Skip to main content

The Canadian Mountain Assessment: Appendix III: Map Data

The Canadian Mountain Assessment
Appendix III: Map Data
    • Notifications
    • Privacy
  • Project HomeThe Canadian Mountain Assessment
  • Projects
  • Learn more about Manifold

Notes

Show the following:

  • Annotations
  • Resources
Search within:

Adjust appearance:

  • font
    Font style
  • color scheme
  • Margins
table of contents
  1. Half Title Page
  2. Title page
  3. Copyright page
  4. Land Acknowledgement
  5. Acknowledgements
  6. Foreword
  7. Executive Summary
    1. Chapter 1. Introduction
    2. Chapter 2. Mountain Environments
    3. Chapter 3. Mountains as Homelands
    4. Chapter 4. Gifts of the Mountains
    5. Chapter 5. Mountains Under Pressure
    6. Chapter 6. Desirable Mountain Futures
  8. Table of Contents
  9. Chapter 1
    1. 1.1 Mountains and Mountain Knowledge in Canada
    2. 1.2 Introducing the Canadian Mountain Assessment
      1. 1.2.1 Project governance
      2. 1.2.2 Visioning
      3. 1.2.3 Methodology
      4. 1.2.4 Review and revision process
      5. 1.2.5 Innovations
      6. 1.2.6 Caveats and limitations
    3. 1.3 Organisation of Assessment
  10. Chapter 2
    1. 2.1 Introduction
    2. 2.2 Origins
      1. 2.2.1 Plate tectonics: The driving mechanism for mountain building
      2. 2.2.2 Ancient orogens of eastern Canada
      3. 2.2.3 Younger orogens of western Canada
      4. 2.2.4 Ice sheet histories, landscape sculpting, and deglaciation
      5. 2.2.5 Gaps and challenges
    3. 2.3 Weather and Climate
      1. 2.3.1 Air temperature
      2. 2.3.2 Precipitation
      3. 2.3.3 Mountain wind systems
      4. 2.3.4 Gaps and challenges
    4. 2.4 Snow, Ice, and Permafrost
      1. 2.4.1 Mountain snow
      2. 2.4.2 Mountain glaciers
      3. 2.4.3 Mountain permafrost
      4. 2.4.4 Gaps and challenges
    5. 2.5 Water
      1. 2.5.1 Mountain flow regimes
      2. 2.5.2 Mountain surface hydrological processes
      3. 2.5.3 Mountain lakes and reservoirs
      4. 2.5.4 Mountain groundwater
      5. 2.5.5 Mountain wetlands
      6. 2.5.6 Mountain water quality
      7. 2.5.7 Hydrological modelling
      8. 2.5.8 Gaps and challenges
    6. 2.6 Mountain Hazards
      1. 2.6.1 Indigenous perspectives on mountain hazards
      2. 2.6.2 Hazard types and frequency
      3. 2.6.3 Gaps and challenges
    7. 2.7 Ecosystems and Biodiversity
      1. 2.7.1 Terrestrial mountain ecosystems
      2. 2.7.2 Landscape management and disturbances
      3. 2.7.3 Mountain biodiversity
      4. 2.7.4 Aquatic ecosystems and biodiversity
      5. 2.7.5 Gaps and challenges
    8. 2.8 Connections between Mountains and Lowland/Coastal Environments
      1. 2.8.1 Upstream movements of air, water, materials, and organisms
      2. 2.8.2 Downstream movements of air, water, materials, and organisms
      3. 2.8.3 Gaps and challenges
    9. 2.9 Conclusions
  11. Chapter 3
    1. 3.1 Introduction
      1. 3.1.1 Homelands and homes
      2. 3.1.2 Conceptual underpinnings
    2. 3.2 Stories of Homelands
      1. 3.2.1 Stories of creation
      2. 3.2.2 Stories of mountain spirits 
      3. 3.2.3 Mountain place names
      4. 3.2.4 Summary: Stories of Homelands
    3. 3.3 Mountain Archaeology and the Longevity of Homelands
    4. 3.4 Multispecies Literature
      1. 3.4.1 Human-animal relationships in mountains
      2. 3.4.2 Human-plant relationships in mountains
    5. 3.5 Changes to Mountain Homelands
      1. 3.5.1 Early colonial presence
      2. 3.5.2 Science as colonial tool
      3. 3.5.3 Treaties and land access
      4. 3.5.4 Parks and protected areas
    6. 3.6 Recreation
      1. 3.6.1 Place-making through recreation
      2. 3.6.2 Recreation and gender
      3. 3.6.3 Race and recreation
