
THE MATERIAL THEORY OF INDUCTION
by John D. Norton 

ISBN 978-1-77385-254-6  

THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic 
version of a book that can be purchased in physical form through 
any bookseller or on-line retailer, or from our distributors. Please 
support this open access publication by requesting that your 
university purchase a print copy of this book, or by purchasing 
a copy yourself. If you have any questions, please contact us at 
ucpress@ucalgary.ca

Cover Art: The artwork on the cover of this book is not open 
access and falls under traditional copyright provisions; it cannot 
be reproduced in any way without written permission of the artists 
and their agents. The cover can be displayed as a complete cover 
image for the purposes of publicizing this work, but the artwork 
cannot be extracted from the context of the cover of this specific 
work without breaching the artist’s copyright. 

COPYRIGHT NOTICE: This Open Access work is published under a CC-BY-NC-ND 4.0 
Creative Commons licence, available freely to readers everywhere, at no cost to authors. 
This means that you are free to copy, distribute, display or perform the work as long as you 
clearly attribute the work to its authors and publisher, that you do not use this work for any 
commercial gain in any form, and that you in no way alter, transform, or build on the work 
outside of its use in normal academic scholarship without our express permission. If you 
want to reuse or distribute the work, you must inform its new audience of the licence terms 
of this work. For more information, see details of the Creative Commons licence at: http://
creativecommons.org/licenses/by-nc-nd/4.0/

UNDER THE CREATIVE 
COMMONS LICENCE YOU 
MAY:

• read and store this
document free of charge;

• distribute it for personal
use free of charge;

• print sections of the work
for personal use;

• read or perform parts of
the work in a context where
no financial transactions
take place.

UNDER THE CREATIVE COMMONS LICENCE YOU 
MAY NOT:

• gain financially from the work in any way;
• sell the work or seek monies in relation to the distribution
of the work;

• use the work in any commercial activity of any kind;
• profit a third party indirectly via use or distribution of
the work;

• alter or build on the work outside of normal academic
scholarship.
The cover can only be reproduced, distributed, and
stored within its function as a cover for this work, and
as a complete cover image for the purposes of publicizing
this work.

Acknowledgement: We acknowledge the wording around 
open access used by Australian publisher, re.press, and 
thank them for giving us permission to adapt their wording 
to our policy http://www.re-press.org



55

2

What Powers Inductive Inference?1 

2.1. Introduction
This chapter summarizes the case for the material theory of induction, 
drawing on material in other parts of the book. There are three arguments 
for the theory. The first two are the following:

1. 	Failure of universal schemas. Through many examples in 
this text, we see that no attempt to produce a universally 
applicable formal theory of induction has succeeded.

2. 	Accommodation of standard inferences. These same 
examples show that the successes of many exemplars of 
good inductive inferences can be explained by the material 
theory of induction.

These first two arguments suffice, I believe, to make a solid case for the 
material theory. They are developed in Sections 2.2 and 2.3. They make the 
case without giving an intuitive grounding for why the material approach 
is the right one. They establish that it is, not why it is. For the arguments 
succeed by showing that the alternative, formal approach fails and that the 
material approach works where its competitor fails. The third argument, 

1	 My thanks to the Fellows of and a visitor to the Center for Philosophy of Science for 
discussions of a draft version of this chapter on 30 November 2011 and 23 November 2014: Yuichi 
Amatani, Ari Duwell, Uljana Feest, Leah Henderson, Gabor Hofer-Szabo, Soazig LeBihan, Dana 
Tulodziecki, Adrian Wuethrich, Adele Abrahamsen, Joshua Alexander, William Bechtel, Ingo 
Brigandt (presenter), Sara Green, Nicholaos Jones, Maria Serban, and Raphael Scholl.
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however, is grounded in the foundational question, developed in Section 
2.4, of why any inductive inference should work at all—that is, “What 
powers inductive inference?” The question presumes that we cannot take 
the success of inductive inference for granted. If it works, it does so for an 
identifiable reason. The material theory answers:

3. 	Inductive inference is powered by facts. The ampliative 
character of inductive inference precludes universal 
schemas.

There are two steps in the argument for this conclusion, and they are de-
veloped more fully in Section 2.5. Briefly, the first step notes that inductive 
inference is, by its nature, ampliative. That is, unlike deductive inference, 
the conclusion asserts more than the premises. It amplifies what the prem-
ises say. For each sort of inductive inference, there will be worlds hostile 
to its success. Generalizing chemical properties of samples, for example, 
is futile in a world without stable chemical properties. Using an inductive 
inference presupposes that, as a factual matter, we are not in one of those 
hostile worlds. If the notion of these facts is construed broadly enough, 
commitment to them is all there is to accepting the logic. These are the 
facts warranting the inductive inference.

The second step specifies the character of these facts. They are not 
universal contingencies such as would warrant a universally applicable in-
ductive logic. This is shown by our failure to identify a universally applic-
able inductive logic and our failure to exhibit such a universally war-
ranting fact explicitly. Rather, the facts hold true only in limited domains 
so that there are many of them and the inductive logic each warrants has 
local applicability only.

The two sections following Section 2.5 illustrate these two steps. 
Sections 2.6 and 2.7 consider the inductive problem of extending the series 
1, 3, 5, 7. It is insoluble without background facts to warrant the inference. 
Section 2.8 displays some more examples of warranting facts. Finally, our 
predisposition for treating inference formally is strong. Section 2.9 will 
seek to weaken the presumption that all theories of inference must be 



572 | What Powers Inductive Inference?

formal by indicating limitations in the formal, non-contextual treatment 
of the most favorable case, deductive inference. 

2.2. Failure of Universal Schemas
Formal approaches to inductive inference depend on supplying a universal 
template or schema. For example, in the last chapter, we saw the schema of 
enumerative induction

Some (few) As are B.
Therefore, all As are B.

Such templates are then used to generate the licit inductive inferences by 
substituting the content of the placeholders A and B. The enduring diffi-
culty for formal theories is that no general account of inductive inference 
has provided a clearly articulated exceptionless schema. Therefore, all 
formal accounts fail, and by eliminating the only rivaling accounts, the 
material theory gains support.

That all formal schemas fail is difficult to show directly since there are 
many of them. What can be shown, however, is the failure of a representa-
tive sample, which is the approach taken in this book.2 The mode of failure 
displayed by a given sample is sufficiently straightforward to make it likely 
that it will afflict all candidate schemas. 

In the preceding chapter, we saw in the example of crystalline forms 
that the schema of enumerative induction fails. For it to be applied success-
fully to crystalline forms, we needed to add additional, formal conditions 
contrived to rule out all but the very small set of properties of crystals that 
support inductive generalization. The sequence of additional conditions 
seemed to have no discernible end. Once even a few were added, it became 
clear that the schema lost all semblance of generality. 

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments, which is often introduced as a gold standard of 
evidence. On closer examination, however, it will be proven something 

2	 In earlier work (Norton, 2003, 2005), I sought to be more systematic. I showed 
how virtually all accounts of inductive inference fell into one of three families, each powered 
inductively by a single idea. Since the sample of failures reviewed here are spread over the three 
families, we have some assurance that they are adequately representative of the range of accounts.
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less. We will see that it is a guide whose verdict is sometimes accepted and 
sometimes discarded. There is no formal rule that tells us when the prin-
ciple is to be upheld and when not. It is a principle that holds except when 
it does not. The following chapter looks at reasoning by analogy, a form of 
inductive inference whose use has pervaded science from antiquity to the 
present. Once again, we will see that the bare schema is too impoverished 
to be used exceptionlessly. Efforts over the past century to augment the 
schema have led to supplements of monumental size while still not deliv-
ering a self-contained formal schema.

