. The conservation of momentum then 
assures us that the rocket, airplane, or ship gains forward momentum in the 
opposite direction. That is what accelerates it.

The EmDrive violates the conservation of momentum. It is a closed de-
vice supposed to set itself into motion without any ejected matter or a reactive 
force. Although the proposal is prima facie extremely implausible, interest in 
it has been remarkably stable and is matched only by the tenacity of skeptical 
critics. Part of the positive interest lies in wishful thinking. If it works, then it 
is a device that could power starships! Another reason for its endurance lies 
in the small magnitude of the force predicted. Detecting it requires the most 
delicate experiments. As critics have pointed out, such experiments can easily 
produce spurious results if all of the confounding effects11 are not properly 
controlled.

The resulting literature is too extensive to survey here. Recounting one 
exchange, however, is sufficient to illustrate how the distribution of exper-
tise works. Harold White and his collaborators at the NASA Johnson Space 
Center are proponents of these microwave propulsion systems. In a technical 
paper, White and March (2012) proposed that the reactionless thrust might 
arise through the Casimir force of the quantum vacuum. This is specialized 
physics. As they acknowledge in their introductory paragraph, classical elec-
trodynamics precludes a reactionless force. Indeed, that classical electrody-
namics conserves momentum is a result readily accessible to anyone with a 
serious, college-level course in electrodynamics. The Casimir effect, however, 
is more arcane. It is a force produced by quantum fields in a vacuum. Its basic 
mechanism is not so obscure. However, it is more demanding to develop a 
theoretical analysis of it that would securely preclude the reactionless force 
proposed by White and March. Such an analysis is within the expertise of 
Trevor Lafleur (2014), a physicist specializing in plasma physics. His analysis 
finds no basis for the reactionless force in the quantum vacuum.

11 Such confounders can be subtle. For example, Tajmar et al. (2018) report such a confounder 
in the coupling between electrical cables in the experimental setup and the Earth’s magnetic field.
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6. Inductively Self-Supporting Structures
There are self-supporting inductive structures.

6.1. Inductive Closure: That Is All There Is
A self-supporting inductive structure is a set of propositions such that each 
one in the set is well supported evidentially; the evidence supporting it is in 
the set of propositions; and the propositions that warrant the relations of in-
ductive support are propositions within the set. This set is inductively closed.

We have already seen such self-supporting inductive systems in the 
small. If we take the background propositions from among which they pro-
ceed as fixed, then they are found in the examples above of pairs of mutually 
supporting hypotheses and of networks of inductive support such that the 
relations of support cross over one another in a bewildering tangle. The more 
difficult and interesting problem is whether such systems arise on the large 
scale and whether they are embodied by our mature sciences. I will argue in 
the subsection below that, if a mature science is properly characterized by the 
rigidity described in the previous section, then the material theory entails 
that it is a self-supporting inductive structure.

Before proceeding, it will be helpful to address directly the sense that 
such structures are paradoxical. They might sound akin to lifting oneself into 
the air by pulling on one’s own bootstraps. However, there is no paradox. If 
one can affirm that each proposition in the set is well supported individually 
in virtue of other propositions in the set, then there is nothing more that can 
be asked. The analogy to pulling oneself up by one’s own bootstraps fails.12  
A better architectural analogy is to some elaborate sculpture whose total sta-
bility appears to be impossible, yet it still stands. A simple example is the 
tensegrity icosahedron of Figure 2.5.

12 In the imagined scenario, we hover in midair by pulling on our bootstraps. The pulling 
force is supposed to counter the force of gravity. This analysis neglects another force. The upward 
force from the bootstraps in tension is balanced by the downward force from the corresponding 
compression in our legs. The force of gravity remains unbalanced, and the eager bootstrap puller 
falls to the Earth.
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Figure 2.5. Plan and elevation of a tensegrity icosahedron;  
model and photographs by John D. Norton
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In a superficial description, it seems to be impossible that such a tense-
grity structure can stand. There are six rods connected only by cords in 
tension. One end of each of three rods rests on the table surface. All of the 
remaining rods and their parts are held suspended above the table surface. 
No rod directly touches any other rod. Their sole connections are through 
cords in tension. Such a structure, it seems, would collapse into a pile of rods 
and cords. Must not a rod, supported only by cords in tension, anchor those 
cords on another rod still higher in the structure? And must not that rod 
be held by cords tied to another still higher rod? And so on in an infinite 
regress? Yet there are only six rods, and it stands.

On closer examination, we can inspect any rod individually and affirm 
that it is supported securely by cords attached to both ends. That is true for 
any rod that we examine. That is all that is needed for the structure to stand. 
We need no additional, holistic condition beyond the condition that each rod 
individually is supported.

It is the same with self-supporting inductive structures. If we can affirm 
that each proposition individually is well supported inductively, then nothing 
further need be demanded. Of course, if we were tacitly to assume a hierarch-
ical structure for relations of inductive support, then these self-supporting 
inductive structures are impossible. Then at least some of the propositions 
needed to warrant all of the inductive inferences in the structure could not 
be inductively supported themselves within a finite structure. An infinite 
regress would ensue. However, as argued in detail above, this hierarchical 
assumption is incorrect.