    7. 3.7 Labour
      1. 3.7.1 Extraction labour
      2. 3.7.2 Incarcerated labour in mountains
      3. 3.7.3 Military labour
      4. 3.7.4 Built infrastructures
      5. 3.7.5 Mountain professionals
    8. 3.8 Governance in Contemporary Mountain Spaces
      1. 3.8.1 Mountains as borderlands
      2. 3.8.2 Indigenous governance in mountain places
    9. 3.9 Conclusion
  12. Chapter 4
    1. 4.1 Introduction
      1. 4.1.1 Gifts and benefits
    2. 4.2 Gifts of Identity and Wellbeing
      1. 4.2.1 Emotional and physical wellbeing of mountain communities
    3. 4.3 Gifts of Art
      1. 4.3.1 Mountains as sites of creative inspiration and dialogue
      2. 4.3.2 Mountains as sites of art institutions and programs
    4. 4.4 Gifts of Teaching and Pedagogy
      1. 4.4.1 Storytelling and narrative
      2. 4.4.2 Sacredness
      3. 4.4.3 Land-based learning and healing
      4. 4.4.4 Challenges to Indigenous-led teaching and learning in Canada
    5. 4.5 Gifts of Foods and Medicines
      1. 4.5.1 Plants, Fungi, and Medicinal Species
      2. 4.5.2 Wildlife
      3. 4.5.3 Fisheries
    6. 4.6 Gifts of Water
      1. 4.6.1 Gifts of freshwater
      2. 4.6.2 Gifts of wetlands
    7. 4.7 Gift of Mountain Spaces and Terrain for Tourism and Recreation Activities
      1. 4.7.1 Nature and adventure tourism economies
      2. 4.7.2 Challenges and drawbacks of mountain recreation
    8. 4.8 Gifts and Benefits of Forests, Materials, and Energy Sources
      1. 4.8.1 Forests
      2. 4.8.2 Minerals and hydrocarbons
      3. 4.8.3 Sedimentary deposits and quarries
      4. 4.8.4 Metallic mineral deposits
      5. 4.8.5 Fossil fuels deposits
      6. 4.8.6 Renewable energy
    9. 4.9 Conclusions
  13. Chapter 5
    1. 5.1 Introduction
    2. 5.2 Climate Change: Historical Trends and Future Projections
      1. 5.2.1 Historical temperature trends
      2. 5.2.2 Historical precipitation trends
      3. 5.2.3 Caveats and research gaps
      4. 5.2.4 Future climate projections
      5. 5.2.5 Caveats and research gaps
    3. 5.3 Land Cover and Land Use Pressures
      1. 5.3.1 Changes in land cover
      2. 5.3.2 Changes in land use
      3. 5.3.3 Demographic changes
    4. 5.4 Resource Development Pressures
      1. 5.4.1 Resource extraction and development
      2. 5.4.2 Logging pressures
      3. 5.4.3 Mining and fossil fuel pressures
      4. 5.4.4 Invasive species
    5. 5.5 Growing Pressures from Mountain Tourism and Recreation
    6. 5.6 Changes in the Governance of Mountain Spaces
    7. 5.7 Threats and Impacts from a Changing Cryosphere
      1. 5.7.1 Changes in snowpack
      2. 5.7.2 Changes to glaciers
      3. 5.7.3 Changes in permafrost
    8. 5.8 Threats and Impacts from Changing Water Resources
      1. 5.8.1 Changes in water supply
      2. 5.8.2 Water quality
    9. 5.9 Risks and Vulnerability from Changing Mountain Hazards
    10. 5.10 Threats and Impacts on Ecosystems
      1. 5.10.1 Changes in treeline and shrubification
      2. 5.10.2 Changes in stream ecosystems
      3. 5.10.3 Changes in mountain wetlands
      4. 5.10.4 Changes in wildlife, human, and more-than-human relations
    11. 5.11 Impacts on Socio-Cultural Systems
      1. 5.11.1 Threats to Indigenous livelihoods and knowledge systems
      2. 5.11.2 Threats to community health and wellbeing
      3. 5.11.3 Threats to mountain tourism and recreation
    12. 5.12 Adaptation to Changing Pressures
    13. 5.13 Conclusions
  14. Chapter 6
    1. 6.1 Connectivity
    2. 6.2 Elevating Indigenous Knowledges
    3. 6.3 Access and Barriers to Relationships
    4. 6.4 Humility
    5. 6.5 Endings as Beginnings
  15. Appendix I: Contributor Bios
  16. Appendix II: LEARNING CIRCLE Contributions
  17. Appendix III: Map Data