This pattern of failure continues in subsequent chapters. While con-
siderations of simplicity are often invoked in discerning the bearing of 
evidence, they do not rest upon a factual principle of parsimony in nature. 
Notions of simplicity prove sufficiently elusive that there is no clear for-
mulation of such a principle. Similarly the slogan “inference to the best 
explanation” is so familiar that one might presume that there is some 
hidden inductive power in explanation. The presumption fails on closer 
examination. Our notions of explanation are too varied and vague to har-
bor powers sufficient to support a universal scheme of inductive inference.

Finally, a series of chapters investigates what is, momentarily, the 
favored account of inductive inference in the literature in philosophy of 
science, Bayesian inference. Any aspirations of universal applicability fail. 
Several chapters develop cases in which a probabilistic logic cannot apply 
since such a logic would contradict symmetries inhering in the cases. There 
is a rich literature that seeks to establish the necessity of probabilities in 
representations of belief and inductive support. An examination of these 
arguments shows them all to be circular. This circularity is developed 
at length in a chapter devoted to the scoring rule approach. Finally, any 
Bayesian analysis is inductively incomplete in the sense that it always re-
quires inductively potent prior probabilities to be specified externally. I 
report work elsewhere that shows that this incompleteness is not specific 
to the Bayesian system but troubles any calculus meeting certain weak 
requirements. It follows that no single calculus can cover all the inductive 
inferences of science. To repeat an earlier conclusion: all induction is local.

These examples embody modes of failure that, I believe, afflict all 
candidates for universal schemas of inductive inference. The schemas 
may simply be too vaguely specified at the outset to count as a logic of 
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induction, as is the case with inference to the best explanation. Or, if they 
are precisely specified, they prove too permissive and authorize too much, 
as is the case with enumerative induction. Efforts to restrict the schemas 
may specialize them so narrowly to one particular domain that they lose 
their universality. Or efforts may burden them with more conditions. And 
in adding them, we may need to import new notions—natural kinds, ex-
planation, lawfulness—which in turn require further conditions for their 
explication, and so on without termination. 

2.3. Accommodation of Standard Inferences
The last section offered a preview of the failure of familiar, formal schem-
as for inductive inference. These schemas were devised because each, to 
some degree, fits some collection of inductive inferences we deem licit. 
The second argument for the material theory is merely the flip side of this 
failure. Where the formal approach fails for these repositories of licit ex-
amples, the material theory succeeds.3

Once again, this can be read from the analyses of the previous and 
subsequent chapters. Curie inferred inductively from the crystalline form 
of mere specks of radium chloride to all samples of radium chloride. 
What licensed the inference was a hard-won fact from nineteenth-century 
work on crystals. It is what I have called the Weakened Haüy’s Principle: 
“Generally, each crystalline substance has a single characteristic crystal-
lographic form.”

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments. This requirement proves not to be a universal in-
ductive principle but is shown rather to arise in connection with a loosely 
affiliated but irregular collection of inductive inferences concerning re-
peated experiments. The otherwise inexplicable irregularity of such in-
ferences becomes intelligible when we recognize that they are warranted 
by two classes of facts: those specifying when some process will yield the 

3	 In Norton (2003), I worked through the three families of accounts of inductive 
inference and showed briefly how the inferences of each account were materially warranted. The 
treatment of so many accounts there is necessarily brief. In this book, I seek to show the material 
warrant for standard examples of successful inductive inferences in much greater depth. As a 
result, fewer examples are treated.
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experimental outcome of interest; and those specifying what may con-
found the experimental outcome. These facts specify when a replication of 
an experiment is evidentially significant. More importantly, they specify 
when the replication is not evidentially significant. The variation in the 
facts from case to case explains the irregularity of the whole collection.

Arguments from analogy are so varied in their form that, as we shall 
see in Chapter 4, they defy complete characterization even by quite elab-
orate formulae. The material theory resolves the problem by conceiving 
analogy in the same manner as scientists. For them, analogy is not an 
argument form but a fact that asserts the similarity of two systems. This 
fact warrants inductive analogical inference. The resulting inferences have 
as varied a form as the facts of analogy themselves. It is this broad range 
of variation that defeats efforts to find a universal formal characterization.

This pattern of material reconstruction persists with the analysis of 
inductive inferences grounded in notions of simplicity or explanation. 
Invocations of simplicity in specific cases are shown to be abbreviated 
invocations of background facts. Since the background facts vary from 
case to case, their summary in an inductively potent principle of parsi-
mony is precluded. Similarly, in specific inferences to the best explanation, 
explanatory relations contribute nothing to the evidential import. Real 
examples of this sort of inference in science succeed through the mere 
adequacy of the favored hypotheses to the evidence and our success in 
eliminating its competitors by prosaic, non-explanatory means.

Finally, where the probabilistic representation of strengths of induct-
ive support is appropriate, it is because there are specific background facts 
that warrant them. The examples are many, varied, and familiar. Both 
quantum mechanical and statistical mechanical systems in physics are 
governed by probabilistic physical laws. These laws provide the warrants 
for the probabilistic inductive inferences over them. In biology, mechan-
isms of inheritance in population genetics are governed by probabilistic 
laws. They, too, warrant probabilistic inferences. An important back-
ground probabilistic fact in many areas of the biological and social sci-
ences is the presumption of sampling randomly from a population. This 
fact is important, for example, in the forensic identification of suspects 
through DNA analysis. It warrants the probabilistic inferences reported. 
A related case arises in controlled trials where subjects are randomized 
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into a test and control group. If the randomization is probabilistic, it intro-
duces background probabilistic facts that can warrant probabilistic infer-
ences about whether the effect measured could arise in case the treatment 
is ineffective.

These examples instantiate a familiar pattern. Whenever a cogent in-
ductive inference appears in a science, it has proven possible to trace the 
warrant for the inference to background facts.

2.4. The Mystery of Inductive Inference
The discussion so far has been devoted to the two most visible problems 
associated with inductive inference: 

1. Which are the good inductive inferences? 

To answer this, we must specify how we distinguish the good from the bad 
inferences. The material theory of induction says we do so by identifying 
warranting facts; we do not seek the warrant in universal schemas. This 
first problem is entangled with another problem that is more fundamental 
but largely overlooked in the present literature. How can inductive infer-
ence work at all? That is,

2. What powers inductive inference? 

Once we accept that inductive inference is powered by background facts, it 
becomes clear why the answer to the first question must lie in identifying 
the warranting facts.

The second question needs some elaboration. It is easy to take for 
granted that induction lets us do something remarkable. It lets us amplify 
our knowledge. We pay a small price for this amplification. Our new know-
ledge is not as certain as the old knowledge from which we proceeded. 
Sometimes the uncertainty is large. In important cases, the uncertainty 
is minuscule. Whether it is small or large, we still seem to get more than 
we should. The problem—the big mystery of induction—is to understand 
how this amplification can happen.

To sharpen the sense of why we need a solution to this second problem, 
consider an analogous problem. Imagine that we are in ancient Greece 
and encounter an oracle. In the darkness, we see the dim outline of the 
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sibyl, wailing and flailing. Her cries fall silent, and she issues several sharp 
proclamations that, over the course of time, turn out to be mostly accur-
ate. And all of this for the price of a goat and few drachma in her bronze 
bowl. Were this to happen, we would not be satisfied merely to note that 
this oracle has extraordinary predictive powers. We would want to know 
how this were possible. What is it in the order of things that enables this 
sibyl to make these predictions?

