
THE MATERIAL THEORY OF INDUCTION
by John D. Norton 

ISBN 978-1-77385-254-6  

THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic 
version of a book that can be purchased in physical form through 
any bookseller or on-line retailer, or from our distributors. Please 
support this open access publication by requesting that your 
university purchase a print copy of this book, or by purchasing 
a copy yourself. If you have any questions, please contact us at 
ucpress@ucalgary.ca

Cover Art: The artwork on the cover of this book is not open 
access and falls under traditional copyright provisions; it cannot 
be reproduced in any way without written permission of the artists 
and their agents. The cover can be displayed as a complete cover 
image for the purposes of publicizing this work, but the artwork 
cannot be extracted from the context of the cover of this specific 
work without breaching the artist’s copyright. 

COPYRIGHT NOTICE: This Open Access work is published under a CC-BY-NC-ND 4.0 
Creative Commons licence, available freely to readers everywhere, at no cost to authors. 
This means that you are free to copy, distribute, display or perform the work as long as you 
clearly attribute the work to its authors and publisher, that you do not use this work for any 
commercial gain in any form, and that you in no way alter, transform, or build on the work 
outside of its use in normal academic scholarship without our express permission. If you 
want to reuse or distribute the work, you must inform its new audience of the licence terms 
of this work. For more information, see details of the Creative Commons licence at: http://
creativecommons.org/licenses/by-nc-nd/4.0/

UNDER THE CREATIVE 
COMMONS LICENCE YOU 
MAY:

• read and store this
document free of charge;

• distribute it for personal
use free of charge;

• print sections of the work
for personal use;

• read or perform parts of
the work in a context where
no financial transactions
take place.

UNDER THE CREATIVE COMMONS LICENCE YOU 
MAY NOT:

• gain financially from the work in any way;
• sell the work or seek monies in relation to the distribution
of the work;

• use the work in any commercial activity of any kind;
• profit a third party indirectly via use or distribution of
the work;

• alter or build on the work outside of normal academic
scholarship.
The cover can only be reproduced, distributed, and
stored within its function as a cover for this work, and
as a complete cover image for the purposes of publicizing
this work.

Acknowledgement: We acknowledge the wording around 
open access used by Australian publisher, re.press, and 
thank them for giving us permission to adapt their wording 
to our policy http://www.re-press.org



519

14

Uncountable Problems1

14.1. Introduction
The previous chapter examined the inductive logic applicable to an infinite 
lottery machine. As we saw, such a machine generates a countably infinite 
set of outcomes; that is, there are as many outcomes as natural numbers, 
1, 2, 3, …. We found there that if the lottery machine is to operate without 
favoring any particular outcome, the inductive logic native to the system 
is not probabilistic. A countably infinite set is the smallest in the hierarchy 
of infinities. The next step up the hierarchy routinely considered is a con-
tinuum-sized set, such as given by the set of all real numbers, or even just 
by the set of all real numbers in some interval from, say, 0 to 1.

It is easy to assume that the problems of inductive inference with 
countably infinite sets do not arise for outcome sets of continuum size. 
For a familiar structure in probability theory is the uniform distribution 
of probabilities over some interval of real numbers. One might think that 
this probability distribution provides a logic that treats each outcome in 
a continuum-sized set equally, thereby doing what no probability distri-
bution could do for a countably infinite set. This would be a mistake. A 
continuum-sized set is literally infinitely more complicated than a count-
ably infinite set. If we simply ask that each outcome in a continuum-sized 
set be treated equally in the inductive logic, then just about every problem 
that arose with the countably infinite case would reappear, and then more.

1	 My thanks to Jeremy Butterfield for a close reading of this chapter that led to many 
corrections.
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This chapter will explore the sorts of inductive logic that can imple-
ment uniformity of chance over an outcome set of continuum size. The 
notion of uniformity used is label independence, as developed in the pre-
vious chapter. To begin with, we will presume the outcome set is “bare”; 
in other words, that it has no further structure beyond its continuum 
size. Then, in Section 14.2, we shall see that label independence imposes 
an inductive logic, something like the infinite lottery machine inductive 
logic, but with more sectors. This is an unfamiliar logic, remote from a 
probabilistic logic.

If we seek a sense of uniformity of chance compatible with a prob-
abilistic logic, we must weaken the requirement of label independence. It 
will be weakened in successive sections in three stages. In Section 14.3, 
the unrestricted requirement of label independence will be weakened by 
requiring that the independence holds only for permutations that preserve 
a s-field of subsets of a continuum-sized outcome set. This is a natural 
first step, since probability measures in continuum-sized outcome sets are 
generally only defined over such subsets. We will find that this weakening 
is insufficient. A probability measure fails to conform with the weakened 
requirement of label independence. The failure is not remedied by a fur-
ther weakening that only allows permutations that are involutions. The 
applicable logic turns out to be akin to that of the completely neutral sup-
port of Chapter 9. 

In Section 14.4, label independence will be further weakened by 
assuming that the continuum-sized outcome set has its own metrical 
structure, commonly the metrical geometry of a space. The permutations 
of label independence are restricted to those that preserve areas or vol-
umes of this metrical geometry. Finally, this weakened version of label 
independence will be shown to be compatible with a probabilistic logic: it 
is one that matches probabilities with the space’s areas or volumes.

The success, however, will prove limited. For if the metrical space is 
infinite in area or volume, a probabilistic logic cannot provide uniformity 
of chances. It is easy to see that a metrically adapted label independence 
requires that this uniformity be expressed by the same inductive logic that 
applies to the infinite lottery machine. This inductive logic is the one that 
applies to the stochastic process of continuous creation of matter in Bondi, 
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Gold, and Hoyle’s steady-state cosmology. Its application to this case is 
teased out in enough detail to return some curious results.

That this last inductive logic is applicable will be demonstrated by de-
composing the space into infinitely many parts. The parts will then be re-
assembled in a way that respects the background metrical structure of the 
space but precludes an additive measure. This construction is one of the 
simplest of a corner of mathematics that explores “paradoxical decompos-
itions.” This literature is introduced in Section 14.5. It has explored more 
thoroughly the difficulties faced when we seek to use additive measures 
to gauge the size of sets in a metrical space. The construction of Section 
14.4 employs a decomposition into infinitely many parts. If our space had 
hyperbolic geometry, then a remarkable construction reported by Stan 
Wagon (1994) shows that similar results can be achieved by decomposing 
the space into just three parts each of infinite measure.

The literature of paradoxical decompositions is the locus of nonmeas-
urable sets. These are sets in a metrical space to which no area or volume 
can be assigned consistently. While the difficulties for probability meas-
ures have so far arisen only in metrical spaces of infinite area or volume, 
these nonmeasurable sets become problematic for probability measures 
defined over spaces with finite total area or volume. For such a probability 
measure will fail to assign a value to these nonmeasurable sets. Since these 
nonmeasurable sets impose a fundamental limitation on the use of prob-
ability measures in such spaces, they will be pursued in the remainder of 
the chapter.

Section 14.6 will review the simplest example, a Vitali set. Since a 
Vitali set is metrically nonmeasurable, it is beyond the reach of a probabil-
ity measure adapted to the spatial metric. Instead, the chance that some 
outcome of a random process will be found in a Vitali set is shown to 
follow a familiar inductive logic—that of the infinite lottery machine. This 
section also discusses the awkwardness that nonmeasurable sets are not 
constructible by the means normally employed in set theory. Rather, their 
existence is posited by the axiom of choice.

Finally, in Section 14.7, I will recount a nonmeasurable set described 
by David Blackwell and Persi Diaconis (1996) that comes closer to the sort 
of systems commonly treated in accounts of inductive inference. It is a 
probabilistically nonmeasurable outcome set that arises with infinitely 
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many coin tosses. In Section 14.8, I show that there is a weak inductive 
logic native to the example that I call an “ultrafilter logic.”

Overall, this investigation shows that in many cases of a continu-
um-sized outcome set, a probabilistic logic fails to apply. Other, non-prob-
abilistic logics do apply locally to the specific problem posed. To recount 
them, they appear as: Section 14.3.6, Section 14.4.2, Section 14.6.2: varia-
tions on an infinite lottery machine logic. Section 14.8: an ultrafilter logic.

14.2. The Inductive Logic of Uniform Chances in a 
Bare Continuum
How might an inductive logic provide equal support or equal chances to 
every outcome in a space of continuum size? To answer, we need to specify 
the applicable notion of equality or uniformity of chances. This condition 
was developed in the previous chapter. An infinite lottery machine select-
ed among a countable infinity of numbers fairly—that is, without favoring 
any. Each of the infinity of outcomes was assigned a unique number label. 
The fairness of the lottery was expressed in the following condition:2

Label independence. All true statements pertinent to the chances 
of different outcomes remain true when the labels are 
arbitrarily permuted. 

That individual outcomes have equal chance is secured through propos-
itions like

Outcomes numbered “37” and “18” have the same chance.

The statement remains true no matter how we redistribute number labels 
across the outcomes. This indifference to the labels assigned to individual 
outcomes can only come about if all outcomes have the same chance. This 
sameness fails with statements like

2	 Here and below, a permutation is a one-to-one mapping on the label set or, 
correspondingly, on the outcome set. In the previous chapter, these sets were countable. In 
conformity with modern usage, the term “permutation” will continue to be used when the label of 
the outcome set is continuum sized. The term is synonymous with bijection.
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Outcome number “37” has greater chance than outcome number 
“18.”

This statement cannot remain true under a relabeling that switches labels 
“37” and “18,” assuming that the relation of “greater chance” is asymmet-
ric. These considerations apply also to sets of outcomes

The odd-numbered set of outcomes has the same chance as the 
even-numbered set of outcomes.

This statement remains true no matter how we permute the number labels 
over the outcomes. Once again, this indifference of the sets to the numbers 
that label their elements can only come about if the two sets have the same 
chance. From similar statements, it follows that two sets of outcomes have 
the same chance, just in case there is a permutation of the number labels 
that reassigns the numbers labeling the first set to the second set.

We now apply label independence to an outcome set of continuum 
size. We saw in the previous chapter that the chance values assigned to sets 
of outcomes of an infinite lottery machine drawing were divided into two 
sectors, a finite sector and an infinite sector. Replicating the procedure of 
the previous chapter for the new case of a continuum-sized outcome set, 
we find a similar but more complicated structure, with three sectors. In 
the continuum-sized case, the chance of an outcome in various outcome 
sets has the indicated values and associated informal interpretation:

Finite set of outcomes of size n: 

A countable infinity of values, V(n), n = 1, 2, 3, …; “very 
unlikely.”

Countably infinite set of outcomes:

One value only, V(countably infinite); “unlikely.”

Continuum-sized infinite set of outcomes: 

For an outcome set of continuum size and whose complement 
is continuum sized,
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	 One value only, V(continuum-co-continuum); “as likely 
as not.”

For an outcome set of continuum size and whose complement 
is countably infinite,

	 One value only, V(continuum-co-countable); “likely.”