Appendix III: Map Data

Canadian Mountain Assessment (CMA) maps were designed by Chris Brackley and Angi Goodkey (As the Crow Flies cARTography), as well as Jiaao Guo for Figures 1.1, 1.2, 1.3, 1.4, and 1.11.

Data below are for maps produced by the CMA. Data for a limited number of other maps that were not produced by the CMA are not included here, as data sources are cited in map captions.

Base data for maps

Natural Earth. (2021). Prisma Shaded Relief (Version 4.2). Retrieved from https://www.naturalearthdata.com/50m-prisma-shaded-relief/prisma-shaded-relief/

Natural Resources Canada. (2016). Boundary Polygons; Boundary Lines, Atlas of Canada National Scale Data 1:5,000,000. Retrieved from: https://open.canada.ca/data/en/dataset/b8477997-51db-5ee8-91c8-52af2a2d7a96

Chapter 1

Figure 1.1

McDowell, G., & Guo, J. (2021). A Nationally Coherent Characterization and Quantification of Mountain Systems in Canada. Mountain Research and Development, 41.0(2), R21–R31. https://doi.org/10.1659/MRD-JOURNAL-D-20-00071.1

Sayre, R., Karagulle, D., Krauer, J., Payne, D., Adler, C., & Cress, J. (2020). Global Mountain Explorer. Retrieved from https://rmgsc.cr.usgs.gov/gme/

Figure 1.2

McDowell, G., & Guo, J. (2021). A Nationally Coherent Characterization and Quantification of Mountain Systems in Canada. Mountain Research and Development, 41.0(2), R21–R31. https://doi.org/10.1659/MRD-JOURNAL-D-20-00071.1

Native-Land.ca (2020). Native-Land API. Retrieved from https://native-land.ca/api-docs/

Figure 1.3

McDowell, G., & Guo, J. (2021). A Nationally Coherent Characterization and Quantification of Mountain Systems in Canada. Mountain Research and Development, 41.0(2), R21–R31. https://doi.org/10.1659/MRD-JOURNAL-D-20-00071.1

Native-Land.ca (2020). Native-Land API. Retrieved from https://native-land.ca/api-docs/

Figure 1.4

McDowell, G., & Guo, J. (2021). A Nationally Coherent Characterization and Quantification of Mountain Systems in Canada. Mountain Research and Development, 41.0(2), R21–R31. https://doi.org/10.1659/MRD-JOURNAL-D-20-00071.1

CIESIN. (2020). Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Retrieved from https://doi.org/10.7927/H49C6VHW

Figure 1.8

Canadian Mountain Assessment primary data (2023).