One might still harbor reservations. These self-supporting inductive 
structures necessarily harbor circularities in the relations of support. That 
these circularities are benign I argue at length in Chapter 3, “Circularity.” 
Or one might accept that such structures exist but that they make the im-
port of evidence equivocal since our evidence might support many such 
systems. In Chapter 4, “The Uniqueness of Domain-Specific Inductive 
Logics,” I argue that a mechanism, native to the material theory of induc-
tion, precludes this danger.

6.2. Mature Sciences Are Self-Supporting Inductive Structures
We can now see that mature sciences are inductively self-supporting. This 
conclusion requires that the compass of a mature science is expanded enough, 
possibly even to embrace neighboring sciences, so that inductive closure is 
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secured. That means that we can select any proposition in the mature science 
and will find, within that compass, the evidence that inductively supports the 
proposition along with the propositions that warrant the inductive support.

This assertion of self-support supposes that we can expand the compass 
of a mature science sufficiently to secure closure. We can imagine that se-
quences of inductive inferences and warranting propositions form an infinite 
chain that outstrips finite description so that no finite expansion is adequate. 
I do not see how, as a matter of inductive logic, such a chain can be dismissed 
without further examination of its details. Perhaps it is possible. However, I 
do not see that it arises in actual practice in our mature sciences. If that were 
the case, then the inductive rigidity of a mature science would not be access-
ible to us. Yet our repeated experience in the history of science is that we do 
have mature sciences that display just the inductive rigidity described here.

7. Nonempirical Components of the Large-Scale 
Structure of Inductive Support
This chapter provides an account of the large-scale structure of inductive sup-
port that uses only materially warranted inductive inferences or relations of 
inductive support. One might accept that much of this large-scale structure 
is captured by the material theory. However, it might be tempting to imagine 
that the material account still needs to be supplemented by deeper, nonempir-
ical truths if the account of the large-scale structure is to be complete. Such 
deeper truths would be beyond normal evidential scrutiny and thus outside 
the reach of the material theory.

To make it plausible that no such added components are viable, in this 
section I consider and reject some candidates.

7.1. The Universal Logic of Induction
The least adventurous proposal for the added component is that the large-
scale structure requires at least some universal rules of inductive inference 
or some general calculus of induction. Perhaps we do need to assume the 
universal applicability of the probability calculus to all relations of induct-
ive support, as Bayesians seem to hold. The failure of all such universal rules 
has been argued at length in the Material Theory of Induction (Norton 2021) 
and reviewed in Chapter 1. There is no need for these arguments to be re-
peated here.
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7.2. Kantian Synthetic, A Priori Propositions
Might the very viability of induction at all depend on a Kantian synthetic a 
priori proposition? Such a proposition would be factual, but it would require 
no evidence since its truth — supposedly — can be established a priori: that 
is, independently of experience. Since the literature on this one idea could oc-
cupy many lifetimes, I dare express only my view that this literature has failed 
to provide viable examples of synthetic a priori propositions that could serve 
this function. Kant’s original proposals did not fare well. It might have been 
appealing to imagine in the eighteenth century that, as an a priori certainty, 
space could never manifest to us other than as Euclidean. However, those 
who have absorbed the variant spatial geometries brought by general relativ-
ity find it otherwise. The geometry of space is not something determinable a 
priori but a subject for empirical investigation.

The mode of failure of this one proposal for a synthetic a priori propos-
ition afflicts all of the proposals. If they make a definite, factual assertion, 
then they end up failing empirically. If they escape empirical refutation by 
vagueness, then they make no factual assertion and are empty.

7.3. Causality
Might we seek such a condition in a principle of causality? It is a Kantian 
principle and has an enduring popularity outside Kantian circles. The prin-
ciple asserts that every effect is brought about in a regular manner by some 
cause. Might such a supposition be a precondition for science and thus for 
inductive inferences in science? I have criticized this conception at length 
elsewhere.13 In short, the problem is that the terms “cause” and “effect” are so 
poorly specified that the principle is factually vacuous. We can always imple-
ment the principle in any scenario simply by artful choices for what the terms 
designate. Things in the world do connect in a myriad of interesting ways. 
What those ways are cannot be stipulated a priori but must be discovered 
empirically.

7.4. Mathematics
It is often found remarkable that mathematical descriptions of the world are 
so fertile and powerful. Might the supposition of a mathematical structure 

13 See, for example, Norton (2003, 2016, 2024).
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of the world be a prior condition necessary at least for the physical sciences? 
There is much to say on this supposition. The main point of relevance is 
that the supposition itself is open to empirical testing. We have tested it and 
found that it applies to a surprisingly large range of phenomena. This means 
that, in the absence of any deeper, a priori vindication, it is a contingent fact 
to be learned inductively. In this regard, it is no different from the other 
warranting facts of the physical sciences. It is not an obstacle to the material 
warranting of inferences but a part of it.