For an outcome set of continuum size and whose complement 
is finite, 

	 V(continuum-co-finite n), n = 1, 2, 3, …; “very likely.”

The strength of support grows as we move down this list. The distance 
between the sectors is very great since we step up the hierarchy of infinites. 
We could, presumably, find many results that match those of the infin-
ite lottery machine logic and many more that do not, because of its extra 
structure. However, I will pass over this exercise. What matters for our 
purposes is that the fullest implementation of uniformity in a continu-
um-sized outcome set leads to a logic that is quite different from a prob-
abilistic logic.

14.3. Uniformity over a s-Field of Outcomes

14.3.1. A Uniform Probability Distribution
The logic of the last section is very different from a probabilistic logic. We 
were driven to this logic by the requirement of label independence. If we 
are to find conditions more conducive to a probabilistic logic, we will need 
to weaken this requirement. To map a pathway for this, we need to see our 
goal: a uniform probability distribution over a continuum-sized outcome 
set. Take the especially hospitable case3 of outcomes labeled by real num-
bers in the interval [0, 1]—that is, the set of real numbers x, such that 0 ≤ x 
≤ 1. The uniform probability distribution over this interval is derived from 
a probability density function

3	 It is hospitable since, otherwise, if either end of the interval extends to infinity, a 
uniform non-zero probability density over the interval integrates to an infinite probability over the 
whole interval.
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and it is plotted in Figure 14.1.

Figure 14.1. Uniform probability distribution.

We extract probabilities from this probability density for sets of outcomes 
by computing the corresponding areas under the curve. The probability of 
an outcome labeled by a real number in the interval [a, b], where 0 ≤ a ≤ b 
≤ 1, is the area shown in the figure and, of course, is equal to b − a.

This distribution certainly looks like it is choosing without favor 
among the continuum-sized outcome labeled by [0, 1]. The curve in Figure 
14.1 is flat. It is also free of a problem that faces a uniform probability 
distribution over a countably infinite outcome space: there is no countably 
additive, uniform probability distribution over the set. For such a distri-
bution, each outcome would have to be assigned the same probability. If 
this value is zero, then their countably infinite sum is also zero, in contra-
diction with the requirement that the probabilities of all mutually exclu-
sive outcomes must sum to unity. In contrast, the probability density (1) 
can assign zero probability to each of its continuum many outcomes with-
out a corresponding difficulty. The summation of an uncountable infinity 
of zeros is not a well-defined operation in standard probability theory.

In spite of these encouraging signs, the uniform probability distribu-
tion fails to implement the requirement of label independence. Consider a 
statement like the following: 
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(Eq) The probability of events labeled by real numbers in  
[0, 0.5] is the same as the probability of events labeled by 
real numbers in [0.5, 1]. 

Since the permutations admissible under label independence are entirely 
unrestricted and can scatter the labels about in all imaginable ways, it is 
easy to see that this and other statements like it fail to remain true when 
the number labels are permuted. Some restriction on the permutations is 
needed if label independence is to apply.

14.3.2. The s-Field
One of the founding results of modern measure theory is that an additive 
measure, such as a probability measure, cannot assign a measure to all 
subsets of points in a space if the space is sufficiently large. In such large 
spaces there are many nonmeasurable sets. In Section 14.6 below, we shall 
see the standard example that arises in the interval [0, 1] of real numbers, 
a Vitali set. It follows that probabilities can be defined only for a preferred 
subset of all the subsets of real numbers in [0, 1]. The resulting restric-
tion on the scope of probability measures has been built into the modern 
mathematical formalism from the outset. Andrey Kolmogorov (1950), the 
locus classicus of the modern tradition, introduces the distinction in his 
definitions. A probability measure is defined in the context of a set of “ele-
mentary events” (p. 2). It is, for example, the set of outcomes labeled by 
real numbers in [0, 1]. However, a probability is not automatically defined 
for all subsets of this set. Rather, probabilities are initially defined only for 
some of these subsets. These are the “random events” that form a field or 
algebra of sets. That is, the field or algebra is by definition closed under the 
finite union, finite intersection, and complement of its members. When 
the set of elementary events is infinite, the fields or algebras are required to 
be s-fields or s-algebras; that is, they are closed under countably infinite 
unions and intersections.

Since a probability measure can assign probabilities only to some of 
the subsets of elementary events labeled by real numbers in [0, 1], these sets 
have to be identified if the probability measure is to be adequately defined. 
The standard procedure is to work backwards from the probabilities that 
we cannot forego. In forming the probability distribution associated with 
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(1), we expect that, whatever other assignments of probability there may 
be, the probability assigned to all intervals of the form [a, b] above is b − a. 
So we include in the s-field all intervals of the closed form [a, b] as well 
as half-open [a, b), (a, b], and open (a, b).4 We then require that the s-field 
associated with the uniform distribution be one that contains all of these 
intervals and is closed under all countable unions and intersections. It is 
not obvious that such a field should exist or, if so, that it should be unique. 
Both are assured by the Extension Theorem (Kolmogorov 1950, p. 17).5

14.3.3. s-Field Adaptation
The uniform distribution does not assign probabilities to all subsets of 
the elementary events labeled by real numbers in [0, 1]. It follows that the 
truth of statements concerning subsets of elementary events cannot be 
preserved under an arbitrary permutation of the numbering of the ele-
mentary events used in the statement. The permutation may take a set for 
which a probability is defined to one that is nonmeasurable. What is a true 
statement for the original set about its probability may fail to be true when 
those same number labels are applied to a nonmeasurable set, for the latter 
set has no probability. Thus, the subsets in the s-field are favored in the 
sense that a probability is defined for them only. Label independence fails.

If a probability density (1) is to conform with label independence, we 
need to weaken label independence. A first step in this weakening is to 
restrict the permutations so that they only map sets of events in the s-field 
to sets of events in the s-field. 

s-field adapted label independence. All true statements pertinent 
to the chances of different outcomes remain true when the 
labels are permuted by all permutations that preserve the 
sets of the s-field. 

A consequence is that sets of elementary events labeled by some open, 
half-open or closed interval of real numbers, always remain labeled by 
such intervals under all permutations to be considered. 

4	 By the usual convention [a, b) contains all x for which a ≤ x < b, etc.
5	 See Rosenthal (2006, chap. 2) for a more expansive introduction to this result of great 

foundational importance.
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14.3.4. Failure
While s-field adaptation is a necessary adaptation if the uniform probabil-
ity density (1) is to be compatible with label independence, it turns out not 
to be sufficient. The uniform probability density (1) still does not conform 
with the weakened requirement. The permutations of the weakened re-
quirement are continuous functions on x that invertibly map the interval 
[0, 1] back to [0, 1]. The condition of invertibility is essential. Otherwise, 
the function would redistribute the number labels in such a way that one 
elementary event would be assigned more than one new number label. 
There are, of course, very many such invertible functions. Label independ-
ence requires that all of them leave the probability distribution unchanged. 
The trouble is that virtually none of them leave it unchanged.

One example illustrates the general behavior. We start with two events 
consisting of elementary events labeled by real numbers x in the intervals 
[0, 0.5] and [0.5, 1.0]. The probability density (1) assigns equal probability 
of 0.5 to each event. As we saw above in (Eq), label independence requires 
that this statement remain true when we permute the numbers that label 
the elementary events. We use an invertible, continuous function to carry 
out the permutation. Let that function map each real number x in [0, 1] to 
a new value y in [0, 1] according to

To use the function as a permutation of labels, we take the elementary 
event that was originally labeled y and assign it the new real number label 
x. The number x is “carried along” by the function. Under this permu-
tation, as shown in Figure 14.2 (left), the two events originally labeled 
with real numbers in the intervals [0, 0.5] and [0.5, 1.0] are mapped to the 
events originally labeled with real numbers in the intervals [0.8666, 1] and 
[0, 0.8666], respectively. These last events are now assigned the new, car-
ried along number labels in the intervals [0, 0.5] and [0.5, 1.0] respectively.
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Figure 14.2. Uniformity of probability not preserved under 
permutation.

These two intervals have unequal probabilities under the probability 
density (1): the probabilities are 1 − 0.8666 = 0.1333 and 0.8666 respective-
ly. The permutation (2), however, assigns them new number labels in the 
intervals [0, 0.5] and [0.5, 1.0], respectively. Statement (Eq) is false if we use 
the permuted number labels. Label independence is violated.

What would it take for label independence to be preserved? The condi-
tion needed is simple. A permutation like (2) can “carry along” the prob-
abilities assigned to the origin set to the destination set. The key condition 
is that this carried along probability must match that originally assigned 
to the destination set. This is what failed for the permutation (2) above.

We can give this condition a general formulation as follows. The prob-
ability assigned to some small interval x to x + dx is approximated by 
p(x)dx. Under the permutation, the number labels in the interval x to x 
+ dx are now reassigned to events originally labeled by numbers in the 
interval y to y + dy. These events were originally assigned a probability 
approximated by p(y)dy. The condition that this original probability and 
the carried along probability agree is
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Taking the limit of dx and dy to zero, we have6

Here p(y) is the new probability density induced by the carrying along 
of the original probability density by the permutation, expressed in the 
original number labels.

A short calculation shows that the carried along probability density 
of (3), when computed for the permutation (2) and the source probability 
density (1), is

This induced probability density is no longer uniform over its argument, 
y. Thus, statement (Eq) will turn from true to false under permutation (3), 
violating label independence.

These last considerations lead directly to the general condition that 
must be satisfied by all permutations if label independence is to be pre-
served. It is simply

Comparing (3) and (4), we see that this equality of probability densities 
can only be secured if |dx/dy| = 1. This last condition is violated by almost 
every permutation of the number labels. For y(x) a continuous, differenti-
able function of x, it is satisfied only by two cases y = x and y = 1 − x.

The outcome is that the probability density (1) does not distribute the 
chances over a continuum set of elementary events indifferently, in the 
sense captured by the requirement of s-field adapted label independence. 
For there are just two “right” ways to apply the numbering. This suggests 
that there is more structure hidden in the example than merely a continu-
um-sized set and its s-field of subsets.

6	 The absolute norm in |dx/dy| keeps p(y) positive in both cases above. Note that |dx/dy| 
is either always positive or always negative, since the conditions of continuity and invertibility 
requires x(y) to be everywhere increasing or everywhere decreasing.
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14.3.5. Involutions
Before proceeding, we should briefly consider a tempting escape from 
the problems just developed. Might we propose that some x is the “right” 
labeling to use—that it has some property intrinsic to the problem, and 
that a permutation y is somehow ill-suited—since it takes us to another 
labeling that lacks the property?