Figure 1.11

McDowell, G., & Guo, J. (2021). A Nationally Coherent Characterization and Quantification of Mountain Systems in Canada. Mountain Research and Development, 41.0(2), R21–R31. https://doi.org/10.1659/MRD-JOURNAL-D-20-00071.1

Sayre, R., Karagulle, D., Krauer, J., Payne, D., Adler, C., & Cress, J. (2020). Global Mountain Explorer. Retrieved from https://rmgsc.cr.usgs.gov/gme/

Agriculture and Agri-Food Canada (2016). Terrestrial Ecozones of Canada. Ottawa, Canada: Retrieved from

https://open.canada.ca/data/en/dataset/7ad7ea01-eb23-4824-bccc-66adb7c5bdf82020.

Chapter 2

Figure 2.3

Hasterok, D., Halpin, J. A., Collins, A. S., Hand, M., Kree-mer, C., Gard, M. G., & Glorie, S. (2022). New Maps of Global Geological Provinces and Tectonic Plates. Earth-Science Reviews, 231, 104069. https://doi.org/10.1016/j.earscirev.2022.104069

Figure 2.7

Global Volcanism Program. (2023). Volcanoes of the World (Version v. 5.1.0). Smithsonian Institution.

https://doi.org///doi.org/10.5479/si.GVP.VOTW5-2023.5.1

Natural Resources Canada. (2022). Major Volcanoes [PDF, JPG]. Retrieved from https://open.canada.ca/data/en/dataset/de376fde-8893-11e0-bee7-6cf049291510

Figure 2.9

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Figure 2.11

Carrera, M. L., Bélair, S., & Bilodeau, B. (2015). The Canadian Land Data Assimilation System (CaLDAS): Description and Synthetic Evaluation Study. Journal of Hydrometeorology, 16(3), 1293–1314. https://doi.org/10.1175/JHM-D-14-0089.1

Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., & Mahidjiba, A. (2018). Ten Years of Science Based on the Canadian Precipitation Analysis: A CaPA System Overview and Literature Review. Atmosphere-Ocean, 56(3), 178–196. https://doi.org/10.1080/07055900.2018.

1474728

Figure 2.12

Mekis, É., & Vincent, L. A. (2011). An Overview of the Second Generation Adjusted Daily Precipitation Dataset for Trend Analysis in Canada. Atmosphere-Ocean, 49(2), 163–177. https://doi.org/10.1080/07055900.2011.

583910

Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., & Swail, V. (2012). A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis: Homogenized Canadian Temperature. Journal of Geophysical Research: Atmospheres, 117(D18), n/a-n/a. https://doi.org/10.1029/2012JD017859

Figure 2.13

Vionnet, V., Marsh, C. B., Menounos, B., Gascoin, S., Wayand, N. E., Shea, J., … Pomeroy, J. W. (2021). Multi-scale snowdrift-permitting modelling of mountain snowpack. The Cryosphere, 15(2), 743–769.

https://doi.org/10.5194/tc-15-743-2021

Figure 2.14

Vionnet, V., Mortimer, C., Brady, M., Arnal, L., & Brown, R. (2021). Canadian historical Snow Water Equivalent dataset (CanSWE, 1928–2020). Earth System Science Data, 13(9), 4603–4619. https://doi.org/10.5194/essd-13-4603-2021

Figure 2.15

Mudryk, L. R., Derksen, C., Kushner, P. J., & Brown, R. (2015). Characterization of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010. Journal of Climate, 28(20), 8037–8051. https://doi.org/10.1175/JCLI-D-15-0229.1

Figure 2.16

Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., … The Randolph Consortium. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

Figure 2.17

Gruber, S. (2012). Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6(1), 221–233. https://doi.org/10.5194/tc-6-221-2012