The puzzle is the same with induction. It performs a similar miracle, 
but without the movie-quality special effects. Experience gives us a small 
part of space for a small span of time. Yet from knowledge of this frag-
ment, we come to be sure that all things began some 14,000,000,000 years 
ago in an intense conflagration; that tiny smudges of light in the night sky 
are great galaxies of stars that duplicate our sun many times; and much 
more, down to the most minuscule structure of microbial life. We must 
ask, then, what is it in the order of things that allows induction to do this? 
What powers inductive inference?

The dominant trends in the present literature are incapable of satisfac-
torily answering these questions. To answer them adequately, both ques-
tions above need to be treated together. We cannot hope to know which 
are the good inductions without a clear and explicit idea of what powers 
induction. Answers to these questions in the literature have followed the 
model of deductive inference. This has driven us astray for millennia. It 
has led us to seek a non-contextual account of what powers induction and 
a formal answer to the problem of which are the good inductive infer-
ences. Neither works for induction. The central claim of this chapter is 
that a successful account of induction is contextual and material.

2.5. The Foundational Argument
The most compact argument for a material theory of induction proceeds 
by answering the foundational question of what powers induction. It is 
powered by facts. As indicated in the introduction, the argument has two 
premises.

Premise 1. Inductive inference is ampliative. This means that the con-
clusion of an inductive inference amplifies. It asserts more than the prem-
ises. This distinguishes inductive inference from deductive inference. 
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For deductive inferences merely restate what we have already presumed 
or learned. There is no mystery in what powers deductive inference and 
permits its conclusions. We are just restating what we already have in the 
premises. The warrant lies fully within the premises. If we know all win-
ters are snowy, it follows deductively that some winters are snowy.4 This 
derives from the premise “all.” If something is true of all, it is thereby true 
of some. The context in which we infer plays no role in powering the de-
ductive inference. The inference succeeds no matter what either “winter” 
or “snowy” might mean. The meaning of “all” is enough to uphold the 
conclusion regardless of context. The inference is valid independently of 
whatever other facts may obtain about weather and climate.

It is quite different with inductive inference. From the premise that 
all past winters have been snowy in some location, we infer inductively 
that the next winter will be snowy there. Yet it is entirely possible that this 
prediction fails. When we conclude in favor of the prediction, we assert 
more than the premises warrant. Such a conclusion is viable only in cer-
tain worlds. Hospitable worlds include those where the climate is stable. 
An inhospitable world would be one experiencing global warming, in 
which the past pattern of snowy winters does not continue unaltered. We 
can generalize the crystallographic family of a crystalline substance from 
one sample to all because our world is hospitable through the background 
fact of Haüy’s principle. But we cannot generalize the size of the one sam-
ple to all, for there are no background facts providing for restrictions on 
possible sample sizes. Correspondingly, we can generalize sizes of living 
organisms, for different types of organisms are restricted by their physical 
constitutions to specific scales. Insects cannot grow to human scale be-
cause their structures would be too weak to support their weight and they 
could no longer breathe by diffusion. Similarly, humans cannot shrink to 
the scale of insects. A shrunken human brain would have too few neurons 
for our cognition. At least this is true in our world, which is hospitable 
to the generalization. A science-fiction world, where the normal laws of 
science are suspended, however, might be another story.

4	 To be clear, I follow the informal conversational presumption and tacitly assume that 
“All winters are snowy” is not true vacuously; that is, the truth of the proposition requires that 
there are some winters.
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The examples above illustrate the general point: the factual assump-
tion that our world is a hospitable one is the fact that, if true, warrants 
the inductive inference. But it may not always be apparent that this fact 
warrants the inference. It may appear that the warrant is still provided 
by some sort of schema. The inference to a future snowy winter, we may 
think, is still warranted by the schema:

All past As have been B.
Therefore, the next A will be B.

This supposition, however, is incomplete. If used at all, the schema would 
have a purely intermediate role. It does not have universal applicability. 
We can use it in the case of a snowy winter only because the requisite 
background facts authorize it when we make the specific substitutions: 
“winter” for A; “snowy” for B. That is, a cascade of warrants may pass 
through a schema. The cascade terminates in facts that are the final war-
rant of the inference.

It is essential here to distinguish two ways that an inductive infer-
ence can fail: either by loss of an inductive bet in a hospitable world or by 
failure of an inductive inference in an inhospitable world. The first arises 
because accepting a warranted inductive inference still involves a risk. In 
a hospitable world with a stable climate, it is a warranted induction to infer 
from a past history of snowy winters that the next winter will be snowy. 
The next winter, however, may turn out not to be snowy. When a climate 
is stable, such fluctuations would be rarer but nevertheless possible. Losing 
an inductive bet like this must be distinguished from the second case in 
which it is imprudent to take the bet in the first place. If the background 
facts are of a warming climate in some location, then the background facts 
do not warrant the inference. If one persists and makes the inference, the 
conclusion may prove false. The failure reflects the lack of warrant of the 
inference, not a failure arising from traditional inductive risk.

The material theory of induction arises from the recognition that the 
truth of these background factual presumptions is all that is needed for the 
inductive inference to be warranted. One might imagine that this might 
not be so. The facts, we might suppose, play only a partial role in war-
ranting the inductive inference. Might there still be a residual universal 
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formal schema or inductive rule that contributes to the warrant? If so, 
such a schema or rule would be subject to the same analysis just given. If 
it functions to authorize an inductive inference, then it amplifies what is 
already asserted in the premises and all other background facts. It cannot 
be universal in application, for there would be worlds inhospitable to it. 
And we should only use the rule or schema where it is hospitable to do 
so. That is, the warrant for its use is the factual supposition that the world 
is hospitable to it. Once again, the inductive warrant has terminated in 
facts that should be included with the true background facts needed to 
warrant the inductive inference at issue. In other words, the truth of the 
background factual assumptions, when construed broadly enough, is all 
that is needed to authorize the inductive inference. With that, we arrive at 
the first major tenet of a material theory of induction:

Inductive inferences are warranted by facts.

What remains open is the precise character of the warranting facts. There 
is little we can say at the general level about the nature of these facts. In 
particular cases, their character will be straightforward. Our inference to 
a future of snowy winters is warranted by the assumption that our local 
climate will persist pretty much as it has, so that winters without snow 
are possible but unlikely. If the climate warms sufficiently, however, these 
facts may fail and with them the inductive inference.

In some cases, the background facts may be such that the inductive 
inference would be deductive if we explicitly added the warranting fact 
as a premise. Then the inference would be an enthymeme, a deductive 
inference with a hidden premise. An example is this version of Curie’s 
inference from the preceding chapter:

This sample of radium chloride is monoclinic. 
Generally, each crystalline substance has a single characteristic 

crystallographic form (Weakened Haüy’s Principle).
________________________________________________________________

Unless exceptions encoded by “generally” intervene, all samples 
of radium chloride are monoclinic.
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But it would also be entirely natural to detach the “Unless…” clause and 
have the inference:

This sample of radium chloride is monoclinic. 
Generally, each crystalline substance has a single characteristic 

crystallographic form (Weakened Haüy’s Principle). 
________________________________________________________________
All samples of radium chloride are monoclinic.

This inference is inductive for we are taking the risk that the exceptions 
suggested by generally do not arise.