The particular function (2) above was chosen with just this possibil-
ity in mind. For it is an involution, which means it has the characteristic 
property that a double application of the function returns the original 
argument—that is, x = f(f(x)). This means that there is a perfect symmetry 
in the relationship between x and y. Exactly the same functional form as 
(2) takes us back from y to x:

Figure 14.2 (right) shows the inverse mapping of the interval y in [0, 0.5] to 
the interval x in [0.8666, 1]. The graph of an involution has the distinctive 
property of symmetry around the diagonal axis of the dashed line y = x, 
shown in Figure 14.2. Clearly, there are many more involutions, since this 
symmetry is all that is required.

The use of an involution responds directly to the idea that some la-
beling might be the “right” one. For it follows from the symmetry that, 
for any property that x bears with respect to y, there is a corresponding 
property that y bears with respect to x. Thus, any decision that one of x or 
y is somehow favored cannot be derived from properties intrinsic to the 
parameters. Whatever case we make for favoring x based on the intrinsic 
properties of x, there is a corresponding case that can be made for y. What 
results is a further weakening of label independence:

s-field, involution adapted label independence. All true 
statements pertinent to the chances of different outcomes 
remain true when the labels are permuted by all 
involutions that preserve the sets of the s-field.

The existence of many involutions then shows that this proposal for escape 
fails. There is no intrinsic property of one labeling x that distinguishes 
it. A preference for x must be imposed by us externally by fiat. Such an 
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external imposition breaks label independence. We may, however, find an 
external basis for the imposition, as we shall see in Section 14.4 below.

14.3.6. The Natural Inductive Logic on [0, 1]
What if we forego the idea that inductive support must be represented 
probabilistically?7 What inductive logic over the intervals of [0, 1] con-
forms with these two weakened requirements of label independence? Even 
with these weakenings, it turns out that the only inductive logic admis-
sible is akin to the infinite lottery machine logic.8 The logic assigns the 
same neutral value I to any interval9 (a, b), where 0 ≤ a < b ≤ 1 in [0, 1], 
except (a, b) = (0, 1):

That this is the unique inductive logic that conforms with the weakened 
label independence follows from two statements:

(i) In some real number labeling of the elementary events, 
all intervals (a, b) of equal size |b − a| accrue the 
same support: support((0, 0.1)) = support((0.1, 0.2)) = 
support((0.2, 0.3)) = … etc.

(ii) For any 0 < a < 1, 0 < b < 1, there exists an involution on 
[0, 1] that maps the interval (0, a) to the interval (b, 1). By 
label independence, they have the same support.10

Take any two intervals in the scope of (5): (a, b) and (c, d). By (i), they have 
the same support as (0, b − a) and as (1 − (d − c), 1), respectively. Through 
(ii), label invariance entails that the intervals (0, b − a) and (1 − (d − c), 

7	 For comparison, the transformational behavior of probability measures under 
involutions has been explored in greater detail in Norton (2008).

8	 As with the infinite lottery machine logic, different supports are assigned to sets of 
outcomes of finite size or countably infinite size.

9	 For simplicity of exposition, I consider only open intervals (a, b). The same results apply 
to half-open and closed intervals.

10	 For the statement “Events labeled by (0, a) have support X” must be true also of events 
labeled (b, 1), since this second set of elementary events can be relabeled through the involution by 
numbers in (0, a). 
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1) have equal support. Hence, all intervals in (5) have the same support, 
which we label as “I”.

In this analysis, (i) is an assumption that amounts to requiring that 
there be at least some numbering that is naturally adapted to the equalities 
of support.11 Statement (ii) is derived from the properties of involutions. 
Readers who are satisfied that the statement is correct might like to skip 
over the details that follow.

Statement (ii) can be demonstrated though two families of involutions 
that are jointly dense in the unit square, as displayed in Figure 14.3.

Figure 14.3. Two families of involutions on [0, 1].

These involutions derive from the formulae:

That they are involutions can be seen by rearranging each to give

11	 Almost all of (5) can be derived with constructions like those of (ii). However, no 
continuous involution can map all the equalities needed. None can map, say (0, 0.5) to (0.1, 0.6). 
Something like assumption (i) is needed to complete derivation of (5).
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Since x and y enter symmetrically into these rearranged formulae, it fol-
lows that, in each case, y has the same functional dependency on x as x 
does on y.

Consider the interval (0, a) of (ii) for any 0 < a < 1. It follows from 
the density of the involutions that there always exists one involution that 
maps (0, a) to (b, 1) for any 0 < b < 1. As Figure 14.3 shows, the A family 
of involutions, maps (0, a) to (b, 1), where 0 < b < 1 − a. The B family of 
involutions maps (0, a) to (b, 1), where 1 − a < b < 1. The involution y = 
1 − x, intermediate between the two families, covers the intermediate case 
of b = 1 − a, in which (0, a) is mapped to (1 − a, 1)

14.4. Uniformity from Metrical Lengths, Areas, and 
Volumes

14.4.1. Metrical Adaptation
If the uniform probability density (1) is to conform with label independ-
ence, we will need to weaken the requirement still further. In many im-
portant cases, a continuum-sized outcome set has a further structure: a 
spatial metrical structure to which the probability distribution must be 
adapted. Metrical structure assigns lengths in one-dimensional continua, 
areas in two-dimensional continua, and volumes in three-dimensional 
continua and higher.

When metrical structure is present, we often require that chances be 
adapted to it. This means that sets of outcomes that are equal in length, 
area, or volume have equal chances. These cases arise when—in accord-
ance with the material theory of induction—background facts warrant it. 
Here are some examples. A very long steel beam has defects randomly 
distributed throughout. If it is stressed uniformly, this fact ensures that 
fracture is equally probable in portions of equal length. A dart is thrown 
at a dart board. Assuming disturbances from sufficiently many random 
factors, it is equally likely to strike regions of equal area. Under the physic-
al principle of the maximization of thermodynamic entropy, a molecule 
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of an ideal gas, free of external fields, is equally likely to be in parts of the 
containing vessel of equal volume.

This adaptation of chances to metrical structure can be implemented 
by restricting the set of the permutations in the requirement of label 
independence:

Metrically adapted label independence. All true statements 
pertinent to the chances of different outcomes remain true 
when the labels are permuted by all permutations that 
preserve the metrical measures of outcome sets. 

A permutation preserves metrical measure just when labels identifying 
some metrically measurable set of outcomes are permuted to a new set of 
outcomes that has exactly the same metrical measure. In generic cases, 
such a permutation can switch any region with any other of the same 
metrical measure. In these cases, it follows from this weakened version 
of label independence that the chance of some outcome depends only on 
the length, area, or volume associated with it. The statement “outcome A 
has chance such-and-such” must remain true when the labels identifying 
outcome A are relocated to any other part of the space under a metrical 
measure preserving-permutation. The relocated outcome must have the 
same length, area, or volume as the original, no matter how they may dif-
fer in their other properties.

These metrical measure-preserving permutations are allowed to pre-
serve metrical measure patchwise. That is, they can divide up the space 
into patches and rearrange them, as long as the rearrangement preserves 
the measure of each patch. This last patchwise construction is a main-
stay of traditional geometry. It is the standard method of proving equality 
of areas and volumes. A rather pretty example that uses area-preserv-
ing permutations to prove Pythagoras’s theorem is one given by Rufus 
Isaacs (1975). The square on the left of Figure 14.4 shows four right-angle 
triangles, each with sides of length a, b, and hypotenuse c. They enclose 
a central square of area c2, which is the “square on the hypotenuse” of 
Pythagoras’ theorem. The area associated with this square is redistributed 
under a permutation shown in two steps in the central two squares. First, 
two triangles are permuted so that their positions are moved down the 
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figure. Then, two of the triangles are moved together up the figure. The 
result, shown in the square on the right, is that the region forming the 
square of area c2 has been relocated to a new region consisting of two 
squares, one of area a2 and another of area b2. These are the “squares on 
the other two sides.” They are shown by this construction to be equal to 
the square on the hypotenuse.

 
Figure 14.4. A metric preserving permutation proves Pythagoras’ 
theorem.

If the chances are expressed by probabilities, metrically adapted label in-
dependence requires equal lengths, areas, and volumes to be equally prob-
able. Familiar cases work just as we would expect. These successful appli-
cations of the probability calculus arrive easily. It is because an additive 
metrical structure is already present in the physical assumption that the 
spatial continua have lengths, areas, or volumes native to them. Chances 
acquire that additive structure upon adaptation to the metrical structure. 
Disjoint volumes add to give the combined volume, so the chances of 
outcomes in them add also to give the disjoined chances. Since the total 
system length, area, or volume may have an arbitrary magnitude, all that 
remains is to normalize the adapted chances to unity to recover probabil-
ity measures. If the total area of a dart board is 144 square inches, then the 
probability of the dart striking any nominated square inch area is 1/144.

14.4.2. The Infinite Lottery Machine Logic, Again
We can now see which will be the troublesome cases: those in which the 
lengths, areas, or volumes of the total system are infinite. For then, nor-
malization over a uniform measure is no longer possible. If the dartboard 
is infinite in area, then the probability of the dart striking any nominated 
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square inch is 0 = 1/∞. Since the infinite area is a countable infinity of 
unit areas, the chance relations among them turn out to be the same as 
in the infinite lottery. That is, the requirement of metrically adapted label 
independence leads us to the same inductive logic as applies to an infinite 
lottery machine.

An easy way to see this is to continue with the example of the infin-
ite dart board—that is, as areas on an infinite Euclidean plane. A process 
identifies a point in the plane in such a way that its chances conform with 
metrically adapted label invariance. We can divide this plane into infinite-
ly many tiles of equal, finite area. For convenience, let us pick square tiles. 
We consider the outcome that the point selected is in one or more of these 
tiles. Each will have an equal chance. Infinitely many real number pairs 
label each square uniquely. Since there are a countable infinity of tiles, we 
can relabel them with single natural numbers, 1, 2, 3, …. The resulting re-
labeling will now conform with the original, unrestricted requirement of 
label independence. Since the labels are natural numbers, the arguments 
of the previous chapter apply. The chances of outcomes in various sets of 
the tiles conform with the infinite lottery logic.

It now follows that all areas consisting of finitely many n tiles have the 
same chance and—as with the infinite lottery—are assigned the chance 
value Vn. Since the areas of the tiles are additive, we have the further prop-
erty of the additivity of these chance values. For all finite m and n,

These finite cases can be developed further in obvious ways. The more 
interesting cases, however, are outcomes in parts of the plane of infin-
ite area. To put it crudely, under metrical adaptation, we expect trouble, 
since all infinite areas are equal. Using arguments carried over from the 
analysis of the infinite lottery machine, we will find that the chances of 
outcomes in all infinite-co-infinite regions have the same value, called V∞ 
in the infinite lottery case.

To see this, we divide the infinite plane into four quadrants, I, II, III, 
and IV. We can then reproduce the argument concerning the sets one, two, 
three, and four of the infinite lottery machine. We first number the tiles in 
the quadrant I with the numbers in the set 
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and then continue for quadrants II, III, and IV with the numbers in the 
sets

respectively, as shown on the left in Figure 14.5. 