Figure 2.21

Beck, H. E., De Roo, A., & Van Dijk, A. I. J. M. (2015). Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments. Journal of Hydrometeorology, 16(4), 1478–1501. https://doi.org/10.1175/JHM-D-14-0155.1

GloH2O. (n.d.). Global Streamflow Characteristics Dataset. Retrieved from https://www.gloh2o.org/gscd

Figure 2.25

Hermosilla, T., Wulder, M. A., White, J. C., & Coops, N. C. (2022). Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 268, 112780.

https://doi.org/10.1016/j.rse.2021.112780

Chapter 3

Figure 3.1

Native-Land.ca (2020). Native-Land API. Retrieved from https://native-land.ca/api-docs/

Natural Resources Canada. (2017). Aboriginal Lands of Canada Legislative Boundaries [Vector]. Retrieved from https://open.canada.ca/data/en/dataset/522b07b9-78e2-4819-b736-ad9208eb1067

U.S. Geological Survey’s Center for Earth Resources Observation and Science. (1996). Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). https://doi.org///doi.org/10.5066/F7DF6PQ

Figure 3.4

Native-Land.ca (2020). Native-Land API. Retrieved from https://native-land.ca/api-docs/

Natural Resources Canada. (2017). Aboriginal Lands of Canada Legislative Boundaries. Retrieved from

https://open.canada.ca/data/en/dataset/522b07b9-78e2-4819-b736-ad9208eb1067

U.S. Geological Survey’s Center for Earth Resources Observation and Science. (1996). Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30).

https://doi.org///doi.org/10.5066/F7DF6PQ

Figure 3.5

Native-Land.ca (2020). Native-Land API. Retrieved from https://native-land.ca/api-docs/

Natural Resources Canada. (2017). Aboriginal Lands of Canada Legislative Boundaries. Retrieved from

https://open.canada.ca/data/en/dataset/522b07b9-78e2-4819-b736-ad9208eb1067

U.S. Geological Survey’s Center for Earth Resources Observation and Science. (1996). Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). https://doi.org///doi.org/10.5066/F7DF6PQ

Chapter 5

Figure 5.1

Hersbach, H., Bell, B., Berrisford, P., Blavati, G., Horányi, A., Muñoz Sabater, J., … Thépaut, J. N. (2023). ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.f17050d7

Figure 5.4

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Winter, B. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Swart, Neil Cameron, Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Sigmond, M. (2019a). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp126. Earth System Grid Federation.

https://doi.org/10.22033/ESGF/CMIP6.3683

Swart, Neil Cameron, Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Sigmond, M. (2019b). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation.

https://doi.org/10.22033/ESGF/CMIP6.3696

Figure 5.5

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Winter, B. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Swart, Neil Cameron, Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Sigmond, M. (2019a). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp126. Earth System Grid Federation.

https://doi.org/10.22033/ESGF/CMIP6.3683

Swart, Neil Cameron, Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., … Sigmond, M. (2019b). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation.

https://doi.org/10.22033/ESGF/CMIP6.3696

Figure 5.8

Locke, H., Ellis, E. C., Venter, O., Schuster, R., Ma, K., Shen, X., … Watson, J. E. M. (2019). Three global conditions for biodiversity conservation and sustainable use: An implementation framework. National Science Review, 6(6), 1080–1082. https://doi.org/10.1093/nsr/nwz136

Figure 5.11

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., … Kääb, A. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856), 726–731. https://doi.org/10.1038/s41586-021-03436-z

Figure 5.12

Aubry-Wake, C., and Pomeroy, J. W. (2023) Predicting Hydrological Change in an Alpine Glacierized Basin and its Sensitivity to Landscape Evolution and Meteorological Forcings, Water Resources Research. https://doi.org/10.1029/2022WR033363

Annotate

Previous
Canadian Mountain Assessment
© 2023 Canadian Mountain Assessment
Powered by Manifold Scholarship. Learn more at
Opens in new tab or windowmanifoldapp.org