Corresponding complications arise if we infer inductively in the 
Bayesian framework. If we infer from prior probabilities to posterior prob-
abilities by means of likelihoods using Bayes’ theorem, then the inference 
is deductive. If we broaden the context, this ceases to be so. Propositions 
asserting evidence and background facts are not provided to us with 
probability measures. We add them. In doing so, we accept that we can 
represent their mutual relations of inductive support probabilistically and 
that their inductive consequences follow from the probability calculus. In 
this process, we take an inductive risk that probabilistic analysis correct-
ly represents these relations. If we also proceed as normal people do and 
accept a proposition with a very high posterior probability as established, 
then we take a second inductive risk in detaching the qualification of high 
probability.

The second premise places a restriction on the character of the war-
ranting facts:

Premise 2. There is no universally applicable warranting fact for induct-
ive inferences. This premise requires support, part of which is supplied by 
other arguments in this book that seek to establish that there is no univer-
sally applicable logic of induction. For if there were, then there would be a 
universally applicable warranting fact according to Premise 1.

A more direct grounding for the second premise lies in our failure 
to exhibit such a universally applicable warranting fact. It has been long 
sought, like the philosopher’s stone—and with equal success. The best-
known attempt at characterizing it is Mill’s principle of the uniformity of 
nature: “The universe, so far as known to us, is so constituted that what-
ever is true in any one case is true in all cases of a certain description; the 



672 | What Powers Inductive Inference?

only difficulty is, to find what description” (Mill 1904, book 3, chap. 3, p. 
223). To this, he added: “Whatever may be the proper mode of expressing 
it, the proposition that the course of nature is uniform is the fundamental 
principle, or general axiom of Induction” (p. 224). It is a general fact about 
the world that holds in all domains in which we may seek to infer induct-
ively. It is the one, universal fact that would power all inductive inference.

The trouble with Mill’s principle is that, read literally, it is false; and 
read charitably it is so vague as to be unusable. Take the literal reading. 
Our world is not uniform in all its aspects. Indeed, the world fails to be 
uniform in virtually all its aspects. Otherwise, we would live in a largely 
homogenous environment. At best, the world is uniform in a very few, 
quite special properties that end up figuring in what we take to be laws of 
nature. This last statement is the charitable reading. The real challenge for 
the principle is to specify just what its special properties are. Yet through 
the vague generality of its formulations, it provides no such specification. 
At best, the principle deflates to a weak existential claim: there are uni-
formly implemented properties in nature, but we do not know precisely 
which they are. Or, more generally, nature is regular and orderly but in 
a way that we cannot state or grasp compactly enough to implement as a 
principle that can be employed practically in a logic of induction.

That the principle needs this shield of ignorance to protect it from 
scrutiny suggests that there is no real content hidden behind the shield. 
The principle has ceased to have any practical value in our inductive in-
vestigations. Wesley Salmon (1953, p. 44) long ago wrote its obituary: “the 
general result seems to be that every formulation of the principle of the 
uniformity of nature is either too strong to be true or else too weak to be 
useful.” This completes the argument for the premise.

If the facts warranting inductive inference are not universal truths, 
then they must be truths of restricted domains, and the inductive infer-
ences they warrant will be restricted to those domains. It may well be that 
the inferences warranted in some restricted domain have a regular struc-
ture. Then we have an inductive logic applicable to just that domain. For 
example, Haüy’s principle warrants an inductive logic that looks formally 
like enumerative induction but is restricted to generalizations concerning 
the crystallographic family of samples of crystalline substances. A general 
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statement of this restriction is the second major tenet of a material theory 
of induction:

All induction is local.

Philosophers are good at finding clever but ineffective loopholes. The 
following loophole is one that few can resist. If each domain has its own 
material facts that warrant inductive inferences in it, why not just com-
bine them all? The resulting conjunction would be a single, huge fact that 
warrants inductive inferences in all domains.

It would be correct to assume that this huge conjunction would war-
rant inductive inferences in all domains. But it would not provide an es-
cape from the necessarily local character of inductive inferences claimed 
by the material theory. That locality now reappears in the irreducibility of 
the huge conjunction to anything more compact. It remains just a single, 
huge conjunction of this fact and that fact and that other fact and so on, 
with many, many more conjuncts. To use the huge conjunction in any 
particular domain, we have to locate within the immensity the particu-
lar facts that applies to that specific domain, extract the particular facts 
while ignoring all others, and apply them. The warranting of inferences 
in that specific domain will still be done by facts prevailing just in that 
domain. The existence of the huge conjunction provides no universally 
applicable schema beyond the one already central to the material theory 
of induction: to identify the warrant of an inductive inference, seek facts 
that prevail in that domain.

The next two sections will illustrate the first and second premises re-
spectively of the argument of this section.

2.6. The Inductive Inference on 1, 3, 5, 7, …5

To quickly see the importance of background warranting facts, an in-
ductive inference problem bereft of background facts will help: Given 
the initial sequence of numbers 1, 3, 5, 7, how should this sequence con-
tinue? That the sequence could continue in many different ways is a trivial 

5	 This example and a briefer version of the argument of the previous section are given in 
Norton (2014).
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mathematical fact. If the only restriction is that these are the first four 
terms of an infinite series, then there is an infinity of varying continu-
ations. The lack of specification makes it impossible to favor any one in 
particular—that is, to pick among the deductively authorized possibilities. 
Without some specification of background facts, to infer inductively about 
the continuation is impossible.

The possibilities are greatly reduced if we assume naturally that the 
sequence is governed by some simple rule. There are still many possible 
continuations. The sequence may just be the odd numbers:

1, 3, 5, 7, 9, 11, 13, 15, …

Or it may be the odd primes, including one:

1, 3, 5, 7, 11, 13, 17, …

Or it may be the digits of the decimal expansion of 359/2,645:

1, 3, 5, 7, 2, 7, 7, 8, 8, 2, 8, …

While the possibilities in these cases are reduced, the inductive problem 
is still intractable since the notion of a “simple rule” remains underspeci-
fied. This makes finding other continuations merely a challenge to our 
ingenuity in writing laws that look simple in some sense we happen to find 
congenial.

Another approach embeds the sequence in a context for which we 
have more information. The numbers may be drawn from a randomizing 
lottery machine. The fact of randomization then authorizes a probabilis-
tic analysis. Probabilistic inductive support is distributed uniformly over 
the remaining, undrawn numbers. Or perhaps the numbers appear in a 
question on an IQ test or in the interrogation of a psychologist we believe 
is intent on tricking us. These different background facts would then au-
thorize different inferences about the continuations, although the com-
plexity of the background would make discerning their precise character 
troublesome.
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2.7. The Law of Fall
It is easy to suppose that the preceding inductive problem is merely a con-
trivance, unrelated to real problems of inductive inference in science, and 
thus one that we need not strive to accommodate in our account. This 
supposition is wrong. The problem is in fact one of the classic problems of 
inductive inference in science. This particular number sequence happens 
to figure in one of the great discoveries in the history of science. In his 
Two New Sciences (1638), Galileo presented his law of fall. In one form, 
the law asserts that the distances fallen in successive units of time stand 
in the ratios 1 to 3 to 5 to 7 and so on; that is, in the ratio of the odd 
numbers. Galileo’s pathway to this law was long and convoluted. However, 
at least one part of it quite likely involved experimentally measuring the 
distances that bodies fall and the time this takes. In Two New Sciences 
([1638] 1954, pp. 178–79), Galileo describes an experiment in which a ball 
is timed rolling down a grooved ramp. The ramp is a surrogate for free 
fall that slows the motion sufficiently to enable time measurements using 
Galileo’s crude methods. Stillman Drake (1978, p. 89) has identified an 
early Galileo manuscript that, Drake argues, records the results of just 
such an experiment.