Figure 14.5. Rearranging tiles over the quadrants of an infinite 
plane.

Since each quadrant contains a countable infinity of tiles, we can proceed 
just as we did with the infinite lottery machine. We can rearrange the tiles 
so that all those in quadrant I fill both quadrants I and III, while those 
previously in quadrants II, III, and IV fill just quadrants II and IV. Or we 
can rearrange the tiles so that those in quadrant IV fill quadrants I, II, 
and III, while those previously in quadrants I, II, and III just fill quadrant 
IV. This rearrangement is shown on the right in Figure 14.5. Since the 
rearrangement of tiles is merely a permutation of the labeling, it preserves 
chances. With further similar permutations, we can conclude
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where “Ch(I)” designates the chance of an outcome in quadrant I.
Since this inductive logic has been elaborated more fully in the pre-

vious chapter, there is no need to duplicate the analysis here. Similar ma-
nipulations can show that this same inductive logic applies to one-dimen-
sional continua with length and three-dimensional and higher continua 
with volume if the chance processes in them conform with metrically 
adapted label independence. The next section provides an illustration in a 
science of this logic in a three-dimensional space.

14.4.3. Continuous Creation of Matter in Steady State 
Cosmology
The steady-state cosmology of Bondi, Gold, and Hoyle enjoyed consider-
able attention with its initial formulation of 1948, until it eventually suc-
cumbed to several empirical problems. The most notable was an endur-
ing difficulty in explaining naturally the cosmic background radiation 
observed by Arno Penzias and Robert Wilson in 1964. The cosmology is 
based on the “perfect cosmological principle.” It goes beyond the more 
familiar cosmological principle in asserting that the universe presents the 
same average aspect to us not just at all positions in space, but at all times 
as well.

We know from measurements of the velocities of distant galaxies that 
the matter of the universe is everywhere expanding. That would normally 
entail that the average density of matter is everywhere decreasing, so it is 
lesser at later times. This decrease would violate the perfect cosmological 
principle. So steady-state cosmology posits the continual creation of mat-
ter at just the right rate to maintain a constant, average matter density 
through time. Since ordinary matter is particulate in nature, this contin-
ual creation must be a discrete process with particles popping into exist-
ence stochastically. In Bondi and Gold’s (1948, p. 256) original proposal, 
the rate of creation was “estimated as at most one particle of proton mass 
per litre per 109 years.”12 Within a few years, the requisite creation rate was 
updated with new astronomical measurements of the rate of expansion 
of the universe. In 1960, Bondi estimated it as “on an average the mass of 

12	 This corresponds to a mass creation rate of approximately 10-43 g/sec cm3 (p. 265).
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a hydrogen atom is created in each litre of volume every 5 × 1011 years” 
(1960, p. 143).13 The difference between creation of a particle of proton 
mass and hydrogen atom mass is inconsequential. A hydrogen atom con-
sists of a proton and an electron and the proton comprises roughly 99.9% 
of the atom’s mass.

For our purposes, the delicate question is just what stochastic rules 
govern the creation of these particles. The theorists ruled out the initial-
ly plausible possibility of matter being created within stars. Insufficient 
newly created matter could escape from stars to form new galaxies. (Bondi 
and Gold 1948, p. 266; Bondi 1960, p. 149). On grounds of simplicity, the 
theorists proposed creation processes uniformly distributed through 
space. As Bondi and Gold pointed out,

According to this view the probability of creation taking 
place in any particular four-dimensional element of vol-
ume (spatial volume element × element of time) is simply 
proportional to its (four-dimensional) volume, the factor of 
proportionality being a function of position. By our argu-
ment in 14.4.1 this factor cannot vary very much from point 
to point. (1948, p. 268)

Bondi later added, “It seems simplest to suppose that the probability of cre-
ation in any small four-dimensional element of space-time is simply pro-
portional to its four-dimensional volume” (1960, p. 151). On the strength 
of these remarks, we shall proceed in assuming the following stochastic 
model. In some fixed interval of cosmic time, there is an equal chance of 
creation of a hydrogen atom in each region of space of the same volume. 
Creation events are independent of each other.

Bondi and Gold assumed that chance in this model could be prob-
abilistic. They were mistaken. Since the space of steady-state cosmology is 
Euclidean and thus infinite, the stochastic model conforms with metric-
ally adapted label independence and is governed by the infinite lottery 
machine inductive logic. As a result, the process of continual creation that 
they described will not proceed quite according to normal expectation.

13	 This corresponds to a mass creation rate of approximately 10-46 g/sec cm3 (p. 143).
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To explore the application of this logic to continual creation, imagine 
the Euclidean space of the cosmology divided into two infinite parts, “left” 
and “right” by some infinite plane. We will ask about the distribution of 
new particle creation events on the two sides of the plane in the course of 
a year. Since the average creation rate per unit volume of space is assumed 
to be non-zero, infinitely many particles will be created on each side over 
the year. Is this creation rate the same on both sides? That is, in the long 
run, are one in two creation events on the left side?

It is tempting to give the quick answer that the rate is infinitely many 
particles per year in both; therefore, they are equal. This equality is some-
thing less than it seems. It does not support the further conclusion that 
one in two creation events are, in the long run, on the left side. Take the 
case in which the rate of particle creation per unit volume per year on the 
left side is 1,000 times greater than on the right side. Since both volumes 
are infinite, this case too yields a creation rate of infinitely many particles 
per year on both sides. Yet we do not expect one in two of them to be in 
this left side in the long run. It seems that a more refined means of com-
paring the rates of creation is needed.

In the course of a year, infinitely many particles will be created, but 
it will be a countable infinity. (There are a countable infinity of equal vol-
umes of space. In each, at most a finite number of particles will be creat-
ed, usually zero or one.) If we track these creation events one by one, we 
can form the ratio of left-side particle creation events to the total number. 
Among N particle creation events, there will be NL creation events on the 
left side.

Since left and right are equally favored, our expectation is that the 
ratio of NL/N will stabilize towards one half as we let N go to infinity. This 
expectation is not supported by the infinite lottery inductive logic. This 
case is isomorphic to the frequency of even numbers in repeated drawings 
from an infinite lottery machine. We saw in the previous chapter (§10.8) 
that the relative frequency of even numbers among all those drawn does 
not stabilize to any definite value. 

This result may seem to contradict the symmetry of right and left. 
Surely half of all creation events must happen on the left in the long run 
and half must happen on the right? This expectation depends on the tacit 
assumption that there is an average in the long run to the fraction of 
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creation events. We now see that there is not. The symmetry of left and 
right is preserved in the sense that no stable fraction arises in the long run 
for both left and right.

This result arises from tracking creation events in infinite volumes 
of space. If we restrict our consideration to finite volumes of space, then 
the normal probabilistic analysis succeeds. Over time, constant mass is 
preserved on average in each finite volume of space, as required by steady-
state cosmology.

Finally, as a minor point, this analysis involves a technical complica-
tion. It requires an enumeration of the particle creation events in the year 
by 1, 2, 3, 4, …, N, … so that the limit of the ratio NL/N can be formed. 
Such an enumeration is possible since there are only a countable infinity 
of creation events. However, the enumeration must be dictated by a rule 
that is independent of whether the event is on the left region or right re-
gion. The simplest such rule is to number the creation events by their time 
order. We would number the temporally first event 1, the second 2, and so 
on. The difficulty is that there may be no first event if the creation times 
have an accumulation point towards the past. This arises if, for example, 
the creation events happen at times (in years) 1/100, 1/101, 1/102, 1/103, … 
There can be multiple such accumulation points. If there are accumulation 
points towards the future, then the enumeration can never pass them.

I believe the following rule will solve the problem. Divide the year 
into 1/10ths and assign 1, 2, 3, … to the first event in each 1/10th, if there 
is one in each 1/10th. Next divide the year in 1/100ths and assign the next 
numbers to the first unnumbered events in each 1/100th, if there is one 
in each 1/100th. Continue for 1/1,000ths, 1/10,000th... If several events 
have exactly the same creation time, assign them the same number and 
increment both N and NL in one step.14

14	 This method will fail if infinitely many events have exactly the same time of creation. I 
presume this is not expected to happen.
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14.5. Paradoxical Decompositions

14.5.1. What They Are
The construction of Section 14.4.2 above is just the first of many that yields 
results troublesome to additive measures. It is one of the simplest instan-
tiations of what is known as a paradoxical decomposition. Their specifica-
tion is rather general. Following Wagon (1994, chap. 1), such decompos-
itions arise in the context of a set E that can be partitioned into a countable 
collection of pairwise disjoint subsets, A1, A2, A3, …, B1, B2, B3, … 15

There must also be a group G that acts on the set E. Its elements map these 
subsets to other subsets of E. The original set E admits a paradoxical de-
composition if elements of the group can map the A-sets of the partition 
to sets whose union exhaust E; and correspondingly for the B-sets. That is, 
there are elements of G, g1, g2, g3, … and h1, h2, h3, …, such that we have

The standard definitions (Wagon 1994, Def. 1.1, p. 4; p. 7) do not explicit-
ly allow for a common and important case: the mapping of the disjoint 
A-sets and B-sets onto E can be inverted. That is, a partition of the entire 
set E can be mapped back to either the A-sets or B-sets by elements of G.16 
When this inversion is possible, then elements of the group G can map the 
A-subsets onto the B-subsets, and vice versa.

The construction of Section 14.4.2 above conforms to the conditions 
of paradoxical decomposition. Quadrant IV might correspond to the 
A-sets and the union of quadrants I, II, and III might correspond to the 
B-sets. The group is the group of isometries of a Euclidean space. These are 
the maps on the space that preserve metrical distance and thus also areas. 
They comprise translations, rotations, and reflections. Moving a tile from 

15	 In the case that the A-subsets and the B-subsets each are finite in number, they do not 
need to be the same number.

16	 This inversion can fail if, for example, the image sets g1(A1), g2(A2), g3(A3), … are not 
disjoint.
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one part of the space to another, while preserving its area, corresponds to 
allowing one of the isometries to act on it. In this case, it is a translation.

The conditions for a paradoxical decomposition are realized since a 
rearrangement of the tiles in quadrant IV can cover the whole space; and 
the same is true of the tiles in the union of quadrants I, II, and III. The 
case that concerned us, however, was the further case in which inversions 
are possible. Then the tiles in quadrant IV can be swapped with those in 
quadrants I, II, and III. The import of several swaps of this type was the 
non-additive chances (6).

14.5.2. How They Extend the Analysis
There are two aspects of the argument in Section 14.4 for these non-addi-
tive chances that could be strengthened. First, the argument requires a 
decomposition into infinitely many subsets that are then rearranged to 
give the final result. One might worry that there is some trickery peculiar 
to the infinitude of the decomposition.

(i) Can the construction still proceed if the decomposition is 
into finitely many parts only?

Second, the total area of the Euclidean plane involved in the paradoxical 
decomposition is infinite.