An illustration shows how the proposition is not an a priori principle but 
open to the possibility of failure empirically. Much of modern physics pre-
sumes that its basic laws are to be written as differential equations. That fun-
damental presumption has been challenged by Stephen Wolfram (2002). His 
“new kind of science” seeks to replace these differential equations in physics 
by discrete algorithms and cellular automata. It is a most radical proposal. 
Wolfram has continued to press his approach, but its reception among physi-
cists remains poor. Their skepticism is not based on an assertion that, as an a 
priori matter, the physical world must be governed by differential equations. 
Rather, as Becker (2020) reports briefly, the doubt is that Wolfram’s methods 
can recover the present results of physics with the same scope and accuracy. 
The concern is empirical. The proposal lacks powerful enough inductive sup-
port to supplant existing methods.

Nonetheless, we can still ask what the prospects are for an a priori justifi-
cation for the mathematical character of nature. These prospects are poor, in 
my view, since it is doubtful that there is a deep truth in the supposed math-
ematical character of nature. Rather, I harbor an enduring concern that our 
deference to the power of mathematical descriptions is excessive. The suppos-
ed truth is empty unless the specific mathematics favored by nature is speci-
fied. Yet the only way that we know to identify the right mathematics among 
many choices is empirical. Thus, I find it hard to be moved by a celebrated 
and poetic confession attributed to Heinrich Hertz: “One cannot escape the 
feeling that these mathematical formulas have an independent existence and 
an intelligence of their own, that they are wiser than we are, wiser even than 
their discoverers, that we get more out of them than was originally put into 
them.”14 On the contrary, I am in awe not of the formulae but of the creativity 

14 As quoted in Bell ([1937] 1953, 16). The quotation is unsourced and seems to be the 
origin of later repetitions. Recently, Shour (2021) has tracked down the origin of the remark in 
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of mathematicians who made them. New physical theories commonly come 
in clumsy mathematical clothing. Each new physical theory is taken as a chal-
lenge by mathematicians to find formulations in which the new theory looks 
mathematically simple and natural. The ensuing mathematics fits the world 
not through some preordained harmony but merely retrospectively through 
our ingenious and artful contrivances.15

To see the process, one need only recall the inadequacies of geometry as 
Euclid formulated it for the celestial mechanics of the seventeenth century. 
Kepler sought to use the Platonic solids in a nestled geometric structure to 
explain the relative orbital sizes of the planets. We now regard the whole pro-
ject not as reflecting the inner mathematical constitution of the world but as 
dependent on barren mathematical coincidences. One can only wonder at 
Newton’s labors in his Principia to develop his celestial mechanics using sim-
ple Euclidean geometry so poorly suited to the task. The theory becomes so 
much more elegant and transparent when re-expressed in the later methods 
of vector calculus, contrived in part precisely for this purpose.

7.5. The Ineffable
Finally, when explicit attempts to identify these nonempirical conditions fail, 
one might be tempted by the idea that these conditions are present but in-
effable. They are so deeply enmeshed in our ways of thinking that, it is specu-
lated, we cannot discern them. This appears to me to be the last defense of a 
failing program. These conditions have powerful consequences in connecting 
facts, and these connections are fully accessible to us. Yet the conditions that 
underwrite these connections are supposed to be opaque to us. The suppos-
ition of their invisibility makes them irrelevant. What matters are the contin-
gent connections that they supposedly induce among the facts of the science, 
and we can be secure in accepting these connections only if we can affirm or 
support them through methods accessible to us.

Hertz’s published writings. (I thank Marc Lange for letting me know of Shour’s paper.)
15 For another expression of this view in counterpoint to Einstein’s later Platonism, see 

Norton (2000, Appendix D).
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8. Conclusion
The four claims defended in this chapter form the basis of the material under-
standing of the large-scale structure of relations of inductive support. These 
claims by no means exhaust the questions that one might raise about this 
large-scale structure and the accompanying skeptical challenges to the ma-
terial understanding. Some of these questions and challenges will be raised 
in the chapters to come in Part I, and the claims defended in this chapter will 
be used to answer them. I will ask in Chapter 3, if the structure is nonhier-
archical, does it harbor circularities? (Yes.) Are they benign? (Yes.) What of 
uniqueness? I will ask in Chapter 4. That is, can a finite body of empirical 
evidence, even if extensive, yield a unique, self-supporting structure? (Yes.) 
Or must we forever contend with multiple, competing, self-supporting struc-
tures? (No.) Relations of inductive support are nonhierarchical and circular. 
Does this mean, I will ask in Chapter 5, that the material theory of induc-
tion is just a coherentist epistemology? (No.) And finally, in Chapter 6, what 
of the problem of induction? Is the material theory prone to the traditional 
problem? (No.) Is there an analogous problem residing in a fatal regress of 
warrants? (No.)

These are all good questions and worthy challenges. I will show that 
the material approach to inductive inference has ample resources for an-
swering them.
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