So let us pose a simple Galileo-like inductive problem. Given that the 
incremental distances fallen in successive units of time are in the ratios 1 
to 3 to 5 to 7, what will be the distances in subsequent times? Using resour-
ces available to Galileo, how might this be solved?

We have a good idea of Galileo’s methods. One element was that he 
presumed fall to be governed by a rule that was expressible simply in the 
mathematical techniques available to him. The idea is indicated in Two 
New Sciences. Galileo reflects on the gains in speed of falling bodies and 
asks of them, “why should I not believe that such increases take place in 
a manner which is exceedingly simple and rather obvious to everyone?” 
(p. 161). Galileo’s inference is warranted by a fact: the simple behavior of 
bodies in free fall. Galileo’s rhetorical question leaves the notion of sim-
plicity at issue underspecified and thus leaves underspecified just which 
inference is authorized. If we read Galileo’s writings more broadly, we find 
a stronger statement that identifies the notion of simplicity at issue. In a 
famous passage in The Assayer, he wrote:
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Philosophy is written in this grand book, the universe, 
which stands continually open to our gaze. But the book 
cannot be understood unless one first learns to comprehend 
the language and read the letters in which it is composed. It 
is written in the language of mathematics, and its charac-
ters are triangles, circles, and other geometric figures with-
out which it is humanly impossible to understand a single 
word of it; without these, one wanders about in a dark laby-
rinth. (1623, pp. 237–38)

This is a form of Platonism, which asserts that the world is structured as 
a copy of perfect mathematical forms. This factual statement about the 
world then warrants an inference to a simple mathematical rule as the 
continuation of the sequence 1, 3, 5, 7, ….

This approach may at first be appealing. The world does admit simple 
mathematical description. Why can we not use this fact to underwrite in-
ductive inferences? The appeal fades rapidly under closer scrutiny. There 
are three problems.

First, if one is not a Platonist, one judges the warranting fact to be a 
falsehood and thus the inference an inductive fallacy. The success of math-
ematical methods in science since Galileo does not, in my view, justify the 
Platonic view. Rather, as I have argued elsewhere (Norton 2000, Appendix 
D), the success merely reflects the post hoc adaptability of mathematics to 
new scientific discoveries.

Second, attempts to employ the Platonic idea fall prey to the problem 
that the mathematical imagination can conjure up vastly more structures 
than are implemented in reality. Seek simple laws written in the wrong 
mathematical language, and our investigations will stall and fail. Einstein 
became a mathematical Platonist during his later-life search for a unified 
field theory.6 His efforts were stymied by just this problem since he sought 
laws that could be simply expressed in the mathematics of tensors and the 
like on four-dimensional space-time manifolds. Subsequent theorizing in 
quantum gravity has branched out in the mathematical structures it uses 

6	 This is recounted in Norton (2000).
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and typically does not posit a four-dimensional space-time manifold as a 
primitive.

Third, when Galileo investigated falling bodies, the mathematics ac-
cessible to him was limited to methods drawn from Euclid. They com-
prised the barest sliver of the mathematics we now employ. It would be 
naïve to assume that the Platonic blueprint of nature is drawn with the 
mathematics of this tiny sliver.

2.8. Invariance under the Change of the Unit of Time
In the face of these mounting difficulties, we may well wonder whether 
Galileo had the sufficient background facts to warrant what still appears 
to be a good inference. Fortunately, he did assume another background 
fact, which was perfectly tuned to warrant the inference and eliminate all 
but one of the open possibilities. This aspect of his work, however, typical-
ly receives scant attention.

Galileo’s experimental methods were unable to fix a precise unit of 
time. At best, he could determine that, in one experiment, successive 
intervals of time were equal. He realized that his experimental result was 
stable in spite of this variability of time units. In measuring fall, he re-
covered the same ratios, 1 to 3 to 5 to 7 and so on, no matter what unit of 
time he used. This important fact is stated by Galileo in Two New Sciences 
when he presents this odd-number formulation of his law of fall. He wrote:

Hence it is clear that if we take any equal intervals of time 
whatever, counting from the beginning of the motion, such 
as AD, DE, EF, FG, in which the spaces HL, LM, MN, NI 
are traversed, these spaces will bear to one another the same 
ratio as the series of odd numbers, 1, 3, 5, 7. ([1638] 1954, p. 
175; emphasis added)

The invariance of the result is asserted by the text I have italicized.7

7	 Galileo’s Latin quotcunque tempora aequalia is literally “however so many equal 
times.” Crew and de Salvio render it as “any equal intervals of time whatever.” Their looser 
rendering fits with the overall context in allowing both the number and duration of the intervals 
to vary. An important part of the context is the earlier statement of the law of fall from which this 
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With a little arithmetic, we can see how this invariance under change 
of units of time works. In successive units of time, the body falls the fol-
lowing distances: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, …. Now replace the original 
unit of time with a new unit equal to two of the old units. The distances 
fallen in successive units of time with the new unit are

1 + 3, 5 + 7, 9 + 11, 13 + 15, 17 + 19, …

= 4, 12, 20, 28, 36, …

= 4 × 1, 4 × 3, 4 × 5, 4 × 7, 4 × 9, … .

Galileo’s law requires only that these distances be in the ratios 1 to 3 to 
5 to 7 and so on. Hence, we can neglect the factor of 4 and observe that 
the ratios conform to the law. This invariance obtains, Galileo asserts, no 
matter which unit of time we select.

The remarkable fact is that there are few laws of fall that respect this 
invariance. Using techniques in calculus and functional analysis not avail-
able to Galileo, it is possible to prove that the only laws are these. If d(t) is 
the fall distance in the unit of time (t − 1) to t, then8

where p is any real number greater than 0 (see Norton 2014a). This means 
that prior to any measurements, the scope of the law admissible is already 
reduced to these very few possibilities. 

What now gives the inference great strength is that there is just one 
free parameter in the law, p. It follows that securing just one ratio of dis-
tances experimentally fixes the law uniquely. For example, take the first 
ratio that Galileo would have measured, d(2)/d(1) = 3. It follows that p 
must satisfy

corollary is derived. The law is first introduced as “during any equal intervals of time whatever, 
equal increments of speed are given to it” (p. 161). Galileo’s Latin dum temporibus quibuscunque 
aequalibus is correctly rendered by Crew and de Salvio as “during any equal intervals of time 
whatever,” where quibuscunque has no restriction to number or duration. These unrestricted, 
equal time intervals are the ones that reappear in Corollary I.

8	 There is a suppressed proportionality constant in the statement. It is suppressed since 
Galileo’s law concerns ratios of the quantities d(t), and the constant will not affect those ratios.
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The unique solution is p = 2 so that d(t) is proportional to

Hence, for successive times t = 1, 2, 3, 4, …, we have d(t) = 1, 3, 5, 7, …—
that is, the odd numbers.

This is a remarkable result, and it is worth restating: if invariance 
under change of units of time is to be respected, the only continuation of 
the two-membered sequence of incremental distances fallen 

1, 3 

is the sequence of odd numbers 

1, 3, 5, 7, 9, 11, 13, ….

Of course, Galileo could not have known this result in all generality. But it 
is quite likely that he was aware of how restrictive the invariance was. One 
needs only to try out a few alternatives to the odd-number sequence arith-
metically to realize that all simple alternatives fail. Drake (1969, pp. 349–
50) notes that a correspondent of Galileo’s, Baliani, reported that Galileo 
had used the invariance as a “probable reason” for the odd-number rule. 