(ii) Are paradoxical decompositions possible if we require 
the total area or—more generally—the total volume of the 
space to be finite?

The literature on paradoxical decompositions has provided affirmative 
answers to both questions.

A paradoxical decomposition with finitely many subsets and using the 
group of isometries is not possible in the Euclidean plane. It is possible, 
however, if we move to non-Euclidean geometries. After the geometry of 
Euclid, the next simplest geometries are the spaces of constant positive 
and negative curvature. The second case of constant negative curvature is 
a hyperbolic geometry. It is a space of infinite area. In it, Euclid’s axiom of 
the parallels fails in this way: there is more than one straight line through 



54514 | Uncountable Problems

a point, parallel to a given straight line elsewhere in the space. It can be 
visualized, piecewise, as the geometry induced on a saddle shaped surface 
in a higher dimensional Euclidean space.

Wagon (1994, pp. 61–68) showed that it is possible to divide up a 
two-dimensional hyperbolic space into three disjoint parts whose union 
exhausts the space and provides a paradoxical decomposition, using the 
isometry group.17 Call the disjoint parts A, B, and C. If we choose a suit-
able axis of rotation, Wagon showed that it is possible to rotate A by 120o 
so that it coincides with B. A further rotation by 120o then leaves A coinci-
dent with C. These rotations are isometries, so they preserve the areas of 
the parts rotated.

We might pause at this moment and imagine that a point is chosen 
randomly in the space such that metrically adapted label independence 
is respected. These rotations by 120o are metrically adapted permutations 
that can swap the labeling among the three sets A, B, and C. Thus they 
have equal chances. If we assign probabilities to the chosen point being in 
A or in B or in C, we must then have

so that P(A) + P(B) + P(C) = 1.
The trouble is that rotations around a different point in the space lead 

to different results. With a different, suitably chosen axis of rotation, a ro-
tation of A by 180o leaves it coincident with the union of B and C. Applying 
the same reasoning, we now arrive at probability assignments

They are incompatible with the first set of probability assignments. Once 
again, we find that these chances cannot be represented by probabilities.

A curious sidelight is that this case of a hyperbolic space could almost 
be applied directly to the example of steady-state cosmology of Section 
14.4.3. The space-time of steady-state cosmology is a de Sitter space-time. 
Bondi, Gold, and Hoyle introduced a cosmic time that slices the space-
time into spaces at different instants of cosmic time. They chose a slicing 
that yields Euclidean spaces. A de Sitter space-time is rich in symmetries. 

17	 See Wapner (2005, pp. 45–48) for a simplified and engaging development.
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It turns out that there are other ways of slicing it that admit different cos-
mic times. In another choice of cosmic time, the spaces at each cosmic 
instant are hyperbolic in their geometry. If we ask for matter to be created 
continuously by some stochastic process that is uniform in the hyperbolic 
space, the construction just sketched—promoted to a three dimensional 
space—shows that this uniformity cannot be represented probabilistic-
ally. The demonstration does not require decomposition into infinitely 
many parts, but just the three indicated. However, the cogency of this 
more elegant construction is lessened by the fact that the slicing of a de 
Sitter space-time into hyperbolic spaces is uncongenial to steady-state 
cosmology. For in this slicing, the radius of curvature of the space would 
vary with cosmic time.18 While this variant slicing is simply another way 
of displaying the space-time structure of the steady-state cosmology, its 
associated cosmic time is not one in which the perfect cosmological prin-
ciple can be expressed.

The areas A, B, and C of this construction are not as simple geomet-
rically as the quadrants of Euclidean space used in Section 14.4.2. Each 
consists of infinitely many parts, with the parts touching only at points, as 
shown in the diagrams in the references above. However, decomposition 
of the hyperbolic space into these three parts is notable in one aspect: it 
does not require the axiom of choice. The significance of this statement will 
be clarified below.

The hyperbolic space is infinite in area, and the three parts A, B, and 
C are also infinite in area. This infinity allows them to be rotated into one 
another in ways that preclude a finite, additive measure for the areas. For 
when areas are infinite, we can write all of the following:

Since these equalities cannot all be satisfied if the areas of the parts are 
finite, one might expect that a paradoxical decomposition of a space of 
finite area or volume is not possible.

This expectation proves incorrect. There are paradoxical decompos-
itions of spaces of finite volume. The celebrated example is the Banach-
Tarski paradox. It has been discussed in detail elsewhere so that it needs 

18	 See Bondi (1960, p. 145).
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only the barest statement here.19 The basic result is that a sphere in 
three-dimensional Euclidean space can be decomposed into five parts. 
The parts are then rearranged in space, where the rearrangement employs 
only volume preserving isometries. The result is two spheres, each with 
the same volume as the original sphere. 

The paradoxical aspect of the Banach-Tarski paradox derives from the 
apparent impossibility of the process. We decompose a sphere into parts 
that can be recombined into two spheres whose total volume is double 
that of the original sphere, where all the rearrangements are isometries. 
The paradoxical aspect is dispelled, however, once we find that four of 
the five parts in the standard decomposition are nonmeasurable in the 
background metric of Euclidean space. They are not simple volumes of the 
type normally encountered in geometry; they are scatterings of infinitely 
many points that defy simple geometric description. No volume can be 
consistently assigned to them.20 Thus, the constructions are revealed to be 
fancy versions of a more familiar decomposition. We can take a countable 
infinity of entities labeled 1, 2, 3, … and divide them into the set of odd-
labeled entities and the set of even-labeled entities. If we now relabel the 
entities in each set with 1, 2, 3, … and 1, 2, 3, …, we have doubled the set 
of entities, or at least that is what the labeling indicates.

While Banach-Tarski-like constructions have proven enormously 
stimulating to mathematical inquiry,21 the most important contribution 
to our concerns here arises at the outset. It is that there are nonmeasurable 

19	 See Wapner (2005, chap. 5) for a very clear development; and Wagon (1994) for a 
mathematically more thorough treatment.

20	 A point to which we will shortly return: the axiom of choice is needed to arrive at their 
existence.

21	 When one first encounters these constructions, one might be quite amazed that a 
mortal mathematician could discover them. Or at least that was my reaction. What I found very 
helpful was the recognition that the more complicated constructions derive from a simple piece of 
group theory. The elements of the free group with two generators a and b consist of finite strings 
of symbols like abba-1b-1a of arbitrary but always finite length. It is easy to see that a paradoxical 
decomposition is possible in this set of group elements. Any good treatment shows it. All that 
remains is to realize the generators in some geometrical setting, for example as rotations in space, 
and in a way that preserves the free group properties. Banach-Tarski-like paradoxes then appear 
and they require three dimensions of space, since in two dimensions the two generators a and b 
cannot be realized. The complications of the geometry of the rotations mask the constructions’ 
simple origins.
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sets. Their existence represents some sort of obstacle to the universal 
applicability of additive probability measures in inductive inference. The 
next section looks at how these nonmeasurable sets arise.

14.6. A Nonmeasurable Set

14.6.1. A Vitali Set
The simplest example of a nonmeasurable set used almost universally as 
an introduction to the general idea is a Vitali set.22 The version developed 
here will be a subset of the interval of real numbers [0, 1); that is all real 
numbers x such that 0 ≤ x < 1. These real numbers will be the angular 
coordinates that cover a circle, as shown in Figure 14.6.

Figure 14.6. Equivalent numbers used in the construction of a Vitali 
Set.

Two real numbers are defined as equivalent under the relation “~” if 
they differ only by a rational number. That is, x ~ y just in case there is a 
rational number r such that y = x ⊕ r. Addition “⊕” is modulus 1 addition. 

22	 See Kharazishvili (2004, chap. 1), Wagon 1(994, pp. 7–8), Wapner (2005, pp. 132–35).
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To compute a modular sum, the numbers x and r are added by ordinary 
arithmetic. If the result exceeds one, one is subtracted. If it is negative, one 
is added. This modular rule ensures that the sum shown always remains 
in the interval [0, 1). Figuratively, addition by r just steps us repeatedly 
around the circle of Figure 14.6. This figure shows points equivalent under 
successive addition of the rational number 0.22 = 11/50, that is 0, 0.22, 
0.44, 0.66, 0.88, 0.10, 0.32, ….

Since the relation is an equivalence relation, it divides all the real 
numbers in [0, 1) into disjoint equivalence classes. They are distinguished 
by a number that, as I shall say, “seeds” them. The rational number 0 seeds 
an equivalence class that contains all the rational numbers in [0, 1). This 
shows immediately that each equivalence class has infinitely many seeds: 
every rational number in [0, 1) seeds the same class. Irrational numbers 
seed other classes. The irrational  = 0.7071 … seeds a class that con-
tains  = 0.2071 … since

The simple graphic of Figure 14.7 displays the partition of [0, 1) into the 
equivalence classes.
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Figure 14.7. Choices that form a Vitali set.

The points in the square are all the real numbers in [0, 1). Each is uniquely 
picked out by the seed of the equivalence class to which it belongs and 
the rational increment added to the seed to arrive at it. The vertical axis 
shows the seeds used to create each equivalence class. The axis has many 
gaps in it, since all duplicated seeds are eliminated. Its seeds include only 
one rational number and only one of  and . The hori-
zontal axis shows the values in [0, 1) that the various members of each 
equivalence class can take after all the rationals are added to the seed of 
the equivalence class. Each equivalence class is represented by a single 
horizontal line.

A Vitali set is formed by taking just one number from each equiva-
lence class. This means that the difference between two elements in the set 
cannot be a rational number. Forming the set amounts to taking a vertical 
section in the square shown in Figure 14.7. It may seem obvious that such 
a section can be taken. (This is a point to which we will return short-
ly.) Moreover. there are very many ways that this section can be taken, so 
many sets can be Vitali sets. We just need to settle on one to proceed. We 
will call it Vit(0).

To demonstrate that this is a nonmeasurable set, we need a measure; 
for a set can be nonmeasurable only with respect to some specified meas-
ure. We take the uniform distribution (1) over [0, 1) as that measure. Its 
uniformity gives it the property of translation invariance. That is, if the 
probability density assigns some probability P(A) to a subset A of [0, 1), 
then it assigns the same probability to the set Ax produced by translating 
all numbers in A by the same amount x:23 P(Ax) = P(A). Applying a uni-
form translation by r to all the numbers in the Vitali set Vit(0), we form 
the translated set Vit(r). Figure 14.7 shows Vit(0.25).

As we can see, the set of translated Vitali sets for all rational numbers 
r partition the interval [0, 1), as shown in Figure 14.8.

23	 That is, Ax is {y ⊕ x: y ∈ A}.
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Figure 14.8. Vitali sets partition [0, 1).

That is, their union is [0, 1), and the translated sets are pairwise disjoint. 
The first follows by construction, since every number in [0, 1) is either in 
Vit(0) or arrived at from an element of Vit(0) by adding a rational r to it, 
which means that it is a member of Vit(r). Two translated Vitali sets V(r) 
and V(s) are disjoint for unequal rational numbers r and s. For otherwise 
they share a common element of the form x ⊕ r = y ⊕ s, where both x and y 
are elements of V(0). However, this last equation entails that x and y differ 
by a rational number. This cannot be true of any two distinct elements of 
V(0), since each is drawn from a distinct equivalence class. 