While Galileo did not elaborate in Two New Sciences on this result, 
Christiaan Huygens soon did. When he was only seventeen years old, 
Huygens found the result independently, prior to reading Galileo’s Two 
New Sciences.9 One statement of what he found is given in a letter of 28 
October 1646 to Marin Mersenne (Huygens 1888, pp. 24–28). We see there 
that Huygens arrived at his result by considering two possibilities: that 
either the incremental distances fallen in subsequent, equal intervals of 
time increase in an arithmetic progression, or that they increase in a geo-
metric progression. Only one case gave non-trivial results: an arithmetic 

9	 I thank Monica Solomon for drawing my attention to Huygens’ work and for sending 
me a copy of his letter and other supporting materials. 
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progression in the ratios of the odd numbers, 1, 3, 5, 7, …. The demon-
stration is creditable but less than general since it overlooks the possibility 
of expressions for the incremental distances d(t) with values of p other 
than 2 in the formula tp − (t − 1)p. Thus it precludes by supposition many 
other progressions that would give a law of fall whose ratios would remain 
unchanged under change of units of time. While one might imagine ways 
that the demonstration could be rendered more general, there seems to 
be no obvious way to arrive at the general proof without mathematical 
techniques stronger than those available to Galileo and Huygens—for in-
stance, those used in Norton (2014a).10 This may explain why Galileo did 
not elaborate on the result in Two New Sciences.

Our Galileo-like inductive inference problem admits a ready solution. 
We take as a premise that the ratios of the incremental distances fallen in 
successive units of time are 1 to 3 to 5 to 7. There are two warranting facts 
accessible to Galileo: that the rule governing the sequence is expressible 
simply; and that the rule is invariant under change of units of time. Only 
a small amount of arithmetic exploration will show that this invariance 
likely rules out all extensions other than the odd numbers. A fuller analy-
sis shows that the second invariance by itself is sufficient to warrant the 
inference.

2.9. Can Bayes Help?
One might imagine that the general inductive problem of extending the 
initial sequence 1, 3, 5, 7 is one where a Bayesian method would excel. But 
would it succeed without the need for specific background facts despite 
everything that has been said so far? In short, the answer is that it does 
not provide a successful, universal treatment of the problem. There are 
two striking failures in the analysis. First, Bayesian analysis fails to offer 
any inductive learning from the evidence of the initial sequence 1, 3, 5, 7. 
Second, prior probabilities control the analysis, but the requirement that 
they normalize prevents them being set in a manner that is universally 
benign.

10	 One way is to consider not the incremental distances d(t) but the total distance s(t) 
fallen by time t. Then it is easy to show that the invariance is satisfied by setting s(t) proportional to 
tp for any p > 0. However, showing that these are the only laws satisfying the invariance is harder.
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To proceed, we will see how a Bayesian analysis might help us decide 
between two extensions of the sequence 1, 3, 5, 7:

The odd numbers Hodd: 1, 3, 5, 7, 9, 11, 13, 15, …
The odd primes with one Hprime*: 1, 3, 5, 7, 11, 13, 17, …

using the evidence E: 1, 3, 5, 7.
The ratio form of Bayes’ theorem asserts that

Since each Hodd and Hprime* deductively entails E, we have P(E | Hodd) = 
P(E | Hprime*) = 1. Therefore, Bayes’ theorem reduces to

According to the theorem, what have we learned from the evidence E? 
The prior probabilities P(Hodd) and P(Hprime*) represent our initial uncer-
tainty about the two hypotheses; the posterior probabilities P(Hodd | E) 
and P(Hprime* | E) represent their new values after incorporating evidence 
E. The reduced form of Bayes’ theorem just tells us that conditionalizing 
on the evidence makes no difference to our comparative uncertainty con-
cerning the two hypotheses. The ratio of the prior probabilities is the same 
as the ratio of the posterior probabilities. This will be true for any pair of 
hypothesized sequence that starts with 1, 3, 5, 7. In short, we have learned 
nothing new from the evidence as far as our decision between the two 
hypotheses is concerned.

Hypotheses logically incompatible with the evidence will be eliminat-
ed. Take, for example, the natural numbers represented by Hnat: 1, 2, 3, 4, 
5, 6, …. Since Hnat is logically incompatible with E, we have P(E | Hnat) = 0, 
and the posterior probability will be P(Hnat | E) = 0. But this result is not an 
inductive result. We have simply eliminated all hypotheses deductively in-
compatible with the evidence. The deductive result is easily obtained with-
out the probability calculus or any other inductive manipulations. Where 
we need help is with the inductive problem. Does the evidence E favor 
some hypotheses among those with which it is deductively compatible? 
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Here, the Bayesian analysis has failed to provide anything useful. Our in-
ductive preferences are unchanged by learning the evidence.

This is a somewhat discouraging start. Nevertheless, it will be instruct-
ive to press on and ask what our posterior probabilities may be with specif-
ic prior probabilities. The analysis bifurcates according to whether we are 
subjective or objective Bayesians. If we are subjective Bayesians, then our 
prior probabilities are merely expressions of prejudice, constrained only 
by compatibility with the axioms of the probability calculus. We might de-
cide that these prejudices dictate that Hodd has three times the probability 
of Hprime*. Then we conclude for our posterior probabilities that

Looking at the equation, it may seem that we have learned something. But 
we have not. The threefold difference in posterior probabilities is a direct 
restatement of our prior prejudices.

If we are objective Bayesians, we will seek prior probabilities that ob-
jectively reflect what we know. In this case, by supposition, we know noth-
ing initially, so we have no reason to prefer one hypothetical sequence over 
any other. Hence, the appropriate prior probability will assign the same, 
small probability ε to each hypothesis. That is, we have

The reduced form of Bayes’ theorem now tells us:

Once again, we have learned nothing. Our initial assumption was that 
all hypotheses are equally favored, and this remains true for any pair 
compatible with the evidence.

This last conclusion overlooks a complication that will gravely trouble 
both subjective and objective Bayesians. The prior probability distribution 
must normalize; that is, the prior probabilities assigned to all the possible 
sequences must sum to unity. There is an uncountable infinity of possible 
sequences.11 This means that, in a strong sense, most sequences must be 

11	 To see that the set is at least continuum sized, we should note that a subset of sequences 
using the digits 1 and 2 only can be mapped one-to-one onto the real numbers in the interval [0, 1]. 
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assigned zero prior probability. Once a sequence has been assigned zero 
prior probability, its posterior probability on any evidence whatever will 
also be zero. This means that no evidence, no matter how favorable, will 
move us to entertain the sequence in the slightest. Hence, both subjective 
and objective Bayesians must make unavoidably damaging decisions, pri-
or to any evidence, as to which few sequences will be learnable.

Of course, there are ways we might try to work around the problem. 
We might try to retain the uniform prior probability distribution simply 
by dropping the requirement of normalization and using so-called “im-
proper priors.” This violation may be excused if it turns out that, after 
conditionalization, the posterior probability distribution is normalizable. 
Normalizability is not achieved in this case, however. There are infinitely 
many sequences beginning with 1, 3, 5, 7. After we conditionalize on this 
evidence, we will be assigning equal non-zero probability to each sequence 
in this infinity of sequences. Normalization will fail.