Assume for purposes of a reductio argument that the Vitali set is 
measurable under the uniform density (1) and that it has a probability 
P. Since the probability density is invariant under translation, it follows 
that all uniformly translated Vitali sets Vit(r) have the same probability. 
The set of rational numbers is countable.24 Therefore, there are countably 

24	 For each rational can be represented by the ratio p/q of natural numbers p and q. The pair 
can then be mapped one-to-one to an infinite subset of the natural numbers by the formula 2p3q.
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many translated Vitali sets. The countable sum of their probabilities must 
be unity. That is, the summation of a countable infinity of probabilities P 
must be unity. No real number P can satisfy this condition. If P is zero, 
the countably infinite sum is zero. If P is greater than zero, no matter how 
small, the countably infinite sum is infinite. We have arrived at a contra-
diction. The Vitali set Vit(0) is not measurable under the uniform density 
(1).

14.6.2. The Infinite Lottery Machine Logic, Again
How does the existence of nonmeasurable sets like a Vitali set affect in-
ductive inference? We can set up an inductive inference problem that 
uses this Vitali set by assuming that a real number has been chosen in the 
interval [0, 1). We will assume that the choice is uniform in the sense that 
the chance of selection in any set, if defined, is unchanged by translations 
of the set. It follows that the distribution of chances in the space conforms 
with metrically adapted label independence, where the permutations 
are translations that preserve the metric associated with the probability 
density (1). It now follows that each of the translated Vitali sets Vit(r) must 
have equal chances. For any pair of Vitali sets, Vit(r) and Vit(s), a trans-
lation by s - r shifts the labels on the first set to the second.

The inductive problem is to determine the chances that the point 
selected lies in one of the Vitali sets, or in some union of them. The prob-
ability measures derived from the uniform density (1) cannot supply chan-
ces for these outcomes, for it is not defined on them. Rather, the applic-
able logic is the infinite lottery machine logic. To see this, note that the 
countably many Vitali sets Vit(r) can be relabeled by the natural numbers 
1, 2, 3, …. Each Vitali set V(1), V(2), … has the same chance and, under 
the new labeling, conforms with the original, unrestricted requirement 
of label independence. These are just the conditions to which an infinite 
lottery machine conforms. By repeating the arguments concerning it, we 
can infer that

The chance that the point chosen is in some finite set of Vitali 
sets of size N is VN.

The chance that the point chosen is in some infinite-co-infinite 
set of Vitali sets is V∞.
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The chance that the point chosen is in some infinite-co-finite set 
of Vitali sets, where the complement is of size N, is V–N.

The familiar results now follow. There is the same chance that the point 
chosen is in the infinite set of Vitali sets that have even-numbered labels, 
in those with odd-numbered labels, in those with labels that are powers of 
ten: 1, 10, 100, 1,000, … etc. On many repetitions there is no stabilization 
of frequencies such as would conform with a probability measure. We do 
not stabilize with roughly half the points selected in the odd-numbered set 
and half in the even-numbered set. 

14.6.3. The Axiom of Choice
The foregoing analysis assumes that a logic of induction should accommo-
date outcomes in nonmeasurable sets like the Vitali sets. However, these 
nonmeasurable sets have a disputed status in mathematics. The difficulty 
derives from a key step in the analysis. The Vitali set V(0) was formed by 
selecting just one element from each of the equivalence classes above. It 
was simply assumed that such a selection was possible. To see that matters 
are not quite so simple, one should reflect on just how we are to make the 
selection. Might we choose the smallest or largest element in each equiva-
lence class? This fails since there might be no smallest or largest element. 
Might we choose the element that is the median value; that is, the one that 
comes half way through? Since the equivalence classes are infinite, “half-
way through” is ill-defined. Might we choose the element whose value co-
incides with the mean of all members in the equivalence class? This fails 
since there may be no such element.

We might suspect that all these failures derive from poor imagination. 
There is some recipe, we might hope, even if very complicated, that lets us 
specify which set is our Vitali set V(0). However, it turns out that no one 
has been able to find a constructive formula that can specify the uncount-
able infinity of choices needed. There are formal results that suggest but do 
not prove that no such constructive formula is possible. Rather, the best we 
can now do is simply to assume that there does exist a set comprised of just 
one element from each equivalence class. At first glance, the existence of 
such sets seems so straightforward that it can hardly be doubted. But then 
we find reasons for doubt. Since a Vitali set results from an uncountable 
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infinity of selections of numbers from an uncountable infinity of equiva-
lence classes, if there are any Vitali sets, then there are very many of them. 
Yet when we try positively to specify just one, we can find no way to do it. 
If they exist, all we can say is that they are somewhere in very great num-
bers in the mathematical universe. We just cannot specify precisely where.

These last considerations have been codified into more precise math-
ematics. The standard treatment of sets is the Zermelo-Fraenkel set 
theory.25 Its axioms were developed to rescue set theory after Russell’s 
paradox showed its naïve foundations were fatally flawed. In the naïve set 
theory, we assume that a set can be formed as those things that satisfy 
any condition we can specify. Famously, Russell used this rule to create 
the set of all sets that do not contain themselves as elements. The set is 
contradictory in that it can be a member of itself if and only if it is not a 
member of itself.

To avoid this problem, Zermelo-Fraenkel set theory is restrained in 
just what sets it allows to exist. Its axioms do provide cautiously for the 
existence and behaviors of certain sets and include what amount to prin-
ciples of set construction. The axiom schema of subsets tells us that we can 
always create a new set as a subset from another by placing some restrictive 
condition on elements in the original set. This replaces the problematic 
naïve rule with a benign rule, since its set-delineating condition can only 
carve off a set from an already existing set. It does not permit the forma-
tion of a Russell set. Other axioms assert the existence of a null set; of the 
union of two sets that are already elements of another set; of a power set of 
all subsets of a set; and of an infinite set constructed by specific conditions.

Constructive axioms of this type have recovered much of set theory. 
However, they are not rich enough to provide for the sets like Vitali sets. 
It turned out that their existence could only be secured by introducing a 
new, non-constructive axiom that merely asserted the existence of certain 
sets, but gave no recipe for their construction. This axiom is the “axiom of 
choice,” or something equivalent to it. The axiom amounts to the assertion 
that if we have a set of member sets that are pairwise disjoint, then there 
exists another set comprised of just one element from each of the member 

25	 For an easier introduction, see Stoll (1979, chap. 7).
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sets. The Vitali set Vit(0) formed above is just such a set. The presumption 
that it exists amounts to applying the axiom of choice.

The axiom of choice has been surrounded by an air of uncertainty. 
A major motivation for the uncertainty was the discovery of the Banach-
Tarski paradox, for the formation of the sets in the paradox require the 
axiom. As a result, treatments of the paradox routinely include labored 
discussions of the cogency of the axiom.26 As far as I can see, the question 
of the admissibility of the axiom and thus of nonmeasurable sets remains 
open simply in virtue of the lack of any well-principled means to decide 
for or against it.

The original basis for arguments against it was the intuitive inadmiss-
ibility of results like the Banach-Tarski paradox. To block the paradox, one 
had to overturn something in the foundations of set theory. The axiom 
of choice stood out as the easiest target because of its non-constructive 
character. But if one is reconciled to the Banach-Tarski paradox so that 
it becomes the more benignly labeled Banach-Tarski theorem, then this 
basis for rejecting the axiom of choice is lost. Other reasons for rejecting it 
are hard to find. Its truth is not empirically decidable. There is no physical 
test we can perform to detect the existence of nonmeasurable sets of points 
specifically in some physical space. The axiom has been shown to be con-
sistent with the other axioms of the Zermelo-Fraenkel set theory, so there 
is no problem in logic in adding it to the axioms of the theory. 

Correspondingly, however, there seems to be no decisive grounds for 
adding the axiom of choice to the other axioms of Zermelo-Fraenkel set 
theory. Just as there is no empirical way to falsify the axiom, there is no 
empirical way to demonstrate it. Rather, the principal motivation for em-
ploying it seems to be pragmatic: much useful mathematics depends upon 
it. For example, Zorn’s lemma, which is equivalent to the axiom of choice, 
is needed to demonstrate that every vector space has a basis.27

This pragmatic attitude is perhaps not so different from a simpler one. 
No measurement can distinguish whether a physical magnitude is an ir-
rational real number or some nearby rational number. Any measurement 

26	 See, for example, the ominously numbered Chapter 13 of Wagon (1994).
27	 See Brunner et al. (1996) for an extended analysis of the role of the axiom of choice in 

the mathematics of quantum theory.
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has some inexactness. We can never affirm by direct measurement that 
the hypotenuse of a right-angled triangle with unit sides is exactly the 
irrational number √2 = 1.41421 … as opposed to the nearby rational num-
bers 14/10 or 141/100 or 1,414/1,000 and so on. However, if we forego the 
possibility of irrational lengths in space, we forego the right-angled tri-
angles of Pythagoras’ theorem. Instead, the best we would have would be 
many triangles, all with sides of rational length, that come arbitrarily close 
to the side lengths of Pythagoras’ theorem. We may congratulate ourselves 
on the purity of our prudence in restricting ourselves to the observation-
ally more secure. Our reward would be mathematical complexities that 
would propagate pain and misery through the entirety of our physical 
theories.

Our question here is not simply that of the admissibility of the axiom 
of choice. It is a slightly different one. Should an account of inductive in-
ference be responsible for relations among propositions that pertain to 
nonmeasurable sets? To forego exploring these relations would require 
positive reasons for precluding nonmeasurable sets. I do not see them 
unless we are prepared to entertain anthropocentric perspectives on the 
world. This might happen if we were so committed a subjectivist that we 
reduce the scope of inductive inference to relations among things that 
we can construct. This attitude seems quite presumptuous to me. That 
nonmeasurable sets outstrip our constructive prescriptions seems to me 
quite reasonably explained by the weakness of those prescriptions. They 
are weak, as we have repeatedly learned. We would like a finite axiom sys-
tem whose theorems would include all the truths of arithmetic. Goedel’s 
famous theorem shows that no finite axiom system can do this. It tells us 
that our arithmetic axiomatic methods are weak in their reach. If finite 
prescriptions are essential to us, we run into trouble at the very start of 
mathematics. There is an uncountable infinity of real numbers in [0, 1]. 
Yet our language admits of only countably many sentences for describ-
ing them. Most real numbers outstrip our descriptive reach. Return now 
to nonmeasurable sets. Are there, we might ask, nonmeasurable sets of 
points in our physical space? Whether there are or not is a physical fact 
about space and true whether our finite constructive devices allow us to 
give a precise description of them.
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In my view, as long as the status of these sets remains open, we should 
consider what an inductive logic must do to accommodate them. For a 
general understanding of the nature of inductive inference must be expan-
sive enough to include these accommodations. To do otherwise is to pre-
judge the status of nonmeasurable sets and artificially restrict the scope of 
inductive inference. It is in that permissive spirit that the explorations of 
this chapter are undertaken.