More drastically, we might retain a uniform prior probability distri-
bution by the artifice of simply choosing a finite subset of sequences and 
casting the rest into the darkness of zero probability. If we eschew the 
uniformity of prior probabilities for variable probabilities, we can expand 
the set of sequences with non-zero prior probabilities to a countably in-
finite set. As long as the prior probabilities diminish fast enough as we 
proceed through the set, the sum of the probabilities can be unity, as nor-
malization requires. One way of achieving this diminution is to assign 
these varying non-zero probabilities only to sequences that are arbitrarily 
long, but always of finite length. If we do this, we need some rule to decide 
which sequences are more probable and which are less. A popular choice 
is to use a prior probability distribution advocated by Solomonoff (1964). 
Briefly, describable sequences, like 1, 2, 1, 2, 1, 2, …, have greater prior 
probability than sequences without simple descriptions. A prior probabil-
ity distribution is implemented by penalizing each sequence’s probabil-
ity by an exponential factor (1/2)N, where N is the length of the shortest 

The sequence 1, 1, 2, 2, 1, 1, 2, 2, … is mapped to the fraction in binary notation 0.00110011…, etc. 
To see that the set is no bigger, we should note that we can map any sequence to a real number in 
[0, 1] by replacing the symbol “,” by the symbol “0”. The sequence 1, 3, 5, 7, 9 , 11, 13 … is mapped 
to the real 0.1030507090110130…, etc. The map is not “onto” because some real numbers, such as 
0.100010001, have no corresponding sequence.
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description possible for the sequence.12 Bayesian analysis that employs this 
prior probability distribution is celebrated with joyous but naïve enthusi-
asm as providing a “complete theory of inductive inference” (Solomonoff 
1964, p. 7) or “universal induction” (Rathmanner and Hutter 2011).

The difficulty is that the comparative judgments of a prior probability 
distribution will never go away. They determine how we might discrimin-
ate between Hodd and Hprime* on learning the evidence E = 1, 3, 5, 7. Thus 
the selection of this prior probability distribution is not benign. It must be 
justified by something solid. Are we to suppose that, as a general propos-
ition, our world favors sequences with short Turing machine programs? 
This favoring might be credible in specific contexts, such as one where we 
know that people are thinking up the sequences. But we are to suppose 
that this favoring is true prior to any restriction whatever on where these 
sequences may appear. It is hard to see any reason for why the world would 
universally prefer to present us with number sequences that are comput-
able and in such a way that exponentially penalizes sequences with long-
er programs. The literature supporting the Solomonoff approach holds 
otherwise and matches its joy in its solution of the inductive problem with 
equally joyous pronouncements grounding the approach. Authors of this 
literature often resort to appeals to simplicity through “Occam’s Razor” 
(Solomonoff 1964, p. 7; Rathmanner and Hutter 2011, p. 1101). This reveals 
an inflated reverence for the insights of a medieval scholastic who wrote 
six centuries before Turing conceived the notion of a universal Turing ma-
chine. For more deflation of simplicity, see Chapter 6.

In short, the challenge of accommodating the requirement of nor-
malizability greatly complicates the analysis. More generally, the Bayesian 
analysis itself creates troubles that multiply and whose intractability deep-
ens the more we try to resolve them. We could continue to wrestle with 
them. Or we could see that the very fact that we face lingering problems 
of this gravity tells us that Bayesian analysis is just the wrong instrument 
for this inductive problem. Compare this with the simplicity of the ma-
terial analysis of the problem of extending 1, 3, 5, 7. Once we locate the 
appropriate context, as in Galileo’s law of fall, we find that the requirement 

12	 N is usually taken to be the length of the shortest Turing machine program that would 
output the sequence.



The Material Theory of Induction80

of invariance under change of units of time fixes the extension all but 
completely.

2.10. Warranting Facts
What might other warranting facts look like? Once we realize that familiar 
facts may serve also to warrant inference, we see that we are surrounded 
by such warranting facts.

Cosmology seeks to discover the structure of the universe on the lar-
gest scale. If the universe is infinite in spatial extent, then the finite por-
tion observable by us is minuscule. What we see is infinitely outweighed 
by what we cannot see. The essential assumption that allows us to proceed 
from what we can see to what we cannot is the “cosmological principle.” It 
asserts that the universe is roughly homogenous in its large-scale proper-
ties. While this wording may seem somewhat vague, standard applications 
of the principle employ it unambiguously. In our vicinity of the universe, 
matter is distributed roughly uniformly in galaxies in a space of constant, 
possibly zero, curvature. The cosmological principle authorizes us to infer 
that this condition obtains everywhere in the whole universe. Much of 
modern cosmological theory proceeds from this authorization.

Assume we have some isolated system with a given quantity of energy 
and entropy. The principle of the conservation of energy—the first law of 
thermodynamics—authorizes us to infer that, however else it changes, the 
same isolated system will have the same energy at any point in the fu-
ture. The second law of thermodynamics authorizes us to infer a similar 
conclusion about the entropy of the system: it will be the same or greater. 
A careful statement of the second law merely allows that, with very high 
probability, the entropy of such systems will be the same or greater. Hence, 
the conclusion is warranted inductively but with very great certainty.

Assume we have some experiment performed in an isolated laboratory. 
The principle of relativity authorizes us to infer that a uniformly moving 
replica of the experiment will yield the same result. A more careful fac-
tual statement of the principle allows that it would hold only in regions 
of space-time that are remote from intense gravitational fields and thus 
unaffected by the curvature of space-time revealed through the general 
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theory of relativity. So the factual principle informs us that, mostly, the 
same experimental result will obtain. Thus, the inference is inductive.

These examples are designed to illustrate a progression in two aspects. 
First, a progression from the more general to the more specific and local. 
Second, a progression from examples where the mediating facts authorize 
the conclusion deductively to those where they authorize them inductive-
ly. The next and final example extends the progression farther to a case of 
greatly narrowed scope and greater inductive risk.

Assume we set up some simple chemical process whose feed includes 
nitrogen gas. A general fact of chemistry is that nitrogen gas is quite un-
reactive. Its diatomic molecules are held together by a strong triple bond 
that is hard to break. This general fact authorizes us to infer, at a relative-
ly high level of inductive certainty, that the simple chemical process will 
leave the nitrogen gas unaltered. We are not assured of the conclusion with 
deductive certainty. There are extreme conditions under which nitrogen 
gas can be compelled to enter into reactions, as the Nobel Prize-winning 
work of Haber and Bosch demonstrated a century ago. Their Haber-Bosch 
process enables the chemical industry to synthesize ammonia from nitro-
gen and thereby manufacture both fertilizers and explosives.

This progression gives us factual principles of increasingly narrow 
scope that warrant inferences inductively. The material theory of induc-
tion places no lower limit on the size of the domain over which these fac-
tual principles operate.

2.11. A Non-Contextual, Formal Logic is Exceptional
The scope of successful applications of deductive logic that are non-con-
textual and formal is enormous. It is one of the great achievements of hu-
man thought. Its success makes it easy to think that the right way and 
only way to analyze inference is with non-contextual, formal theories. 
Correspondingly, then, one might think of a materially warranted logic as 
some kind of failure, perhaps the result of insufficient efforts to find that 
elusive, universal formal logic of induction. I will argue in this section that 
the success of non-contextual, formal accounts of deductive logic is excep-
tional. Hence, we should not use our familiarity with deductive logic to set 
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our expectations for inductive logic. We should not allow this to make us 
expect that there is a non-contextual, formal logic of induction.