14.7. Blackwell and Diaconis’ Nonmeasurable Coin 
Toss Event
Most instances of nonmeasurable sets arise in the esoteric realm of ab-
stract mathematics. When we use the sets to specify chancy events, that 
makes the events seem distant from the concerns of an inductive logic 
that may apply to real science. It would help to reduce the distance if we 
could find nonmeasurable events that arise in the archetypal probabilistic 
problem of sequential coin tosses. Blackwell and Diaconis (1996) have de-
scribed such events. An account of them will be given in this section. An 
interesting bonus is that the apparatus needed to describe the events en-
ables specification of another inductive logic that, while very weak, applies 
to events that are otherwise probabilistically nonmeasurable.

14.7.1. Tail Events
Blackwell and Diaconis’ event arises in the case of infinitely many coin 
tosses. Each toss has a probability of 1/2 heads H or tails T; and the tosses 
are all probabilistically independent. Our elementary events will be in-
finite sequences of heads and tails. If we let variables a1 = H or T, a2 = H 
or T, a3 = H or T, …, then such an infinite sequence is represented by the 
infinite tuple a = <a1, a2, a3, …>. The nonmeasurable event will be one of 
what is called a “tail set,” or, as I shall call them here, a “tail event.” These 
are events whose properties (such as the probability, if defined) depend 
only on the long term behavior of the infinite sequence—that is, on its tail. 

Such events are familiar and important. For example, elementary 
events like 
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are distinctive in that the limiting relative frequency of heads H is 1/2. 
This distinctive property is shared by many other elementary events that 
differ in finitely many of the individual coin tosses. For example,

differs from <H, T, H, T, H, T, H, T, …> only in its first few tosses. It will still 
return a limiting relative frequency of heads H of 1/2. The heavy weighting 
towards H in the early tosses is eventually and inexorably swamped by the 
later tosses.

Each of these elementary events has a probability given by the infinite 
product 1/2 × 1/2 × 1/2 × …. That is, each has probability zero. There are 
infinitely many elementary events that return this limiting relative fre-
quency. We combine28 them disjunctively to form the event “half”: that the 
infinitely many coin tosses return a limiting relative frequency of heads H 
of 1/2. Since the individual tosses are probabilistically independent and 
each of probability 1/2, we can apply the strong law of large numbers to 
conclude that the event half will occur with probability one, P(half) = 1.

The last paragraph describes the distinctive property of a tail event: its 
probability is unaffected by whatever may happen in finitely many of the 
tosses that comprise it. More precisely:

Tail event characterization 1: a tail event is probabilistically 
independent of the outcome of any finite set of tosses.

Recall that two events A and B are probabilistically independent just if P(A 
& B) = P(A) ⋅ P(B). This defining property means that half is independent 
of the conjunction (a1= H) & (a2 = H) & (a7 = H) & (a63 = H), so that:

and similarly for any other finite set of tosses.
There are many other tail events. For example:

28	 If we think of the events as propositions, then we are “or”ing them together. If we think 
of them as elements of a set, we are collecting them into a set.
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quarter: the limiting relative frequency of heads H is 1/4. 
P(quarter) = 0.

three-quarters: the limiting relative frequency of heads H is 3/4. 
P(three-quarters) = 0.

interval-no: the limiting relative frequency of heads H lies in 
some interval of reals that does not contain 1/2: P(interval-
no) = 0.

interval-yes: the limiting relative frequency of heads H lies in 
some interval of reals that does contain 1/2: P(interval-yes) 
= 1.

even-H: an infinite number of even-numbered tosses are head H. 
P(even-H) = 1

Tolstoy: the infinite sequence contains, infinitely often, the en-
tirety of Tolstoy’s War and Peace, encoded in binary using 
H and T, as well as every variant of the same length created 
by all possible typographical errors. P(Tolstoy) = 1.

It may at first seem that this list of examples is uncreative in the sense that 
every probability is a zero or a one. These zeros and ones are unavoidable, 
however. The Kolmogorov (1950, pp. 69–70) Zero-One Law asserts that all 
tail events to which probability can be assigned are of probability zero or 
one only.

The proof of the law involves some mathematical complications. 
Rosenthal (2006, §3.5) gives a serviceable formulation as well as a helpful 
account of tail events. The basic idea behind the proof, however, is so sim-
ple and striking as to bear mention. As we saw above, the defining char-
acteristic of a tail event we shall call “tail” in infinitely many coin tosses 
is that it is probabilistically independent of any event formed from only 
finitely many coin tosses, such as one we will here call “finite.” This means

for all possible finite. The unusual circumstance is that the event tail is a 
member of the infinite set of events formed from all possible instantiations 
of finite, when closed under finite and countable unions and intersections.29 

29	 That is, the s-algebra formed from all instantiations of finite.
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This leads eventually to the curious result that tail is independent of itself! 
Substituting tail for finite in this last equation and noting that tail & tail 
= tail, we have

This equation admits only two solutions:

Since we will shortly be dealing with nonmeasurable events, we will need 
another characterization of tail events that does not explicitly invoke 
probability measures. That condition is simply that 

Tail event characterization 2: if a = <a1, a2, a3, …> is an 
elementary event within some tail event and b = <b1, b2, 
b3, …> is any elementary event that differs from it in only 
finitely many tosses, then b is also in the tail event.

This new characterization entails the original one above in case the events 
concerned have well-defined probabilities. To illustrate this, pick any fi-
nite set, such as a1 and a3. Let us say that 

is an elementary event in some tail event, where a2, a4, a5, a6, … have some 
values that are kept fixed in what follows here. The new condition requires 
that all combinations of alternative values of a1 and a3 appear in other 
elementary events in the tail event. These additional events are

The probabilistic contribution to the tail event by these four elementary 
events is
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This is just the probabilistic contribution to the tail arising when tosses 
a1 and a3 are excluded, which shows the probability is independent of the 
tosses a1 and a3. Repeating for all other finite combinations of tosses, we 
see that the probability of the tail event is independent of any of these 
finite combinations, which is the first characterization of tail events above.

14.7.2. An Intermediate Tail Event E30

We can start with a tail event of probability zero. By adding new elemen-
tary events to it, we can expand it to a tail event of probability one. For ex-
ample, we might start with the tail event interval-no that is defined by the 
limiting relative frequency of heads lying in the interval 0.9 to 1.0. Since 
0.5 = 1/2 is not in that interval, this tail event has zero probability. We 
continuously expand the interval by adding more elementary events until 
the interval becomes 0.4 to 1.0. At the moment when the interval expands 
to include the limiting relative frequency of heads of 0.5, its probability 
will flip from zero to one. Writing “rf” for the limiting relative frequency 
of heads and assuming that the intervals include their end points, we have

30	 Alex Pruss has pointed out another way that a nonmeasurable tail event may be formed 
in this coin tossing example. Each elementary event has a reversed event in which every H is 
replaced by T and every T by H. We form maximal equivalence classes of elementary events, such 
that two events in the same class differ only in finitely many of the individual coin toss outcomes. 
For each such equivalence class U there is reversed class Ur consisting of the reversals of the 
elementary events in U. The entire outcome set is partitioned by an infinity of (unordered) pairs of 
such classes: {U, Ur}, {V, Vr}, … Using the axiom of choice for collections of two-membered sets, 
we choose one equivalence class from each pair. Their union is the tail event N. The entire outcome 
set is partitioned by N and its reversal Nr. The event N satisfies conditions (a) and (b) of Section 
14.7.3 and thus is nonmeasurable. See http://alexanderpruss.blogspot.com/2017/11/heres-simple-
construction-of-non.html
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This last example suggests that as we assemble sets of elementary events 
into events, we find no tail events intermediate between events with prob-
ability zero and those with probability one. Certainly, there are none in 
the sequence just considered. However, that last sequence included by con-
struction only tail events with well-defined probabilities. What Blackwell 
and Diaconis demonstrate is that there are very many tail events, inter-
mediate between events with zero and one probability, and that these 
tail events are probabilistically nonmeasureable. No probability can be 
assigned to each of them.

We begin assembling Blackwell and Diaconis’ event “E” as a set of 
elementary events, making our focus the presence of H toss outcomes. The 
first elementary event in E is just one that consists of all H:

We now add to E all elementary events that differ from aall-H in only 
finitely many tosses. They include:

Call them “infinite H, finite T” elementary events. There are as many of 
these elementary outcomes as there are subsets of the natural numbers. 
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That is, there is a higher order of infinity of them. Nonetheless, the prob-
ability of the event just formed is zero. It is a tail event characterized by a 
limiting relative frequency of heads of one. Our starting point is essential-
ly the same as the growing intervals of tail events above.

We will add many more elementary events to E but in a way that 
avoids the flipping of probability from zero to one. We achieve this by 
adding elementary events in a way that conforms with a specific set of 
rules. To express them, we need to define the intersection operation ∩ on 
elementary events. The intersection of elementary events a and b is the 
elementary event a ∩ b that has H in every position that has H in both a 
and b and T otherwise. For example,

The complement ac of an elementary event is just that same event a with 
each occurrence of H switched to T and each occurrence of T switched to 
H. For example:

The event E is a set of elementary events, where we write elementary event 
a is a member of E as a ∈ E.

The rules for forming E are that the following conditions are respected 
as the elementary events are added:

I. The “no-H” elementary event ano-H = <T, T, T, T, …> is not in E. 
ano-H ∉E.

II. (“containment”) If a ∈ E and b arises by replacing some T in a 
by H, then b is also in E. 
If a ∈ E and a ∩ b = a, then b ∈ E. 
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III. (“intersection”) The intersections of elementary events in E 
are also in E. 
If a ∈ E and b ∈ E, then a ∩ b ∈ E.

IV. (“exhaustion”) For every element a, either a or its 
complement ac is in E. 
For all a, either a ∈ E or ac ∈ E

V. (“free”) The infinite intersection of all elementary events in E 
is the “no-H” event.

Those with mathematical interests will recognize these five conditions as 
defining a free ultrafilter. The first three specify a filter. The fourth makes 
the filter an ultrafilter; and the fifth makes it a free ultrafilter.31

These conditions impose a definite structure on the elementary events 
that comprise E. From III and I, we have that every intersection of elemen-
tary events in E must have some H toss outcomes. Thus, for all elementary 
events a, just one of a or its complement ac can be included in E. Condition 
V ensures that every elementary event in E must contain infinitely many 
H toss outcomes.32

The set of “infinite H, finite T” elementary events along with aall-H 
satisfies all these conditions, excepting IV.33 While we have not fully speci-
fied the content of E, we can already see at this stage that any possible set E 

31	 Blackwell and Diaconis do not implement the ultrafilter structure directly on the tuples 
that form the elementary events. Rather they form sets of indices of the locations of H in the tuples. 
For example, <H, T, H, T, H, T, …> yields the set of odd numbers {1, 3, 5, 7, …}. The ultrafilter is 
implemented in the set of all these subsets of the natural numbers.

32	 To see this, assume otherwise that there is an elementary event fin(n) in E that has 
finitely many H—say, n of them. If n > 1, then there is an elementary event a such that a ∩ fin(n) 
and ac ∩ fin(n) each have one or more H, but each is strictly fewer than n. Since just one of and 
ac is in E, it follows from the intersection condition III that there is another elementary event in 
E with fewer H than n. Iterating, it follows that, if there is an elementary event in E with finitely 
many H, then there is an elementary event in E with just one H. This elementary event fin(1) 
must be contained in every elementary event in E. Otherwise the intersection of fin(1) with some 
elementary event in E would be ano-H so that ano-H must also be in E by III, which then violates I. 
But if a ∩ fin(1) = fin(1) for all a in E, then the free condition V is violated.

33	 They are equivalent to a Fréchet filter.
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must include this set. This follows from II and the fact that I requires that 
some H must be present in all the events of any possible set E. 

To satisfy exhaustion IV, we need to add further events. We have 
many choices over which to add. For example, we must add one of the 
elementary events in half

or its complement

But we cannot add both. Next, we must choose among

Adding the tail event half flipped the probability of the continuously 
growing set of tails events above from zero to one. We now see that this tail 
event cannot be a subset of E. For all four of a, ac, b, and bc are included 
in half. It also suggests that no tail event with a relative frequency in the 
vicinity of 0.5 can be in E. That these tail events are precluded from E gives 
the first indication that our path leads away from events with well defined 
probabilities. We may avoid the flipping of probability from zero to one by 
including only parts of these tail events in E.

We need to make many, many decisions of this type. We get a rough 
estimate of the number by noting that there are as many elementary events 
as there are members of the power set of the natural numbers—that is, the 
set of all subsets of the natural numbers.34 We then make about that many 
choices of inclusion between each elementary event and its complement. 
This suggests that the number of ways of forming distinct Es is two or-
ders of infinity higher than the natural numbers:35 it has the cardinality of 
the power set(power set (natural numbers)). There are very many possible 
events E!

34	 Each subset of the natural numbers corresponds to an elementary event. The odd 
numbers {1, 3, 5, …} corresponds to <H, T, H, T, H, …>.

35	 A more precise analysis shows that this is the cardinality of the set of ultrafilters on the 
natural numbers. See Comfort and Negrepontis (1974, p. 147).
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The supposition here is that if we persist in adding elementary events 
to E prudently, we will arrive at a set conforming with all the conditions. 
In particular, exhaustion IV will be satisfied. This is an apparently in-
nocent supposition and essential to the formation of E. It is, however, 
a non-constructive assumption of existence. We have not specified just 
which elementary events can be added to satisfy exhaustion IV and, were 
we to try, our efforts to do so would fail. The existence assumption turns 
out to be of a similar character to the axiom of choice described above. 
More precisely, the existence of E is proved by the ultrafilter theorem. Its 
proof commonly employs Zorn’s lemma, which is equivalent to the axiom 
of choice. However, the ultrafilter theorem is logically weaker than the 
axiom of choice, as displayed in Herrlich (2006, p. 18).

Nonetheless, all the vacillations that surround the earlier construction 
of the Vitali sets arise again here. As reported above, my view is that we 
should persist in exploring these systems. To do otherwise is to prejudge 
the admissibility of axioms like the axiom of choice and thus to restrict 
artificially the scope of our inductive logics.

14.7.3. Event E is Probabilistically Nonmeasurable
We can now prove that any event E conforming with the conditions I–V 
is nonmeasurable. For the purposes of a reductio argument, assume that 
event E is measurable and also its complement, event Ec, the set of all ele-
mentary events not included in E. We will find that

(a) from a symmetry, P(E) = P(Ec) = 0.5; and

(b) since E is a tail event, by the Kolmogorov Zero-One Law, P(E) 
= 0 or 1.

Since (a) and (b) contradict, the reductio is completed. The set E is not 
measurable.

To illustrate (a), note that there is a one-to-one correspondence be-
tween elementary events in E and those in Ec: each a ∈ E corresponds to 
ac ∈ Ec. To implement the correspondence, we just flip H to T and T to H 
in each elementary event a. It follows that each set of elementary events a 
in E is mapped to a corresponding set in Ec with a mirror image structure 
from the flipping of H and T. Thus, if a probability is defined for the first 
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set, then the corresponding set has the same probability. An easy way to 
see this is to note that we turn some set of elementary events in E into 
the corresponding set in Ec without making any changes to the physical 
tosses; we merely imagine that the labels on each of the coins is switched 
from H to T or T to H. If follows that if E is probabilistically measurable, 
then so is Ec; and that they have the same probability. Since P(E) + P(Ec) = 
1, we infer that P(E) = P(Ec) = 0.5.

To illustrate (b), consider some elementary event a ∈ E. Let b be any 
elementary event that differs from a in finitely many of its toss outcomes. 
From exhaustion IV, we have that one of b or bc is in E. If bc is in E, then 
so must a ∩ bc. But since a and bc agree only on finitely many toss out-
comes, it follows that a ∩ bc has only finitely many H. We saw above that 
all elementary events in E have infinitely many H. Therefore, b is in E. That 
is, for every elementary event in E, the event E also contains every other 
elementary event that differs from it in only finitely many toss outcomes. 
Recalling Tail event characterization 2 above, it now follows that E is a tail 
event. By the Kolmogorov Zero-One Law, it has probability zero or one.

14.8. The Ultrafilter Logic
The analysis above shows that probabilistic reasoning over the outcomes 
of infinitely many coin tosses cannot proceed if our considerations include 
the very many nonmeasurable events of type E. The probability calculus 
falls silent over them.36

There are so many elementary events that arise with infinitely many 
coin tosses that we run into problems with standard methods even before 
attempting probabilistic analysis. For example, we might try to charac-
terize the event consisting of all elementary events in which there are (in 
some sense) more heads than tails. One natural approach employs limits. 
We consider a finite sequence of coin tosses and compute the ratio of the 
number of heads to the number of tails. The event of interest consists of all 
elementary events in which that ratio is greater than one. We then take the 
limit as the number of coin tosses goes to infinity. The event that results 

36	 We receive no help from upper and lower probabilities. Blackwell and Diaconis (1996) 
also show that the lower probabilities of both E and Ec are zero. Thus, the corresponding intervals 
are maximally large.
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will be something less than what we sought; for it is easy to contrive ele-
mentary events for which the ratio in question has no limit. All of these 
will be omitted from the event.

Should we despair of inductive inferences that encompass all the ele-
mentary events of the infinite coin toss? It turns out that if we are will-
ing to consider rather weak systems of inductive logic, we can find one 
that applies. It is embodied in the conditions I–V of the last section that 
characterizes an ultrafilter. A popular way of explaining the import of an 
ultrafilter is that it specifies which sets are large. In this case, a set of ele-
mentary events satisfying the conditions I–V contain a large number of 
H; none of the others do. What makes this a natural understanding is that 
these conditions admit only elementary events with infinitely many H; 
and condition II explicitly continued to populate E with all those elemen-
tary events with more H in them. The notion of “large” at issue here is, in 
intuitive terms, vague. Let us simply turn this around and assert that what 
we mean by “large” is membership in some set E that conforms with I–V.

What results is a two-valued inductive logic that responds to the evi-
dence that the actual outcome of infinite tosses contains many H. The ele-
mentary events in E are “supported” (one value) by the evidence as having 
many H. The remainder are “not supported” (the other value). The axioms 
of the logic are the conditions I–V above. They play the same role as the 
Kolmogorov axioms of probability theory.

There are infinitely many sets E of elementary events possible. This 
infinity enables the logic to have a dynamics loosely akin to that of con-
ditionalization in probabilistic analysis. We start out with the choice of 
applicable E left entirely open. This is as evidentially neutral a starting 
point as the logic admits. We can then carry out the analog of condition-
alization by restricting the admissible sets E to those with some particu-
lar elementary event or some set of elementary events. Loosely speaking 
this restriction introduces the new information that something in these 
elementary events is close to the actual outcome. More precisely, to condi-
tionalize on some elementary event a in this way is say that some infinite 
subsequence of a must be common to all elementary events in E. For axiom 
III, in conjunction with the other axioms, requires that every elementary 
event in E have an intersection with a that has infinitely many H in it.
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As with the probability calculus, there are restrictions on the events 
on which we can conditionalize. In the ordinary probability calculus, we 
cannot conditionalize on events with zero probability. Correspondingly, if 
we have conditionalized on a set of elementary events containing

we cannot then conditionalize on a set containing its complement

For the axioms preclude membership of both in E. 
The logic is weak. It is merely two-valued and, as a practical matter, 

no finitely specifiable set of evidence will lead to complete determination 
of the membership of E. For, as we have seen, the existence of ultrafilters 
must be assumed without a finite recipe for the construction of any. If 
we exclude highly contrived examples, I cannot now think of a factual 
scenario whose background facts would require axioms I–V to govern our 
inductive inferences.

The value of the logic lies in reminding us that many logics of induct-
ive inference are possible. If we infer probabilistically over outcomes of 
infinitely many coin tosses, we do arrive at many strong results. However, 
the cost is that all of these inferences fall silent over the nonmeasurable 
events. If we are prepared to accept a weaker inductive logic, then we see 
that there is a logic native to the mathematical structure that does embrace 
all events.

14.9. Conclusion
The considerations of this chapter have been wide-ranging. They are, how-
ever, unified by a single question: How might an inductive logic represent 
the uniformity of chances over an outcome set of continuum size? This 
might have seemed an easy case for a probabilistic logic. Is it not realized 
by a uniform probability density over some continuum-sized set such as 
the interval [0, 1]? This proves not to be the case. If we define the uni-
formity of chances through the requirement of label independence, the 
inductive logic that arises is very far from a probabilistic logic.
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The bulk of the chapter has tried to find how we may alter the require-
ment of uniformity until it matches what the probability calculus can pro-
vide. These alterations were introduced by weakening the requirement of 
label independence until we arrived at a version adapted to a background 
spatial metric. Even this weakening and the addition of background 
metrical structure met with limited success. For the inductive logic 
adapted to spaces of infinite area or volume is not probabilistic. Further, 
nonmeasurable sets arise in spaces of finite area and volume. They escape 
the reach of a probability measure if its probabilities are to match the spa-
tial areas and volumes. The only escape from this last problem seems to 
be to find reasons to ignore these sets. That they are non-constructible is 
a tempting way to banish them from our consideration. However, this es-
cape comes at the cost of supposing that all that exists in mathematics and 
in the physical world described by mathematics is what we can construct 
by our meager, finite methods.
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