2.11.1. The Undeserved Success
Which are the good deductive inferences? As long as the problems are kept 
simple, most people have a good instinctive grasp of the deductive conse-
quences of their knowledge, and they manage without external guidance. 
But the limits are readily breached. If each thing has a cause, does it fol-
low deductively that there is one ultimate cause for all things? If for every 
moment of time there is a later moment of time, does it follow that time 
endures infinitely? Novices relying on instinct can easily falter in the face 
of such traps. Can we find an instrument that systematically and reliably 
separates the good deductions from the bad? The means of discerning the 
good deductions is so familiar to anyone with a familiarity with modern 
logic that it is easy to underestimate the difficulty of the problem.

This problem was all but solved millennia ago with a simple, profound 
observation. To illustrate with a modern example, if you know that “All 
electrons have spin half,” then you know that “Some electrons have spin 
half.” The deductive inference is assured even if you have no idea of what 
an electron is and even less of an idea of what “spin half” is. You can make 
the inference merely by attending to the form of the sentences and ignor-
ing the material. You start with “All As are B” and know that you are then 
authorized to infer that “Some As are B.” You can ignore the details about 
electrons and spin; all that matters is the form of the sentences.

That deductive inference can proceed in such a simple and efficient 
manner is a marvel. It is the basis of a formal theory of inference, for we 
separate out the allowed inferences from the prohibited inferences merely 
by looking at their form. Specifying the logic then simply amounts to pro-
viding a list of schemas, such as

All As are B.
Therefore, some As are B.

To use the schemas, we replace A by anything we like and B by anything 
else we like and—bingo!—there’s a valid deductive inference.
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This example shows that the success of the schema depends on the 
non-contextuality of deductive inference. We can transport this schema 
to any domain, substitute anything for A and B, and still be assured that a 
valid inference results.

This simple schema is just the beginning. Generations of logicians 
have supplied us with a growing repertoire of schemas that embrace many 
logical operators. Sentential logic, for instance, employs the connectives 
“not,” “or,” and “and.” One of De Morgan’s laws is the schema

Not-(A and B).
Therefore, (not-A or not-B).

Predicate logic includes individuals and their relational properties, and it 
allows us to quantity over the individuals. If all things “x” gravitate “G(x),” 
then it is false that something exists that does not gravitate. This is an 
application of the schema

For all x, G(x).
Therefore, not-(there exists x, not-G(x)).

Modal logic introduces modal operators, like “It is possible that…” and “It 
is necessary that….” Tense logic introduces temporal operators, such as “It 
is always…” and “It is sometimes….”

2.11.2. Context Dependence of Connectives
In the face of the successes of deductive logic, it may seem that the scope of 
formal methods in logic is unlimited. However, lingering and recalcitrant 
anomalies limit the scope of the formal approach. Such anomalies mani-
fest in deductive logic when the logical terms used have meanings that are 
context dependent. Does “some” just mean “at least one”? Or does it mean 
“more than one but not too many”? The answer varies with the context. 
Consider this mathematical assertion: “For some x, the quotient 1/x is un-
defined.” Here, “some” can mean “one or more,” and the single case of x 
= 0 is the one that makes the sentence true. But consider “some” in the 
following context: “Some voters disapprove of the governor’s decision.” 
This “some” requires more than one voter, but probably not a majority. 
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This difference matters in the formal theory, for not all schemas we may 
wish to use for “some” will apply everywhere. Consider

Some As are B.
Therefore, more than one A is B.

The schema applies to the “some” of the voters but not to the “some” 
of division by x. The schema is context dependent; it is not universally 
applicable.

The humble conditional “If A then B” has proven to be a more notori-
ous locus of this sort of trouble. A natural understanding is that this con-
ditional is true when knowing A authorizes you to know B as well. That 
is, the conditional can be a premise in the argument form modus ponens:

If A then B.
A.
Therefore, B

The validity of the inference is secured if the conditional “If… then…” 
is the “material conditional.” Accordingly, “If A then B” is the same as 
“Either A is false or B is true.” Thus, if we happen to know that A is true, 
then we know the first option (“A is false”) fails. So that leaves the second, 
“B is true.” Hence, the material conditional has done the job of allowing us 
to proceed from knowing A to knowing B.

All of this may seem quite fine until one realizes that, with this under-
standing, the conditional “If A then B” turns out to be true whenever B is 
true, no matter what A says. That is, both statements “If pigs have wings, 
then the sky is blue” and “If the grass is green, then the sky is blue” turn 
out to be true, material conditionals simply because the sky is blue. The 
natural objection is that an “If A then B” statement can only be true if 
there is something in the antecedent A that makes the consequence B true. 
The objection fails in these last examples. Whether pigs have wings or the 
grass is green is irrelevant to the blueness of the sky. But the statement “If 
the sunset is red, then the sky is blue” can be a true conditional. For the 
sunset is red because the blue light from a setting sun has been scattered 
away by the air, and the blue light comprises the blue sky. The blue of the 
sky is directly relevant to the red of the sunset.
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Ingenious systems of relevance logic have sought to formalize the 
schemas into which “If… then…” properly enters, if understood relevant-
ly. However, deciding just what is relevant to what is a delicate issue that 
may embroil us in significant portions of science. The blueness of the sky 
results from the Rayleigh scattering of blue light by the air’s nitrogen and 
oxygen atoms, which just happen to be the right size for the job. Likewise, 
arcane facts in atomic theory are also relevant but perhaps not as directly 
relevant as the redness of the sunset. This tells us that relevance is context 
dependent and may vary in strength. Indeed, relevance may prove to be so 
diffuse that it may not be possible to separate off a small, tight formal logic 
of relevance as anything other than a crude gloss of a richer relation that is 
inextricably connected with the factual material of the science.

More generally, the success of a universally applicable formal logic 
of deduction depends on deductive inference being non-contextual. 
Whenever simple connectives fail to have a non-contextual meaning, as in 
the examples above, the logic in which they appear ceases to be universal.

2.11.3. Sellars’ and Brandom’s Material Inference
The anomalies for a formal theory of deductive inference above focused 
narrowly on logical connectives (“If…, then…”) and operators (“Some…”). 
And I have argued that such connectives have a context-dependent mean-
ing that is incompatible with their universal applicability—or at least 
they cannot have such applicability if we fix their meanings once and for 
all. Wilfrid Sellars and Robert Brandom developed a broader and more 
powerful critique of formal approaches to inference in general, not just 
deductive inference.

Their concerns were not limited to connectives but to all terms that 
appear in inferences. Their core idea is that the meaning of the terms in 
propositions is what makes good the inferences in which they correct-
ly appear. Brandom (2000, p. 52) provides an example of the inference 
from “Pittsburgh is to the west of Princeton” to “Princeton is to the east 
of Pittsburgh.” We recognize this as a good inference, but not for formal 
reasons. Rather, it is good because of the contents of the concepts of east 
and west. That is, the matter of the inference makes it good.

When I developed the material theory of induction, I was not aware 
of Sellars’ and Brandom’s notion of material inference and, in particular, 
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Brandom’s use of the term “material inference.” I learned of it through a 
lovely note written by Ingo Brigandt (2010), which usefully develops and 
applies the notion of material inference.

The difficulty is that my notion of material inference and that of 
Sellars and Brandom differ slightly, as far as I can see. This means that 
it would have been better at the outset if I had chosen another name. For 
Brandom, the above inference is material since it is made good by the con-
cepts invoked in the premises. In my view, it is material since I locate the 
warrant for the inference in the background material fact: if something 
is east of something else, then the second is west of the first. Here, I leave 
open whether this difference is consequential or merely a different entry 
point into a collection of views that largely agree.
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